
ar
X

iv
:1

60
9.

08
93

6v
1 

 [
qu

an
t-

ph
] 

 2
8 

Se
p 

20
16

The power of a control qubit in weak measurements

Raul Coto1, Vı́ctor Montenegro1,3, Vitalie Eremeev2, Douglas Mundarain4, Miguel Orszag1
1Instituto de F́ısica, Pontificia Universidad Católica de Chile, Casilla 306, Santiago, Chile

2Facultad de Ingenieŕıa, Universidad Diego Portales, Av. Ejercito 441, Santiago, Chile
3Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
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In the late 80s, a curious effect suggested by Aharanov, Albert and Vaidman [1] opened up
new vistas regarding quantum measurements on weakly coupled systems. There, a combination of a
“weak” finite interaction together with a “strong” post-selection measurement leads to an anomalous
effect, namely the mean value of a spin-1/2 particle in the z−direction lies outside the conventional
spectrum of ±1. Despite being just a theoretical curiosity, the achieved amplification could be
useful in the realm of sensoring modest quantities below the standard quantum limit, where they
would not be able to be detected otherwise. Hence, the accurate quantum control of the weak value
amplification becomes highly essential for quantum sensoring and detection.

In this paper, we investigate the quantum control of the weak value amplification of a qubit
system coupled to a meter, via a second non-interacting qubit, initially quantum correlated with
the first one. Our results show that for weak measurements, the control can be remotely realized
via the post-selected state of the second qubit or the degree of squeezing of the meter. Additionally,
in a step towards the study of the quantum control of the amplification, we can easily manipulate
the degree of quantum correlations between the initial correlated qubits. We find that the degree
of Entanglement has no effect on the quantum control of the amplification. However, we have
found a clear connection between the amplification and quantum discord like measurements as well
as classical correlations between the qubits. Moreover, we generalize the analysis to two control
qubits and we can conclude that the single control qubit scheme is more efficient. Lastly, we suggest
an original application of the amplification control protocol on the enhancement of the quantum
measurement accuracy, e.g. measuring the relative phase of the post-selected control qubit in a
more precise way, as opposed to the no-amplification case.

Over the past three decades, important advances have been made using characteristics of light beams or matter
to control the evolution of atomic and molecular systems. For instance, the development of new and highly coherent
laser sources allow to control molecules in the ground state [2]. However, in order to have control over a quantum
system is not compulsory to involve external fields, recently were proposed many alternative methods to control [3–6]
and even drive the system to a target state [7, 8]. Quantum control of physical systems has been a central issue in
recent quantum technology in relation to measurement-based processes [9], like for example entangling mechanical
motion to microwave radiation [10], so for two physical systems, measurement of one system can determine the state
of the other. An interesting control mechanism was recently proposed in an optomechanical system, to control the
quantum state of light (single photons) using mechanical variables to monitor a beam splitter [11], which goes beyond
the usual goals of this type of systems, that uses light to control a mechanical resonator.
QuantumMeasurement Theory is as old as QuantumMechanics. The collapse of quantum states in the measurement

process, one of the basic assumptions in quantum mechanics and put forward by von Neumann in 1932 [12], strongly
modifies such a state. The question then arises: what would happen if the interaction responsible for the measurement
becomes weaker and weaker? For weak measurements (WM), a theory was developed by Aharonov and collaborators
[1], where the strong impact of the measurement is drastically reduced. It consists in a gradual accumulation of
information during a finite interaction time between the meter and the system. As a matter of fact, the state is
hardly changed and after such a measurement the system is left in a state that in general is not an eigenstate of the
observable we are trying to measure, which seems to contradict the basic principles of Quantum Mechanics. However,
this is not so, since the information obtained after one event is so modest, that many measurement processes are
necessary to actually get information on the system.
In the seminal paper [1], Aharonov, Albert and Vaidman (AAV) showed that the combination of a weak measurement

followed by a strong post-selection measurement may lead to some strange effect, usually referred to as an anomalous
Weak Value Amplification (WVA), anomalous in the sense that the inferred mean value of the measured system
variable lies outside its range of eigenvalues. The AAV results have been discussed in many papers [13–17] and also
experiments have been realized and confirmed their predictions [18, 19]. More, recently, ultra sensitive measurements
have been performed [20], as well as precision metrology [21] and an exciting experiment on the observation of the
average trajectories of single photons in a two-slit interferometer [22].
In the framework of the AAV approach, the present work proposes to clarify and resolve three research tasks, which

are very important for theory and experiments in the Quantum Information Science. The main task is devoted to the
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FIG. 1: Model of weak measurement amplification assisted by quantum correlated qubits.

effect of control of a quantum system using the correlations as resources in the processes of weak measurements. The
second task clarifies which kind of correlations are indispensable when the WVA occurs. And the third task deals with
the problem of enhancing the amplification effect by squeezing the meter state, making the interaction even weaker.
In the following we present our results in detail.

Results

Model of Weak Value Amplification assisted by entangled qubits. Let us consider two qubits (a and b),
initially prepared in a Bell Diagonal (BD) state, ρQ, such that one of them (a) interacts dispersively with a meter, ρM .
The second qubit (b) does not interact at all and is only linked to the system via the quantum correlations existing
between the two qubits, see Fig.(1). The Hamiltonian in the interaction picture is

H = ~gσa3x, (1)

where g is the coupling strength between the qubit a and the meter; σ3 is the usual spin-1/2 Pauli operator in the
z−direction and x denotes the continuous position of the meter. The initial state of the whole system, i.e., the two
qubits together with the meter state is

ρ(0) = ρQ ⊗ ρM =
1

4
(I+

3
∑

j=1

cjσ
a
j ⊗ σbj)⊗ |φ〉〈φ|, (2)

where I is the identity operator in the two-qubit basis, σj are the Pauli operators and |cj | ≤ 1 are parameters satisfying
the positivity of the density matrix. As known, BD states are defined by a set of three parameters {c1, c2, c3} depicted
in a three dimensional tetrahedron, a geometrical representation of the subsets of entangled, separable and classical
states [23–25].
Certainly, from the quantum measurement theory, the state of the meter must be expanded in the opposite conjugate

variable appearing in Eq. 1, in our case the momentum subspace |φ〉 = (2πσ2)−1/4
∫∞
−∞ dp |p〉e−

(p−p0)2

4σ2 , where σ and
p0 are the width and the center of the Gaussian profile, respectively. Subsequent the time evolution, we proceed to
post-select the target state using a generic qubit state in the Bloch sphere as |ψa〉 = cos(θa/2)|1〉a+sin(θa/2)e

iφa |0〉a
(see Fig. 1). Notice that |1〉 and |0〉 are eigenstates of σ3 with eigenvalues 1 and −1, respectively. To calculate the
post-selected state of the system ρψa

= 〈ψa|ρ(t)|ψa〉, we make use of the usual translational operator in quantum
mechanics, e−igtx|p〉 = |p− gt〉. Using the above equations and some algebra one gets

ρψa
=

1

4σ
√
2π

∫

dp dp′ e−
(p−p0)2

4σ2 − (p′−p0)2

4σ2 {cos2(θa/2)ρQ11|p− gt〉〈p′ − gt|+ sin2(θa/2)ρ
Q
00|p+ gt〉〈p′ + gt|

+ cos(θa/2) sin(θa/2)[ρ
Q
10e

−iφa |p− gt〉〈p′ + gt|+ h.c.]}, (3)

with ρQ11 = a〈1|ρQ|1〉a = I
b + c3σ

b
3, ρ

Q
00 = a〈0|ρQ|0〉a = I

b − c3σ
b
3, and ρ

Q
10 = a〈1|ρQ|0〉a = c1σ

b
1 − ic2σ

b
2, and I

b is the
identity operator in the b-qubit basis.
According to the Eq.(13) in the Sec. Methods, one can easily observe that by measuring a meter variable one can

indirectly evaluate the weak value of the system variable of interest. Because of this, after the post-selection, we
are interested in the expectation value of the momentum, which can be found by tracing over the meter degrees of
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FIG. 2: The weak value amplification for a Bell state, i.e. Eq.(7), managed by the projections of the target qubit a, and control
qubit b, with a given probability (Inset). Here δ ≡ φa + φb = π and σ → ∞.

freedom. To investigate the effect of the control qubit in the amplification process, we shall leave the momentum
expectation value expression as a function of the operators acting on the control qubit b. Furthermore, we would like
to stress that, since the control qubit b does not interact with target qubit a nor with the meter, then the specific
time at which one acts on b will not affect the quantum dynamics.
Next, in order to calculate

〈p〉 ≡ 〈TrM (ρψa
p)〉b

〈TrM (ρψa
)〉b

(4)

we derive, after some simple algebra, an expression for TrM (ρψa
p), yielding the following

TrM (ρψa
p) =

1

4
[(Ib + c3σ

b
3) cos

2(θa/2)K11 + (Ib − c3σ
b
3) sin

2(θa/2)K00 + (c1σ
b
1 cosφa + c2σ

b
2 sinφa) sin θaK10], (5)

where the integralsKij , see Methods Eq.(17), are found to be K11 = p0−gt, K00 = p0+gt, K10 = K01 = p0e
−g2t2/2σ2

.
The expression for TrM (ρψa

), denominator in Eq.(4), is calculated in a similar way. In fact, the expression is the

same as above, by just replacing Kij by Jij , with J11 = J00 = 1 and J10 = J01 = e−g
2t2/2σ2

.
As mentioned above, one tries to understand the role of the control qubit b in the amplification process. To study

this, let us consider two different approaches. (i) Firstly one traces over the control qubit b; (ii) Secondly one proceeds
to perform a projection on the qubit b.
In the first case, considering Eq.(4), one gets 〈p〉 = p0− gt cos θa. It is easy to see that this WM value does not lead

to any amplification (independent of the initial condition) and the expectation value of the momentum is bounded by
p0 ± gt. Furthermore, as known [26], coherence plays a significant role in the weak amplification process, thus when
tracing over the qubit b, one eliminates the coherence in qubit a and therefore the amplification effect is gone.
In the second approach, one projects the control qubit b to a similar state as for the qubit a, i.e. |ψb〉 = cos(θb/2)|1〉b+

sin(θb/2)e
iφb |0〉b, so calculating as in [1] the weak value for the spin operator, 〈σz〉W ≡ (p0 − 〈p〉)/gt by using the

Eq.(16) in the Sec. Methods. The expectation value corresponds to

〈σz〉W =
c3 cos θb + cos θa

1 + c3 cos θa cos θb + e−
g2t2

2σ2 sin θa sin θb(c1 cosφa cosφb + c2 sinφa sinφb)
. (6)

This is the principal analytical result of our work for the model of one control qubit in WM. In the following we
analyze some particular cases such as Bell and Werner states, and thereafter the general BD states.

Weak Value Amplification vs qubit correlations. This section is devoted to the study of the amplification
effect via WM and the quantum correlations shared by the qubits. The amplification effect in the AAV model appears
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when the denominator in the weak value tends to zero, i.e. the pre- and post-selected states are almost orthogonal.
Hence, as a simple and illustrative example let us consider the case of the two qubits initially prepared in a Bell state,
e.g., |Φ+〉 = (|0a0b〉+ |1a1b〉)/

√
2 (c1 = c3 = 1, c2 = −1) so Eq.(6) is then reduced to

〈σz〉W =
cos θb + cos θa

1 + cos θa cos θb + e−
g2t2

2σ2 sin θa sin θb cos δ
(7)

with δ = (φa+φb). Now, as in [1] if the meter state has a large Gaussian spread distribution on the momentum space,
i.e. σ → ∞, one can easily check that there are several different combinations of the projection angles that allow us
to make the denominator as small as required. For example, we consider the set of angles {δ = π, θa + θb = π} which
leads to a large amplification with the constraint θb 6= {0, π}. This constraint comes from the simple fact that for
these θb values the coherence of qubit a disappears. The effect of WVA for the Bell state is represented in Fig. 2, as
well computing the probability of getting such WVA. The associated probability within the WM limit is calculated
as |〈ψi | ψpost〉|2, where |ψi〉 is a Bell state |Φ+〉 and |ψpost〉 = |ψa〉 ⊗ |ψb〉, with |ψa〉 and |ψb〉 being the post selected
states for qubits a and b. We observe that although exhibiting an infinite amplification, e.g. when θb approaches
2π/3 (blue dashed line), which case represents an unphysical state as the probability for this to happen is zero (see
inset in Fig. 2). On the other hand, let us look for a realistic/physical scenario, i.e. when a finite amplification with
a non-vanishing probability of success is obtained. Fortunately, in the region where an important amplification takes
place, the probability is high enough from an experimental point of view. In Fig. 2 one finds that a twice amplified
expectation value, e.g. red dotted line at θb = π/2, occurs with the probability ∼ 10%.
To illustrate more the impact of the control qubit on the WVA we will proceed to measure the initial amount of

quantum correlations between the qubits. To advance from simple to more elaborated scenarios, firstly we consider a
Werner state, i.e. ρQ ≡ ρWerner in Eq.(2). Werner states are a particular case of BD states when c1 = c2 = c3 = −c
and they are defined [23] as ρWerner = (1− c)I/4 + c|Ψ−〉〈Ψ−|, where |Ψ−〉 = (|0a1b〉 − |1a0b〉)/

√
2.

Furthermore, it is known that Werner states exhibit entanglement if and only if c ≥ 1/3 (see Fig. 2 in Ref. [23]).
Hence, it is clear that the Entanglement of Formation (E) vanishes for c < 1/3, while the Quantum Discord (QD) only
vanishes at c = 0. Following with the result above, we study the role of quantum correlations in the control for the
two-qubit case. To achieve this, we show in Fig. 3 the amplification of the weak value given in Eq.(6) for the Werner
state (ci = −c). There, we have considered two different projections on the control qubit, θb = π/2 (blue dashed line)
and θb = π/4 (red dotted line). Without loss of generality, for both cases we have fixed φb = φa = 0, θa = π/10. For
c < 1/3, we observe the control of WVA with no entanglement, therefore the entanglement does not play a relevant
role in setting up the degree of quantum control. Thus, we found in this case that in order to have a control over
the target qubit involved in the WVA, one needs to have a resource of quantum correlated states quantified by (in
principle) Quantum Discord-like correlation measures rather than non-separability based on, i.e. entanglement.

FIG. 3: The weak value 〈σz〉W in Eq.(6) computed for a Werner state can be controlled by the projection of the control qubit
b even for zero Entanglement (E) and non-zero Quantum Discord (QD) between the qubits (see Inset). The parameters are
θa = π/10, φa = φb = 0 and σ → ∞.
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FIG. 4: Weak value for an initial BD state with ~c = (−0.95,−0.95,−0.9) and varying the post-selection states for both qubits,
e.g. the angles θa and θb. Here φa = φb = π/4 and σ → ∞.

For completeness, let us consider the initial uncorrelated state (QD = 0), |ϕ〉 = (|0〉a + |1〉a)/
√
2 ⊗ |0〉b. For this

particular case and following the same procedure as before, it is straightforward to obtain the weak value:

〈σz〉W =
cos θa

1 + e−g2t2/2σ2 sin θa cosφa
. (8)

One can see from this equation that the amplification of the mean value is achievable and it is not influenced by
the control qubit state, that means that both tracing as well as projecting the quantum state gives the same result.
As one would expect, this becomes a clear example of amplification as in AAV of the first qubit that depends on
the “weakness of the interaction” with a critical gt value, above which there is no longer amplification, but there
is no control from the second qubit, since they are uncorrelated. In fact, one can find that the amplification tends
asymptotically to infinity when θa approaches π/2, with φa = π, although the associated probability goes to zero.
To find the “weak” interaction within the weak measurement framework, we proceed to set some routinely values
of the quantum dynamics, for instance, gt = π × 10−3, and σ = 1/2 (corresponding to a coherent state). These
parameters give a quite accurate approximation of the case σ → ∞. On the other hand, when we take larger values of
gt, the amplification deteriorates. This suggest an optimal region where the weak interaction takes place. Following a
numerical simulation, one could find that gt ≈ 0.3 corresponds to the threshold where the WVA for the target qubit
is achieved for σ = 1/2, φa = π and θa = 1.4 rad in Eq. (8).
In Fig.(4) we have depicted the control of the WVA as a function of the pre- and post-selection parameters of both

qubits. We have found that, by fixing an initial BD state (i.e. ~c) and varying the angles θa and θb it is possible to
optimize the amplification effect. Furthermore, it is straightforward to notice that the behavior of the Entanglement
and the QD is similar to the previous Werner case (inset of Fig.3). Therefore, for more general BD states, we have
numerically confirmed that the Entanglement plays no role in the control of the WVA. Moreover, we point out on
some particular BD states, where the two qubits (target and control) share initially only classical correlations, like
states with ~c = (±1, 0, 0) and ~c = (0,±1, 0), which lie on the Cartesian axes [24]. It is interesting to find that for
such states with classical correlations, control over the WVA is possible. We present the details of this issue in the
Discussion.
Considering the results of this section, we arrive to the following conclusions:
(i) Essentially, the quantum control consists in getting different WVA by manipulating the control qubit through

the post-selected angles θb and φb. This is the main result of our paper, since in the original work of AAV [1] —where
only one qubit is considered— the amplification depends only on the strength of the weak measurement, say the meter
spread σ. In our model, the control qubit b does not interact with the “main” target-meter system and actually it is
only connected to the qubit a via the initial correlation. This suggests for the first time the idea that the WVA can
be remotely switched on and off.
(ii) Further control might be achieved by choosing conveniently the initial BD state, that is the control via the

pre-selection of the two qubits and the quantum or classical correlations between them.

Control of amplification with a squeezed meter state. To introduce another degree of quantum control on
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the WVA, we will proceed to consider a squeezed meter state. Essentially, we are interested in the ratio gt/σ again,
however this time we will relax the Gaussian coherent meter distribution (σ = 1/2) with a Gaussian squeezed spread
one controlled via σ2 = e2r/4, being r the squeezing parameter.

FIG. 5: The weak value for a Bell state, i.e. Eq.(7), as function of the dimensionless time and σ. The factor gt sets a threshold
for having amplification, which can be moved by tuning σ, i.e. the characteristics width of the meter device. In the inset panel,
we consider the case of a squeezed vacuum state, where σ is varied as a function of the squeezed parameter r. Here δ = π and
θa = θb = 1.4 rad.

For a set of values of {θa, θb, δ} in the main plot of Fig. 5 (blue dashed line), one clearly sees that there is no
amplification for the vacuum coherent state (σ = 1/2) for values higher than gtc ≈ 0.4 (c stands for critical value).
On the other hand, considering a squeezed vacuum state for the meter, for instance σ = 1.5 (red dotted line), we are
able to push forward this threshold up, e.g. gtc ≈ 1.2. The horizontal asymptote valued 〈σz〉W ≈ 0.3, corresponds to
the case where the interference term (third term in the denominator of Eq.(7) vanishes and one has no amplification
for the chosen angles.
In the inset panel of Fig. 5, we show the variation of the weak value as a function of the squeezed parameter r, for

gt = 1.5. Notice that for r . 1.2 there is no amplification. However, as we increase r further, the amplification starts
to appear saturating its value at ∼ 6, which is the case when the exponential in Eq.(7) is near to unity.
From Fig. 5 one concludes that in the cases where the exponential term cannot be eliminated, in order to have

amplification, the rate gt/σ should be small (weak measurement constraint).

Is multiqubit control more efficient? Three qubits case. For further improvement of our proposal, one
may think in adding more qubits for high quantum control. We will show that in fact this is not the case, where
the case with only one control qubit is the optimal scheme and that the addition of another one only deteriorates
the obtained results. Firstly, a direct generalization of the Bell state, |Φ+〉, that we used along this paper, is the
well-known Greenberger-Horne-Zeilinger (GHZ) state,

|Ψ〉GHZ = (|000〉+ |111〉)/
√
2 (9)

Then, one proceeds by fixing the parameters corresponding to the original qubits a (target) and b (first control
qubit), say θa, θb and δ, and taking values that yield amplification with a finite probability. Subsequently, one varies
the projection on the third qubit e (second control qubit). For a detailed derivation of the results, see the section
Methods. We found numerically, that one can reach higher values for the amplification, but at the expense of having
lower probability as the previous one qubit control case. Therefore, such an effect does not lead to any improvement,
and even more, it compromises the experimental success.
Nevertheless, in connection to the three qubit scheme, there is more to say about the nature of the quantum

correlations involved. It have been proposed and showed that the GHZ state (9) has only genuine three-partite
correlations. While a W state, defined as

|Ψ〉W = (|100〉+ |010〉+ |001〉)/
√
3, (10)
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has multipartite correlations, e.g. pairwise Entanglement [27]. This means that for the state (9), when tracing out
one of the qubits, the two remaining qubits are not quantum correlated. On the other hand, for (10), the opposite
happens, and the remaining qubits are maximally quantum correlated. To conclude this section, if one prepares
initially the three qubits as GHZ state, when tracing over one or two control qubits, the amplification is not possible.
However, for the W state, when tracing over only one qubit the amplification persists. This result proves that the
control of this type of amplification is intrinsically related to quantum correlations.

Discussion

In the present work, we have studied the quantum control of the weak value amplification (WVA) of a qubit system
coupled to a measurement device. On the one hand, a first qubit (target) is directly coupled to the detector device,
whereas a second qubit (control) is linked to the former one solely via initial quantum correlations. Motivated by
the non-local quantum control of the WVA, we have generalized the single qubit-meter system studied in [1] towards
an entangled multiqubits-meter scheme, being the two-qubit correlated scenario the optimal quantum control case.
Particularly, our theoretical analysis shows that correlations of purely quantum nature are of pivotal importance for
the WVA, i.e., quantum discord rather than entanglement (correlations based on state separability) is the resource
that provides the connection and control over the qubit weak value amplification (Figs. 2-5). For instance, in the
case of the two qubits being in a Werner state, the quantum control prevails even for the case of zero Entanglement
but non-zero Quantum Discord (see Inset of Fig. 3). However, as mentioned previously, our detailed analysis shows
that for some cases where the two qubits are initially classically correlated, the control over the WVA could occur.
The explanation of these findings is based on the conclusions presented recently by some of us in [26], where it is
shown that the presence of coherence in the system is a necessary condition for the existence of WVA, i.e., in our
model the measurement of the control qubit b should generate coherence in qubit a. As result, for some BD states
with only classical correlations we found that the measurement of the qubit b generates the coherence in the qubit a,
so WVA appears; in the case that the coherence is not generated, the WVA is not reported. On the other hand, for
the BD states with quantum correlations (QD 6= 0), the coherence is always generated in the system as result of the
measurement of the control qubit, hence the protocol of WVA control is robust if the QD is present.
Although quantum discord-like or classical correlations are a necessary condition for the generation of the WVA,

we require a projective set of individual local quantum operations on each qubit. For instance, for the pre-selected
qubits in a general Bell Diagonal (BD) state it is possible to control the WVA via qubit projective post-selection
measurements (see Fig. 4).
In the case of achieving WVA, besides the strongly controlled dependence of the amplification due to the phases

(θ-azimuthal and φ-polar angles on the Bloch sphere) of the post-selected state of the control and target qubits, we
have also found that there is a critical gt value for a fixed Gaussian spread of the meter state σ, above which no
amplification is fulfilled. This remark is in accordance with the original findings shown in Ref. [1]. There, to gather
small amounts of information without perturbing the quantum state, the condition gt ≪ σ must be attained within
the weak measurement framework— as we also require to approximate the unitary evolution operator up to its first
order in gt/σ. To illustrate this, we have explored different Gaussian spreads of the meter state by varying its degree
of squeezing (see Inset of Fig. 5). We notice that the critical value of gt can be tuned to larger values, as we increase
the squeezing parameter σ.
Lastly, as discussed previously, our amplification scheme relies on several quantum control degrees of freedom,

being the projective post-selection measurements the most decisive ones to generate qubit WVA. Of course, one may
wonder about the feasibility role of the accuracy in the relative qubit phases, as well as the influence of this in the
final amplification. To elucidate this, we would like to draw the attention to one particular but powerful application:
enhancement of the control qubit measurement accuracy. In other words, we can rely on the weak value amplification
protocol to gain further sensitivity on the post-selected phase θb. To accomplish this, we make use of the sensitivity
given by:

η =
〈σ′
z〉W − 〈σ0

z〉W
∂/∂θb〈σ′

z〉|θ0b
, (11)

where 〈σ′
z〉W , calculated as in Eq. (7), is the output value measured for a phase θb that we assume it is slightly

displaced from θ0b = π/2. Needless to say that this small deviation is something that one would expect in any realistic
experiment and 〈σ0

z〉W is the theoretical prediction for a perfect measure under ideal conditions. We now proceed to
demonstrate that the amplification introduces a higher degree of accuracy. In this direction, we evaluate η for two
different phases measured on the target qubit, namely φa = π (amplification) and φa = π/2 (no amplification). We
fixed the other parameters to be φb = 0, θa = π/3 and σ → ∞. Let us say that our meter, for example, can not detect
an angle variation of the output below 1%. Then, when there is no amplification (φa = π/2), the sensitivity is about
0.01. This means that angles below 0.01 rad can not be resolved in the present configuration. However, when the
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amplification is switched on (φa = π) with a non-neglectable probability of ∼ 3.3%, the sensitivity corresponds to a
value of 0.001. Thus, we can resolve angles up to 0.001 rad, being one order of magnitude smaller than the resolution
with no amplification.
We believe that our present work might suggest to develop and/or to implement a new set of experiments and

technical tools related to ultra-small signal amplification via remotely controlled weak measurements by one or more
correlated qubits.

Methods

Brief theory of weak measurements and weak values. Here we give a summary of the main results of the
AAV’s standard approach [1]. One begins by preselecting the system S in an initial pure state, |ψ〉, such that the state

of the system is given as |ψ〉 =
∑

i αi|ai〉, where {|ai〉} is the set of eigenstates of the system observable Â|ai〉 = ai|ai〉.
On the other hand, let |φ〉 denote the wave function of the measurement apparatus or device detector modeled in

terms of continuous variables X̂ and P̂, such that the initial detector state may be written as |φ〉 =
∫

φ(p)dp |p〉, with
φ(p) = (2πσ2)−1/4e−p

2/4σ2

, where σ being a measure of the quantum fluctuations. In principle, one could define a
WM as the limit when standard deviation σ of the measurement outcome is much larger than the difference between
the eigenvalues of the system. For strong measurements, the opposite is true.
The system-detector Hamiltonian, in the interaction picture, can be written as

Ĥ = gÂ⊗ X̂, (12)

where g is an interaction constant. Thus, the time evolution operator is Û(t) = exp
{

−i gt
~
Â⊗ X̂

}

, where t is the

interaction time. As a result, the global system-detector state after interaction is |Ψ〉 = exp
{

−i gt
~
Â⊗ X̂

}

|ψ〉⊗ |φ〉 =
∑

i αi
∫

dp φ(p− gtai) |p〉 ⊗ |ai〉.
If one takes the WM limit and post-selecting the system state |ψpost〉, the measurement device collapses to the state

|φ′〉 = exp(−i gt
~
AW X̂)|φ〉, where AW is the weak measurement value

AW =
〈ψpost|Â|ψ〉
〈ψpost|ψ〉

. (13)

and the post-selection success probability is

Ppost = |〈ψpost|ψ〉|2. (14)

For real AW [16], it is easy to show that | AW |= 〈φ′|P̂|φ′〉
gt , a quantity that in many cases has a value outside the range

of the eigenvalues of the observable Â, in particular in the limit 〈ψpost|ψ〉 −→ 0. If, in general we write AW ≡ A+ iB
as a complex number and let M be any pointer observable, one can easily prove that

〈M〉f = 〈M〉i + igtA/~〈X̂M−MX̂〉i +
gtB

~
(〈X̂M+MX̂〉i − 2〈X̂〉i〈M〉i), (15)

with 〈M〉i = 〈φ|M̂|φ〉/〈φ|φ〉, 〈M〉f = 〈φ′|M|φ′〉/〈φ′|φ′〉, where the i and f indices stand for the initial and final (post
selection) states.
In particular, if AW ≡ iB is purely imaginary, then 〈X〉f = 〈X〉i + 2gtB/~V ar(X)i. On the other hand, when

AW ≡ A is real

〈P〉f = 〈P〉i − gtA (16)

Solving the integrals.

K10 = 1√
2πσ

∫∞
−∞ dp (p − gt)e−

(p−p0)2

4σ2 − (p−p0−2gt)2

4σ2 , by rearranging the exponential and using the substitution, η =

p− p0, we get K10 =
1√
2πσ

e−
g2t2

2σ2
∫∞
−∞ dη (η − gt+ p0)e

− (η−gt)2

2σ2 .

Now we introduce a second variable ξ = η − gt, which leads to the result

K10 = p0e
− g2t2

2σ2 (17)

The rest of integrals Kij and Jij are calculated similarly.
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Weak measurements with many qubits. Let us see what happens if we include a third qubit e in the model,
i.e. a second control. We are interested in two different types of tripartite quantum correlated initial states, namely
the GHZ in Eq.(9) and W in Eq.(10). We firstly focus on the GHZ initial state and we follow the same procedure as
used to derive the numerator and denominator in Eq.(4), but written this time as a function of two control qubits, b
and e , which gives

trM (ρψa
) =

1

4
{2Πbe11 cos2(θa/2)J11 + 2Πbe00 sin

2(θa/2)J00 + [Πbe10 sin θae
iφaJ10 + h.c.]}, (18)

where Πbeij = |ii〉〈jj| and Jij were defined previously for Eq.(4). Either if one traces over one qubit and project the
other, or trace over both b and e, will not get any amplification. Nevertheless, projecting on both control qubits we
found the denominator to be

〈ψbe|trM (ρψa
)|ψbe〉 =

1

16
{8 cos2(θa/2) cos2(θb/2) cos2(θe/2)J11 + 8 sin2(θa/2) sin

2(θb/2) sin
2(θe/2)J00

+ [sin θa sin θb sin θee
iφabeJ10 + h.c.]} (19)

where φabe = φa + φb + φe. One sees that for the weak regime (σ → ∞) the solution {θa = θb = θe = π/2, φa =
φb = φe = π} leads to amplification (the denominator is zero. However, the strong regime (σ → 0) will not yield any
amplification, as pointed out in [1] for only one qubit.
For the W initial state Eq.(10) the denominator reads

trM (ρψa
) =

1

6
{2Πbe0000 cos2(θa/2)J11 + 2(Πbe0101 +Πbe1010 +Πbe0110 +Πbe1001) sin

2(θa/2)J00

+ [(Πbe0001 +Πbe0010) sin θae
iφaJ10 + h.c.]}, (20)

with Πbeijkl = |ij〉〈kl|. Once again, as we found along this work, when tracing over the two control qubits, the

amplification is annihilated, since the denominator is 1 + sin2(θa/2) ≥ 1 . On the other hand, if tracing over b and
projecting on e, one gets

〈ψe|trb[trM (ρψa
)]|ψe〉 = 1

6
{2 cos2(θa/2) sin2(θe/2)J11 + 2 sin2(θa/2)J00 + sin θa sin θe cos(φa − φe)J10} (21)

The denominator does not vanish, but there is still an interference term: sin(θa) sin(θe) cos(φa − φe)/2, which
amplifies the expectation value of momentum, i.e. |〈p〉 − p0|/gt / 4. Therefore, for the initial W state given in
Eq.(10), one can still find amplification after tracing over one of the qubits, unlike the GHZ case.
These important differences are related to the quantum correlations, as it is well known for GHZ state after

tracing over one of three qubits, all the correlations between them are lost, since the Quantum Correlations are purely
tripartite. However, for the W state the Quantum Correlations remain after tracing over one qubit, which is the
reason behind the amplification of the momentum.
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