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Abstract. The port choice problem consists in predicting the selection of a port, made by an agent who has alternatives 
to choose from. Most of the literature has tackled this problem assuming a discrete choice model dependent on the ports’ 
characteristics and agents’ attributes. However, in practice the port choice decision depends also on the choices made by 
other agents as well as decisions made by these agents in the past. There are only a few examples that incorporate the com-
plexity generated by spatio-temporal interactions between agents. However, those modelling structures are rather cum-
bersome, precluding their use in practical cases. This article presents a new modelling framework to predict port choice 
decisions, based on the theory of Cellular Automaton (CA), which is simple in structure and can be quickly calibrated and 
applied. This framework is a probabilistic CA intended to imitate the decision processes made from multiple shippers that 
interact with each other. These shippers face similar alternatives of seaports for exporting their products within a certain 
time span. The port choice here is a dynamic decision that depends on the ports’ characteristics and attributes of each ship-
per at a given time, as well as the decisions made by their neighbours. The outcome of the interaction is a discrete decision 
that evolves in time according to the dynamics of the system as a whole. The specified CA was applied to the case of vehicle 
exports from Brazil and the calibration was performed through a genetic algorithm. The results show that the probabilis-
tic CA is able to replicate the historic behaviour of the port choice decisions in the Brazilian vehicle industry, with a high 
degree of success. The spatial component of the CA turned out to be of major relevance in the dynamic decision process 
along with the attributes and geographical location of ports. 

Keywords: port choice, cellular automaton, probabilistic, port competition, hinterland formation, discrete choice.

Introduction

More than 85% of the cargo transported globally is moved 
through the maritime transportation system. This charac-
teristic seems to be a long-run trend, especially when the 
size of the vessels and the ports infrastructure has risen 
considerable in the last decade and so has the transference 
capacity and specialized labour in this industry.

Given this scenario, the port planning processes will 
need to depend on studies and models to predict (to a 
certain extent) the load of the different port nodes in a 
transportation network, in order to balance the transfer-
ence capacity, cost and time consumption and keeping the 
negative externalities under control.

The distribution of cargo between the different avail-
able competing ports (also called demand capture) is usu-
ally analysed from two perspectives: the shippers’ view-

point and the shipping company’s viewpoint. The shipper’s 
perspective is that of choosing the port that maximises 
some utility criterion. For example, the shippers may rely 
on models whose main explanatory variable is the gener-
alized cost of transporting the cargo between ports and 
(from) destinations (origins), within their hinterlands. 
From the perspective of the shipping companies, the 
choice between alternative ports rely on charges, rates and 
ports’ level of service, as explanatory variables that define 
the port’s efficiency (Tongzon, Sawant 2007). There are 
though, additional aspects that condition the port choice. 
In fact, according to Chou et al. (2008) there are at least 
six relevant aspects, which are: local cargo volume; ter-
minal handling charge; berth availability; port location; 
transhipment volume and feeder network.
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In both cases, only a subset of the explanatory vari-
ables is included into the models, mainly because of dif-
ficulties to measure them. In fact, in some cases these 
variables are economically sensitive for the stakeholders 
and, most importantly, it is difficult to predict them for the 
entire planning horizon. For example, key aspects such as 
bargaining power, specialization in a niche (e.g. refriger-
ated cargo), long-term contracts, commercial integration, 
among others, are left out of the models for the difficulties 
explained above.

The problem to be tackled in this article is that of the 
prediction of port choice from the shippers’ perspective, 
considering variables related to port performance as well 
as spatial and temporal interaction, i.e. the influence of 
one shipper’s decision over another that is geographically 
close and the effect of decisions along the time line.

The hypothesis about the influence of the shipper’s 
decisions over one another is backed up by empirical 
evidence. In fact, large shippers affect the port choice de-
cision of other shipping companies (Tiwari et al. 2003), 
due to the higher volumes (Chou et al. 2008). These large 
volumes generate the proper conditions for new services 
to flourish and also improve the shippers bargaining posi-
tion vis-à-vis the shipping companies. With the presence 
of new shipping services, smaller shippers also improve 
their bargaining position and consequently smaller ship-
pers will tend to follow the large shippers, most likely their 
neighbours, to take advantage of the long-term relation-
ship between the large shippers and shipping companies. 
At the same time, the shippers’ location is linked to similar 
economic activities and consequently there is also an in-
direct relationship between spatial location and port deci-
sions for both actors.

This article attempts to develop a new modelling 
framework to describe and predict the behaviour of de-
cision makers in the maritime transport chain, in which 
various shippers choose a port of origin to export their 
shipments during a period of time. To attain this main 
objective, we adapt the structure of a CA model, in order 
to capture the spatio-temporal interactions, that in other 
modelling contexts are rather difficult to calibrate and op-
erate (Garrido, Leva 2004).

1. Literature review

1.1. The port choice in maritime transportation

The usual explanation for the port choice behaviour in the 
specialized literature is the generalized transportation cost 
from/to the hinterland to/from the ports and the reliabil-
ity of the total route within the context of a supply chain 
instead of the sole port choice. Other studies point out sig-
nificant differences in the triggers of port choice between 
different commodities (Malchow, Kanafani 2001). Accord-
ing to Moya and Feo Valero (2017), the identification of 
the decision-maker is one of the main critical issues in 
port choice modelling. Furthermore, they point out that 
the decisions of different agents are highly interrelated and 
inherently iterative. Due to the latter, the determinants of 

the decision process vary significantly with the character-
istics of the decision-maker, its logistics requirements and 
objectives. Tongzon (2009) studies the port choice from 
the freight forwarders’ viewpoint; finding out that the 
main factors in this decision are port efficiency, shipping 
frequency, adequate infrastructure and location. Magala 
and Sammons (2008), studied the port choice problem 
incorporating the concept of supply chain, pointing out 
that shippers select a set of logistics services, in which the 
port itself is only part of the whole chain. 

There are authors who studied the port choice prob-
lem from the shipping lines perspective, where the port 
charges and level of service at the port become the funda-
mental decision variables (Tongzon, Sawant 2007). How-
ever, according to Chou et  al. (2008), there are at least 
six relevant decision variables: local cargo volume, port’s 
charges, berth availability, port’s location, transferred vol-
ume and feeder connection.

Other authors have studied the problem of port choice 
considering various types of actors. For example, Song and 
Yeo (2004) identified 73 elements that contribute to the 
global competitiveness of the main ports in China, con-
sidering the opinions of ship-owners, shippers, shipping 
companies, terminal operators, researchers and scholars. 
After this broad analysis Song and Yeo (2004) concluded 
that location was the most relevant variable as far as com-
petitiveness is concerned.

Lee et al. (2010), identify and evaluate the main de-
terminants of the port choice from the carriers, shippers 
and terminal operator’s perspectives. They identify 38 at-
tributes for each of the seven analysed categories (port 
location, port characteristics, port’s operation conditions, 
hinterland characteristics, ships characteristics, among 
others). The above-mentioned stakeholders evaluated 
these attributes, finding considerable variability in the as-
sessment of each attribute by each stakeholder, and only 
one attribute that was commonly evaluated as relevant to 
all the stakeholders: port accessibility. However, further 
analysis of the shippers and containers’ terminal opera-
tors, revealed that they had a larger number of common 
attributes and also giving a larger weight to “port’s opera-
tion conditions” than that given by the shippers.

1.2. Port choice modelling

The common family of port choice studies is discrete 
choice models (Manski, McFadden 1981). These models 
assume the following: there are rational agents that face 
the selection of a single choice among a choice set formed 
by all the alternatives available to her. Each alternative can 
be conveniently described by its own attributes. The se-
lecting agent has a utility function (a score) that depends 
on the attributes of each alternative, some individual char-
acteristics plus a random component that explains devia-
tions from the rational behaviour (given the available ex-
planatory variables). Therefore, the agent chooses a certain 
alternative according to the probability that the random 
utility function is maximized when selecting that particu-
lar alternative. One of the most popular discrete choice 
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models based on random utility theory is the MultiNomial 
Logit (MNL) model (Hausman, McFadden 1984), which 
requires two conditions: all the available alternatives have 
to be uncorrelated between them, and the random com-
ponent of the utility function has to be homoscedastic (i.e. 
the variance of all the alternatives’ utility functions have to 
be equal). Examples of application of the MNL to the port 
choice problem are found in Veldman et al. (2016); Tiwari 
et al. (2003); Malchow and Kanafani (2003). 

These MNL models show a good performance in 
terms of nominal prediction power. However, it is likely 
that the reported performance was highly biased due to 
the violation of MNL requirements (homoscedasticity and 
independence between alternatives) to produce unbiased 
and consistent estimators. Indeed, the choice set (i.e. their 
available alternatives) had significant correlation and het-
eroscedasticity. Those conditions are commonly found 
in the port choice problem. In fact, the spatial proxim-
ity of different port terminals and the type of long-term 
contracts established between shippers and carriers that 
define ex-ante the port terminals to be used within the 
duration of the contract. These effects create both spatial 
and temporal correlation that is not easy to deal with in 
the context of discrete choice models. 

In addition, the maritime conditions, the ports in-
frastructure and the interface with the land transporta-
tion system (to name a few) impose large variability in 
the port services, which creates the ideal conditions for 
a heteroscedastic behaviour when considered as alterna-
tives within a choice set. As a result, there are only a few 
examples of published studies in specialized journals that 
deal with more robust models that allow the violation of 
the MNL restrictions. One of these attempts is the model-
ling framework proposed by Veldman et al. (2013). This 
approach partially solves the problem of heteroscedasticity 
through the use of the Hierarchical Logit (HL) model (Pa-
pola 2004). However, the use of HL models avoids only a 
small fraction of the possible correlation/heteroscedastic-
ity problem. The latter is due to the rigid structure of the 
variance-covariance matrix that the HL imposes. 

To the best of the authors’ knowledge, the only mod-
elling approach that deals simultaneously with a general 
structure that allows alternatives with a general random 
component’s specification is Garrido and Leva (2004). 
In that study the authors present a general MultiNomial 
Probit (MNP) model (Garrido, Mahmassani 2000). The 
MNP model put forward by those authors incorporates 
spatial and temporal correlations between alternatives and 
a general structure for the variance-covariance matrix. The 
model gives a good tool for forecasting port choice as well 
as representing the interactions between agents in a coher-
ent way. However, there are complications with the cali-
bration process (numerical stability, multiple maxima for 
the likelihood function, large computational effort, among 
others) that makes it difficult to be used in practice or by 
non-econometric experts. 

There are other methodologies developed more re-
cently to address this very same problem. One of them is 

the approach proposed by Yeo et al. (2014). They propose 
a port choice model based on fuzzy logic. In this approach 
the authors combine various data sources and formats, 
both objective and subjective, to assess the performance 
of a given port, determined through a “fuzzy score” using 
degrees of belief to come up with a criterion to establish 
the port choice. This modelling approach was applied to 
the choice of container ports in northeast Asia. The out-
come of the model is a preference score that allows the 
comparison of different ports either vis-à-vis other ports 
or the system as a whole. However, this methodology is 
strongly dependent on the opinion of the stakeholders 
considered in the sample, which can easily change in line 
with their preferences at that particular time.

1.3. CA modelling

The Cellular Automaton (CA) seems to be a direct tool to 
deal with a phenomenon that is dynamic, non-linear and 
complex (Goles, Martínez 2010) with significant compu-
tational efficiency and with reasonable data needs. The CA 
can be defined, for our purposes, as a mathematical mod-
el belonging to the field of computational physics. Pro-
posed originally by John von Neumann during the 1950’s 
to simulate and describe complex systems as a massive 
collection of simple objects that interact with each other 
locally. These simulation models proved to be especially 
adequate to study dynamic systems that evolve in discrete 
steps (Griffeath, Moore 2003; Chopard, Droz 2005).

The simulation structure is based on rather simple in-
teractions among shippers and between shippers and ports 
to predict the port selection. The port choice emerges as a 
result of the dynamic interactions with feedback between 
these decision-makers. In spite of the simplicity of these 
interactions, the proposed methodology captures the com-
plex behaviour of the system and predicts the port choice 
evolution with high accuracy. In addition, the modelling 
framework is simple enough to be quickly calibrated and 
applied to real cases.

This tool would be of great value for methodological 
and practical reasons alike. From the theoretical perspec-
tive, this approach could be a tool for searching complex 
patterns (chaotic behaviour, sensitivity to initial condi-
tions, etc.) in the dynamics of market share formation, as 
well as identifying attributes that influence a port’s market 
share. On the practical side, this approach is useful to es-
tablish not only the current market share of a port but also 
its hinterland and the variables that affect its boundaries 
within a competitive ports’ system. 

2. Design of a CA for port choice

2.1. A simulation structure for the port  
choice problem with a CA model 

Consider a given spatial region that serves as a shared hin-
terland for a network formed by m ports. We divide this 
region into n mutually exclusive and collectively exhaus-
tive Freight Generation Zones (FGZ). Each FGZ can have 
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m + 1 states of activation: one for each available port and 
one state of inactivity, meaning that if a FGZ “has cho-
sen” port i as a port of call, then its current state is i, and 
if the FGZ has not chosen any port then it is not active, 
hence its state is Inactive. Thus, the i-th FGZ has a state 
function as follows: ei = j, with j = 0, 1, 2, …, m, where 
0 means inactivity and j means that i-th FGZ has chosen  
port j.

Figure 1 shows a scheme of the FGZ and ports on 
which a port choice CA model will operate. Each FGZ, 
represented as a circle, corresponds to a single cell of the 
CA. Thus, each FGZ acts like a CA that is either active or 
inactive. A given FGZ is active during discrete time t if it 
sends a shipment to an available port. The port choice de-
cision of that FGZ at time t depends on the distance to the 
port, the operational characteristics of the port (e.g. tariffs, 
availability of dedicated space for incoming vehicles, ad-
ditional services, expected waiting times, transfer capacity, 
specialization, long term contracts, bargaining position, 
among many others). Our novel approach assumes that 
the condition of activity at time t also depends on the state 
of its neighbouring FGZ.

In addition, this modelling framework assumes that 
the port choice not only depends on the attributes men-
tioned above, but also incorporates a stochastic element 
that would explain (similar to the assumption of random 
utility theory) at least two phenomena. First, the model-
ler ignores the actual attributes of each port at any given 
time. Secondly, a FGZ could become active/inactive trig-
gered by exogenous variables not included in the model 
specification. Thus, our modelling approach will be called 
Probabilistic Port Choice Cellular Automaton (PPCCA).

2.1.1. The neighbourhood concept  
in the PPCCA model
There are several ways to interpret the concept of neigh-
bourhood in CA (Goles, Martínez 2010; Griffeath, Moore 
2003; Chopard, Droz 2005). For example, Von Neumann 
introduced the concept of neighbourhood in a rectangular 
grid as the cells sharing a common edge (four neighbours 
in a squared grid). Other classical concept is that of Moore 
neighbourhood, in which a neighbour is each one of the 
eight cells surrounding a given cell in a squared grid. In 
the port choice case, the FGZ not necessarily are ordered 
in a Manhattan metric array. Consequently, the concept 
of regular grids does not fit the actual spatial pattern. 
Instead, we incorporate the concept of radial neighbour-
hood, in which two cells are R-neighbours if they both are 
circumscribed in a circle of radius R, as shown in Figure 2.

2.1.2. Transition function
In the PPCCA model each cell corresponds to a FGZ that 
transits from its current state to the next one (in discrete 
time steps) according to a stochastic transition function. 
Probabilistic CAs update their state according to a rule 
that follows a certain probability distribution. Accordingly, 
they belong to the category of discrete-time random dy-

namical systems. Incorporating stochasticity in the spatial 
interaction between cells allows these models to identify 
complex behaviours that may emerge from the system.

The PPCCA will update the state of each FGZ, as a 
probabilistic CA, according to the following rules:

 – Each zone has a real number associated with it: 
  0 1z z∈ ∧ ≤ ≤ . This number is calibrated by a ge-

netic algorithm (that will search for the optimal com-
bination of parameters that best fit a set of observed 
data). At each simulation step, z is replaced by anoth-
er real number, drawn from a normally distributed 
sample whose mean value is z and its standard devia-
tion is s (also calibrated by the genetic algorithm). 

 – Each FGZ i has a function 1
i mF ∈ℜ  whose domain 

is the R-neighbourhood of the i-th FGZ. This func-
tion’s outcome gives a vector of m components. Each 
component is formed by the ratio between the num-
ber of FGZ within the R-neighbourhood that choose 
the port j, relative to the total number of active FGZ 
within the same R-neighbourhood. i.e.:

 

1 2
1 , , , mi

i i i

nn n
N N N

 
F = …  

 
,  1, 2, , i n∀ = … ,                     (1)

where: n1, n2, …, nm is the number of FGZs that 
chose the port 1 to m respectively in a given time 

Figure 1. Conceptual scheme of FGZ and ports  
within a shared hinterland
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step; Ni is the total number of active zones within the 
R-neighbourhood of i-th FGZ.

 – Each FGZ i has a function 2
i mF ∈R  whose domain 

is the set of distances to the m ports.

  2
iF (2 1 1 2 2Ö , ,i

d i c d i cd c d c= q + q q + q⋅ ⋅ ⋅ ⋅ …,

   ), d ij c jd c⋅q + q ⋅… ,  1, 2, , i n∀ = … ,                            (2)

where: qd and qc are coefficients to be calibrated by 
the genetic algorithm; dij represents the distance 
from the i-th FGZ to the port j (with j = 1, 2, …, m); 
cj represents an aggregated proxy of the various costs 
involved in the choice of port j (note that these coef-
ficients may implicitly include the costs associated to 
the carrier selection). As the cj coefficients represent 
some generalised cost function, hence smaller values 
are preferred to larger ones (they can also be inter-
preted as a proxy for the disutility of choosing port j). 

 – The function 2
iF  is mapped as follows: the small-

est component of 2
iF  is assigned a probability p, the 

second smallest component is assigned a probability 
( )1–p p⋅  and so forth decreasing as a geometric law 

until reaching ( ) 11 mp p −⋅ − . The new mapped func-
tion, that contains the probability values (instead of 
distances) for each component, is renamed 2

i′F .
 – Finally, a compound function is defined as follows:

  ( )1 21i i i′F = a ⋅F + −a ⋅F ,  1, 2, , i n∀ = …                (3)

with  i mF ∈ℜ . In this specification, the parameter 
a represents the influence of the R-neighbours’ be-
haviour on the port choice decision, i.e., the spatial 
component of the decision, associated to the FGZ R-
neighbours’ interaction, and (1 – a), the influence of 
the distance and other systematic attributes related 
to the “attractiveness” of a port, on the port choice 
decision. The attractiveness here has opposite sign to 
the coefficients cj.

 – If T ≤ z, (where T is an activation threshold cali-
brated by the genetic algorithm) then the state ei of 
each FGZ is updated with a value between 0 and m, 
representing the choice (0 corresponds to inactivity) 
corresponding to the highest component of the func-
tion in Equation (3).

2.1.3. Model parameters
According to the specification described above, the follow-
ing parameters need to be calibrated before the model can 
simulate the dynamics of the port choice decisions: 

 – R – the radius of neighbourhood for all the FGZs;
–– a – the weight of the neighbours’ port choice deci-
sion;

 – T – activation threshold. 
Additionally, the model requires the calibration of the 

following parameters:
 – the value associated to the overall costs of each port 
c1, c2, …, cm;

 – the standard deviation s for the whole area and zi 
for each FGZ i;

 – the probability p is used in a range manner to add 
variability to the system’s dynamics – thus, the “best 
candidate” will not always be chosen but instead it 
will have the highest probability to be chosen.

2.2. Model calibration

The parameters described above were calibrated with the 
aid of a genetic algorithm (Goldberg 1989), implemented 
in Lazarus programming language (Van Canneyt et  al. 
2011). 

The genetic algorithm runs as follows:
 – An initial population of 100 individuals is generated. 
Each one of these individuals represent a set of values 
for the PPCCA’s parameters. The genotype of each 
individual is formed by the values of the unknown 
parameters (randomly selected at the beginning of 
the optimization process). 

 – The phenotype associated to each individual corre-
sponds to the observed data reflecting the port choice 
dynamics, i.e., active FGZ for each port at every time 
step during the whole sample. For each phenotype, 
various indicators can be computed to measure the 
goodness of fit between modelled choice and actual 
data.

 – The selection of the optimal parameters’ values must 
be done in terms of the best fit to the observed data. 
Therefore, we defined a score to be optimized as fol-
lows:

 
( )0 0

,

,
i t

F f i t=∑ ;                                                       (4)

 

( )
( )
( )0

,  0 ,
, 1,  0

0,  otherwise

i i

i i

if e er
f i t if e er

+ γ = ≠ γ∈ℜ
 = = = 
 
 

 t∀ ,                  (5)

where: i represents a FGZ and t is the observed time 
period. The best set of values is such that F0 is max-
imum. In fact, each time the set of values yields a 
successful assignment (i.e. the simulated port choice 
coincides with the observed data at a given time pe-
riod), the value of ( )0 ,f i t  increases. In this equation, 
ei and eri represent the state of a FGZ in the simu-
lation and the observed dataset respectively at each 
time step. γ is an auxiliary parameter that allows a 
degree of freedom to induce the search towards more 
adapted generations. The greater the value of γ the 
greater the relevance given to an active success, i.e., 
a realization in which the simulation predicts an ac-
tive FGZ, which is also active in the observed sample.

 – Once the algorithm has evaluated the objective 
function F0, the 100 individuals are arranged in a 
descending order. Then, crossover operators are de-
fined between the top 30% of the list and the rest of 
the population. 

 – To incorporate diversity in the next generations we 
defined mutation operators. The gene to be mutated 
is chosen randomly. 
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 – The quality of each individual is evaluated along a 
diversity descriptor, to guarantee a heterogeneous 
population at each generation. Thus, at each future 
generation the “best” individual of the previous gen-
eration is preserved.

 – A convergence criterion is defined, in accordance 
with the percentage of success between simulated 
and observed individuals. This percentage is an in-
put from the modeller. The algorithm stops when a 
pre-specified threshold is reached.

3. Experimental design

3.1. Application instance

Only a few countries have a public archive with detailed 
origin-destination data for international commerce. Brazil 
is one of those countries. In fact, they have publicly availa-
ble datasets with freight transportation data disaggregated 
by type of commodity up to a 6-digit customs code (http://
www.aliceweb2.mdic.gov.br).

For this reason, we have decided to apply the model-
ling framework to actual data obtained from this source. 
Among the non-bulk commodities available in the Bra-
zilian database we have chosen the Roll-On Roll-Off 
(RORO) market, which is very active in Brazil, especially 
for vehicles exports. There are more than 30 brands with 
over 65 plants located in the South, Southeast, Center-
West, Northeast and North of Brazil (ANFAVEA 2016). 
The RORO vessels operate mainly in five Brazilian sea-
ports (both private and public terminals). 

To apply and test the developed methodology, we se-
lected a set of ports with public terminals and common 
hinterland, in order to control that all the FGZ had the 
same available choice set. The selected ports were Parana-
guá, Santos, Sao Sebastiao and Rio de Janeiro. The Port of 
Sao Sebastiao moves a significantly lower volume of cargo 
compared to its competitors; however, it was included in 
the choice set to test the ability of the modelling frame-
work to respond to changes in the ports’ conditions and 
attributes when an improvement has been made (e.g. in-
vestment in capacity).

The FGZ correspond to Municipios, which are admin-
istrative geographic units in which the whole country is 
divided. The selected sample contains records of vehicle 
exports through any of the above mentioned ports since 
1997 until 2015. The temporal resolution is a trimester, 
obtaining thus a total of 74 observations in a time series.

The proportion of active FGZ at each time interval 
ranges between 12 and 39%, and within the last 20 periods 
(five years of data) the average is 29%. Figure 3 shows the 
percentage of active FGZ at each period in the sample, as 
well as a smooth curve fitted to the data.

Regarding the historical market share of each port, 
Figure 4 shows Port 1 with a very low share, which is ex-
plained by its accessibility from the entire area (only 4% of 
the FGZs are closer to this port than to its competitors) as 
well as its lack of attractive market conditions (infrastruc-
ture, equipment, charges, etc.). On the other hand, Port 3 
is the most attractive from the location perspective; 63% 
of the FGZs are closer to it, followed by Port 2 with a 23% 
and Port 4 with 12%.

Figure 3. Percentage of active FGZ in each sampled period

Figure 4. Historical market share of each port in the choice set
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3.2. Calibration results

The PPCCA parameters were estimated through the ge-
netic algorithm implementation explained in Section 2.2. 
The obtained parameters are: R = 69 km; a = 0.27; T = 
0.92. As stated in Section 2.2, the pre-specified thresh-
old acts as stopping criterion for the algorithm. In this 
case that criterion was 70%, with was the highest value 
found for this sample. This prediction success is consid-
ered high when compared to other transportation demand 
models calibrated with actual data. In the case of discrete 
choice models, the proper way to establish their good-
ness of fit is by comparing the ratio of log-likelihood of 
an only-constants model and the log-likelihood of a given 
specification. That ratio is named r2. The best published 
models reached values of r2 around 0.5 for the port choice 
problem. Table shows the goodness of fit reached by some 
discrete choice models applied to the port choice problem. 

Table. Goodness of fit for discrete choice models  
applied to port choice

Author Model r2

Tiwari et al. (2003) MNL 0.57

Malchow and Kanafani (2004) MNL 0.54

Veldman et al. (2016) MNL 0.507

The percentage of success reached by the PPCCA was 
computed using a calibration parameter that assigns four 
times more weight to the success of an active FGZ than 
to an inactive one, i.e. the value of γ in Section 2.2 takes 
the value 4.

The obtained values show that the port choice in a 
FGZ is influenced by the choice of its R-neighbours with 
a weight of 27% (neighbours within a circle of 69 km of 
the FGZ). The remaining portion of the selection score is 
then explained by the distance to the port and the port’s 
characteristics.

Note that the threshold T was calibrated obtaining a 
high value (0.92 and the maximum possible value was 
1.0). This value is explained by the low proportion of ac-
tive FGZs in the whole sample; about 30% of the FGZ re-
main active during the sample time span. This characteris-
tic of the dynamic system is easily captured by a CA model 

vis-à-vis a discrete choice model or a regression model, 
because those modelling approaches tend to present larger 
errors for agents with lower activity (or presence) within 
the calibration sample. The latter is due to the fact that 
the error term variance in discrete choice models is inde-
pendent of the value of the choice probability. Thus, the 
error magnitude is larger when compared to alternatives 
with small market shares tan it is to larger market shares. 
Consequently, those ports with significantly smaller mar-
ket shares are subjected to error components that could be 
much larger than their systematic component.

3.3. Model’s performance as a forecasting tool

To evaluate the model’s performance as a forecasting tool 
we carried out several runs of the model keeping the 
ports’ attributes fixed (i.e. ( ) 21 i−a ⋅F  remained constant 
in Equation (3)). Thus, the change in the FGZ’s activity is 
explained mainly by the term 1

ia ⋅F  in the Fi function 
(the spatial effect of the R-neighbourhood) and the ran-
domness added by the threshold condition for activation.

The model was executed 20 times during 80 periods 
(each period representing one trimester), i.e. an equivalent 
to 20 years simulation, in order to observe the long run 
behaviour of the system’s evolution.

When comparing the average percentage of successful 
forecasts at each period (solid line in Figure 5) with the 
actual data for the 74 available periods (Figure 3), it can 
be seen that the trend in time is similar in both cases. The 
number of active FGZs varies between 12 and 40% in the 
simulated dynamics (i.e. the CA evolution) whereas the 
actual number of active FGZ lies between 12 and 39%, 
which is a good indicator of the accuracy of the calibrated 
CA in terms of capturing the system dynamics. 

We studied the case of two ports close to each other 
(in terms of distance) when one of them increases its com-
petitiveness by a 20% compared to its best competitor (i.e., 
the disutility of Port j was increased 20%). In the model, 
the latter would mean to decrease cj by 20% in Equa-
tion (2). Figure 6 shows the market share in the baseline 
simulation. As can be seen, Port 1 does not capture any 
FGZs even though it is located close to the Port 3. The 
explanation for this is that Port 1 does not have sufficiently 
attractive conditions compared to its competitors (infra-
structure, accessibility, equipment, charges, etc.). 

Figure 5. Forecasting of active FGZ for a 20 years simulation horizon

0 10 20 40 50 60 70 8030

y = 6.708 ln(x) + 10.616 
R = 0.9778

0
5

10
15
20
25
30
35
40
45
50

A
ct

iv
e 

FG
Z 

[%
]

55

Sampled period



808 M. A. Leva et al. A probabilistic cellular automaton to forecast port choice decisions

However, if Port 1 would manage to increase its at-
tractiveness (or decrease its overall costs, represented by 
c1) by 20% (compared to its closest competitor Port 3), 
its market share would increase by 12% in the simulated 
horizon, as shown in Figure 7.

With this very same example is possible to estimate 
the average elasticity for the market share of Port 3 with 
respect to variation in the attractiveness of Port 1 (repre-
sented as lower overall costs). According to the obtained 
values, a 1 point variation in the attractiveness of Port 1 
would trigger a 2.3 points of variation in the market share 
of Port 3. This high elasticity is due to two components. 
On one hand the attractiveness of the port itself, and on 
the other hand the spatial effect produced in the rest of the 
FGZs within the hinterland of both ports. 

Conclusions

In this article we developed a new modelling structure to 
solve the port choice problem, based on a probabilistic 
PPCCA that attempts to imitate the decision of multiple 
spatially located actors that interact with each other. These 
actors base their decision on various aspects such as their 
distance to each port, the attractiveness of each port as 
well as the spatial component of its own neighbourhood, 
in which the choice made by a FGZ’s R-neighbours (those 
within a circle of radius R) affects the decision of the FGZ 
itself. 

This modelling framework applies only in cases where 
the decision makers interact between each other spatially 
through simple rules, but generating a complex system’s 
behaviour. Thus, for cases where the decision makers are 
other than the exporter (e.g. importers), it would be nec-

essary to search for transition rules that capture the inter-
action between the various agents involved in the choice 
process.

The specification of the PPCCA was applied to a prac-
tical case of vehicle exports in Brazil. The parameters’ 
calibration was done through a specially adapted genetic 
algorithm.

The results showed that the choice of a port by a giv-
en FGZ (i.e. the actors located within it) is strongly in-
fluenced (27%) by the choice made by its R-neighbours 
within a circle of 69 km from the given FGZ. The rest of 
the attributes influencing this decision rely on the distance 
from the FGZ to the ports as well as the particular char-
acteristics of each port.

To test the forecasting ability of the proposed model-
ling framework, the system’s behaviour was simulated by 
executing the PPCCA 20 runs during 80 periods (i.e. a 
20 years horizon). The results showed that the simulated 
behaviour of the FGZs capture the dynamics of the actual 
data with high accuracy, both in the trends and the per-
centage of active FGZs at each period. 

One of the practical uses of this framework is the 
estimation of elasticity of market shares with respect to 
any of the attributes involved in the decision process. In 
particular, the elasticity of market share with respect to 
the ports characteristics is a value of interest for many 
stakeholders. As an example, we estimated the value of 
such elasticity comparing two close ports: Santos and Sao 
Sebastiao in Brazil. In fact, if Sao Sebastiao would increase 
its attractiveness by 1 percentage point (over that of San-
tos), it would increase its market share by 2.3 points in the 
Brazilian vehicle export industry.

Figure 6. Market share forecast per port in a 20 years span

Figure 7. Market share forecast per port in a 20 years span with Port 1’s attractiveness increased by 20% respect to Port 3
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As a future line of research, the modelling framework 
presented in this article can be modified to represent not 
only the port choice but also the exported volume and the 
corresponding flows in the transport network. Another 
extension could be the inclusion of multiproduct struc-
tures. The latter would require the search of an alternative 
way to represent the concept of neighbourhood, capturing 
the interaction between exporters of various products, e.g. 
exporters of the same product could have more influence 
on their peers than closer neighbours that export a dif-
ferent product. In regard with the case presented in this 
article, the simulation could be improved with the inclu-
sion of additional explanatory variates that may play a 
significant role in explaining the system’s behaviour. For 
example, costs and times at the ports and for the deep-sea 
journey, could allow a more accurate description of the 
overall costs. However, the problem of measuring those 
values for each alternative and period represents a major 
challenge. 
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