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Macroscopic quantum superposition (MQS) states are fundamental to test the classical-quantum
boundary and present suitable candidates for quantum technologies. Although the preparation
of such states have already been realized, the existing setups commonly consider external driving
and resonant interactions, predominantly by considering Jaynes-Cummings and beam-splitter like
interactions, as well as the non-linear radiation pressure interaction in cavity optomechanics. In
contrast to previous works on the matter, we propose a feasible probabilistic scheme to generate
a macroscopic mechanical qubit, as well as phononic Schrödinger’s cat states with no need of any
energy exchange with the macroscopic mechanical oscillator. Essentially, we investigate an open
dispersive spin-mechanical system in absence of any external driving under non-ideal conditions,
such as the detrimental effects due to the oscillator and spin energy losses in a thermal bath at
non-zero temperature. In our work, we show that the procedure to generate the mechanical qubit
state is solely based on spin post-selection in the weak/moderate coupling regime. Finally, we
demonstrate that the mechanical superposition is related to the amplification of the mean values of
the mechanical quadratures as they maximize the quantum coherence. To the best of our knowledge,
this physical mechanism has remained unexplored so far.

I. INTRODUCTION

In the late 1920s, non-relativistic Quantum Mechan-
ics (QM) was ultimately formulated to encompass the
understanding of the microscopic and macroscopic world
[1, 2]. Thus, for instance, there would be no objection to
extend the quantum superposition principle to everyday
life scale —a very well-known conundrum established by
E. Schrödinger [3]. To date, macroscopic quantum super-
position (MQS) appears not only to grasp fundamental
aspects of QM [4, 5], but also as an excellent candidate
for quantum technologies [6–8].

Although, quantum superpositions at micro-scale have
been widely realized (e.g. Refs. [9, 10]), MQS states are
more challenging to be achieved experimentally. This
is because the large number of interacting particles and
their interaction with its surroundings prevent the quan-
tum behavior at macro-scale to emerge [11]. Despite
this, MQS states have been demonstrated experimen-
tally for some systems such as Josephson junctions [12–
15], Cooper-pair boxes [16], Bose-Einstein condensates
(BECs) [17, 18], Rydberg atoms [19], trapped ions [20].
On the other hand, quantum mechanical oscillators have
attained increasing attention for MQS preparation due
to notable experimental progress in the micro-fabrication
of high-Q mechanical oscillators [21, 22] in the quantum
regime [23–27]. Additionally, they can easily interact
with an extensive range of physical systems, such as ul-
tracold atomic BECs [28, 29], Cooper-pair boxes [30–32],
opto-mechanical systems [33, 34], etc. In particular, a
superposition between two isolated states rises the pos-
sibility of having a long-lived mechanical qubit, which
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opens a window for quantum information technologies
[35–37], quantum sensing [6–8, 38], as well as in the quan-
tum communication field [39], e.g. as transfer interface
in superconducting quantum circuits [40, 41], and they
can serve as elements for modular quantum computation
architectures [42, 43].

Stimulated by these, in the past few years, there have
been remarkable advancements in the development of ac-
curate quantum control and preparation of non-classical
macroscopic mechanical states in different hybrid plat-
forms as cavity/circuit QED [44], opto- and nano- me-
chanics [45–56], trapped ions [57], etc. Yet such schemes
are based on resonant interactions, where the exchange of
excitations between systems takes place. Moreover, non-
linearities such as the radiation pressure in cavity opto-
mechanics, the usage of external driving and interactions
typically operating in the strong regime are required.

In this work, we present a scheme to prepare non-
classical states of a macroscopic mechanical object.
The protocol comprises a probabilistic qubit (0 and 1
phononic states) superposition, and the generation of
mechanical Schrödinger’s cat state. To realize this, we
have considered an open spin-mechanical quantum sys-
tem via a conditional displacement Hamiltonian in the
dispersive regime without any need for adjusting reso-
nances. Therefore, in comparison with previous works
on the matter [58–60], our proposal does not rely on any
non-linearity, energy exchange nor external pumping —
which might be an advantage for scalability purposes.
Moreover, in contrast to cavity photons, spin systems ex-
hibit both long coherence as well as depolarization times
at room temperature, and also they can be easily pre-
pared and readout [61, 62]. Our probabilistic prepara-
tion protocol is uniquely based on two steps. Firstly,
we weakly evolve the pre-selected spin-mechanical sys-
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tem for a time t, allowing us to truncate the oscillator
Hilbert space up to a single phonon excitation. Subse-
quently, we then proceed to post-select the spin system,
this step aims to prepare (probabilistically) any mechan-
ical qubit superposition. Our results can be understood
within the clear connection between the quantum coher-
ence [63] of the mechanics and the amplification of the
position and momentum quadratures on average.

This article is structured as follows. In Sec. II, we
present the spin-mechanical model and we derive the
mathematical condition to generate any macroscopic me-
chanical qubit in absence of any source of decoherence.
In Sec. III, we have divided the discussion into two sub-
sections. Firstly, we consider the open quantum case in
presence of mechanical damping in a reservoir at zero
temperature. Secondly, we take a closer experimental
scenario by considering a full master equation, i.e we
also include the spin relaxation and the pure dephasing
terms. In addition to this, we consider spin-postselection
inaccuracies. In Sec. IV, we discuss how to generate
mechanical Schrödinger’s cat states. In Sec. V we give
a very brief discussion on the connection between weak-
measurements (AAV theory) and our protocol, a discus-
sion which is extended in the Appendix section. Finally,
in Sec. VI, we present the concluding remarks of our
work.

II. MACROSCOPIC MECHANICAL QUBIT
PREPARATION

Let us commence by considering a spin qubit coupled
dispersively to a mechanical oscillator. This elementary
system is described in the interaction picture by (~ = 1)

Ĥint = b̂†b̂− λσ̂z(b̂† + b̂), (1)

where λ = λ0/ωm is the scaled coupling strength, λ0

the direct spin-mechanical coupling interaction and ωm
the oscillator frequency; b̂ stands for the annihilation
bosonic operator. To investigate the dynamics, we pre-
select the spin as |ψ〉q (0) = 1/

√
2(| ↑〉 + | ↓〉), and we

initialize the mechanics in its ground state |ψ〉m (0) = |0〉
[23–27, 64]. In the following, we will show how a mechan-
ical qubit can be generated via conditioned spin post-
selection in the weak/moderate-coupling regime. To as-
sess this, let us recast the spin-mechanical wave-function
(in absence of any source of decoherence) as previously
reported in [65]; with η = (1− e−it)

|ψ(t)〉 = 1/
√

2(| ↑〉 |λη〉+ | ↓〉 |−λη〉). (2)

Firstly, for our procedure to succeed we require to
have low mechanical quanta excitations, thus we pro-
ceed to truncate the mechanical coherent states |±λη〉
up to their first phononic number state, i.e. |±λη〉 ≈
1/
√

1 + |λη|2(|0〉 ± λη |1〉) —an approximation valid

when |λη| = λ
√

2(1− cos t) � 1. This operational

regime can be addressed, for instance, via magnetic cou-
pling. There the interaction can be explicitly written
as ~λ0 ≈ µB∂B/∂z

√
~/2mωm [66, 67], where for a set

of values of µB ∼ 10−23 J/T (Bohr magneton), mass
m ∼ 10−14 kg, mechanical frequency ωm ∼ 106 Hz, and
magnetic gradient between 104 T/m < ∂B/∂z < 107

T/m, the coupling can be reduced to 10−4 < λ < 10−1.
Subsequently, we post-select the spin with a general

target state as |ψf 〉 = cos(θ/2)| ↑〉+sin(θ/2)eiφ| ↓〉. Thus
the wave-function after the post-selection becomes

|ψ(t)〉m ≈
1

N
√

2(1 + |λη|2)
(α+ |0〉+ ληα− |1〉) (3)

where,

α± = cos(θ/2)± e−iφ sin(θ/2), (4)

N 2 =
1 + sin θ cosφ+ |λη|2(1− sin θ cosφ)

2(1 + |λη|2)
. (5)

From (3) one could easily notice that a combination
of weak spin-mechanical coupling and spin post-selection
can lead to a MQS. Particularly, for an equiprobable su-
perposition, e.g., | 〈0|ψ(t)〉m|2 = | 〈1|ψ(t)〉m|2 = 1/2, we
demand

|λη|2(1− sin θ cosφ) = 1 + sin θ cosφ. (6)

The above equation stands as one of the main results of
our work, as it relates the system dynamics ({λ, t}) with
the required post-selection angles ({θs, φs}) to prepare
the mechanics in a qubit state. It can be interpreted as
following, if we let our system to evolve for a time t (such

as λ
√

2(1− cos t)� 1), then the mechanical qubit state
will occur if and only if {θs, φs} satisfies (6), or vice-versa.

III. A CLOSER EXPERIMENTAL
REALIZATION OF THE MECHANICAL QUBIT

STATE

The aim of the following Section is to study how our
system would respond in presence of different sources of
decoherence, and thus, investigate until which values we
could accommodate our protocol before thermalization.
To achive this, we have divided this Section into two, in
(A) we study the system of interest uniquely considering
oscillator energy losses in a reservoir at zero tempera-
ture. In subsection (B) we numerically solve a full mas-
ter equation at non-zero temperature including also spin
decoherences, as well as inaccuracies in the spin post-
selection step.

A. Open dynamics of the oscillator embedded in a
reservoir at zero temperature

The above derivation (6) is restricted to a lossless evo-
lution in a truncated Hilbert space. Nevertheless, it is
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of our best interest, to investigate the robustness of our
scheme in a more realistic scenario. To model this we
have solved the standard master equation for a reservoir
at zero temperature. In this case, the master equation
reads as

dρ̂

dt
= −i[Ĥint, ρ̂] +

γ

2
(2b̂ρ̂b̂† − ρ̂b̂†b̂− b̂†b̂ρ̂) (7)

where γ (scaled by ωm) is the mechanical damping
rate. Following the procedure described in [68], one can
analytically calculate the spin-mechanical density matrix
as following ρ̂ = 1

2 (| ↑〉〈↑ | ⊗ Π̂++ + | ↑〉〈↓ | ⊗ Π̂+− + | ↓
〉〈↑ | ⊗ Π̂−+ + | ↓〉〈↓ | ⊗ Π̂−−), where we have defined

Π̂±∓ = e−Γγ±∓(t) |β±(γ, t)〉 〈β∓(γ, t)| , (8)

Π̂±± = |β±(γ, t)〉 〈β±(γ, t)| , (9)

β±(γ, t) = ±2iλ
(γ − 2i)

γ2 + 4

(
1− e− 1

2 (γ+2i)t
)
, (10)

Γγ±∓(t) = −γ
2

∫ t

0

|β±(γ, t′)− β∓(γ, t′)|2dt′. (11)

Under mechanical damping, the normalized mechani-
cal state after the spin post-selection becomes

ρ̂m =
cos2 θ

2 Π̂++ + sin2 θ
2 Π̂−− + sin θ

2 (eiφΠ̂+− + h.c)

2P(θ, φ)
,

(12)
with

P(θ, φ) =
1 + sin θRe[e−D

γ
+−(t)eiφ 〈β−(γ, t)|β+(γ, t)〉]

2
(13)

being the probability to post-select the spin.
To exhibit the mechanical superposition, we calculate

the phonon probability distribution (Pr(n) = 〈n| ρ̂m |n〉)
obtained from Eq. (12)

Pr(n) =
4ne−4c1λ

2

(c1λ
2)n

2P(θ, φ)n!
[1 + sin θ cosφec2λ

2

(−1)n],

(14)
where (for t = π) we have defined

c1 =
(e−

πγ
2 + 1)2

γ2 + 4
, (15)

c2 =
8e−πγ

(γ2 + 4)2

× (4e
πγ
2 γ2 + γ2 − eπγ(−3γ2 + π(γ2 + 4)γ + 4) + 4)

(16)

A reasonable approximation satisfying Pr(n = 0) =
Pr(n = 1) ≈ 1/2 is to consider the lossless solution from
Eq. (6) (for γ � 1), and hence, to obtain the set of values
{θs, φs} from (6). In Fig. 1-a we illustrate Pr(n) as in
(14), giving us a very close equal probability distribution
for n = 0 and n = 1.

0 2
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

b)

1 3

a)

c)

FIG. 1. (Color online) Generation of a macroscopic mechan-
ical qubit. (a) Phonon probability distribution as in (14).
In (b) we illustrate the Wigner function for the case illus-
trated in (a). In (c) we calculate Pr(n) for n = 2 and
n = 3 as in Eq. (14). As seen, for λ ≤ 0.25 the mechani-
cal qubit preparation remains still robust. Other parameters
are t = π, γ = 10−2, λ = 0.1, and {θs, φs} are solution from
(6).

As known, Pr(n = 0) = Pr(n = 1) ≈ 1/2 are not
sufficient conditions for quantum superposition by them-
selves, as fully mixed classical states can have same
probabilities. Hence, to evidence the quantumness of
our preparation, in Fig. 1-b, we have numerically com-
puted the Wigner quasi-probability distribution defined
as W (x, p) = 1

π

∫∞
−∞ 〈x+ x′ |ρ̂m|x− x′〉 e−2ipx′dx′ [69],

the true quantum nature arises as a consequence of the
considerable negative part of W (x, p).

Furthermore, one may wonder whether we can set an
upper bound of the weak coupling condition |λη| � 1.
Certainly, the above ensures that the Hilbert space is
properly truncated up to just one single phonon. How-
ever, we can fine-tune this assumption up to λ ≤ 0.25,
at the cost of having Pr(n = 2) ≈ 1.4% (see Fig. 1-
c). The benefits of having stronger λ are to increase the
post-selection outcome probability P(θ, φ), and also as λ
increases, then the qubit superposition becomes less sus-
ceptible to {θs, φs} fluctuations (as we will study in the
next Section). Suitable mechanical qubit candidates are
found to be in the range of 0.05 < λ < 0.2 with an aver-
age spin post-selection probability of 2% < Pav < 24%.

The generated qubit in our work can be understood in
the context of quantum coherence. As known, in quan-
tum optics, it is well established that two or more quan-
tum states of a single mode can interfere with themselves
if they have non-zero coherence. Recently, in the do-
main of the quantum information science, this feature
have also been demonstrated of being related with the
amount of quantum entanglement [70]. For a given N×N

matrix ρ̂ =
∑N
{i,j}=0 ρi,j |i〉 〈j|, the quantum coherence is

defined as C =
∑N
{i 6=j}=0 |ρi,j | [63]. In particular, for a

2×2 matrix, C is reduced to (for [x̂, p̂] = i
2 )

C = | 〈0| ρ̂m |1〉 |+ | 〈1| ρ̂m |0〉 | = 2
√
〈x̂〉2 + 〈p̂〉2. (17)
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FIG. 2. (Color online) (Top panel) Quadratures on average
after post-selection and the mechanical coherence as in Eq.
(17) for different φs. The superposition is achieved when co-
herence is maximal for a set of post-selected angles {θs, φs}
satisfying (6) (vertical dashed line). (Bottom panel) Out-
come post-selected probability P for the same angle window.
Other parameters are t = π, γ = 0.01, λ = 0.05.

From the above expression, it is straightforward to ob-
tain the maximum value Cmax = 1 for the qubit case.
Moreover, it relates the quantum coherence with the me-
chanical properties that we can, in principle, extract from
an experiment. In addition to this, Eq. (17) shows the
impossibility to generate a mechanical qubit superpo-
sition by its quantum evolution alone (i.e. by tracing
out the spin state), as the expectation values are always
zero in this case. Also, a post-selection on the σ̂z eigen-
states will not reach the required amount of coherence
to generate a qubit superposition, as 〈±2λ|x̂| ± 2λ〉 =
±2λ, 〈±2λ|p̂| ± 2λ〉 = 0.

In the top panel of Fig. 2, we plot the mechanical
coherence, the mean values of the position and the mo-
mentum quadratures. There, we show three cases corre-
sponding to three different φs angles, where the coher-
ence reaches approximately its maximum value (t = π
and γ = 0.01) for its corresponding θs, and it coincides
with i) the maximum of 〈x̂〉post (〈p̂〉post = 0), ii) the max-
imum of 〈p̂〉post (〈x̂〉post = 0), and iii) a combination of
both, respectively. This is also confirmed from Eq. (17).
In the bottom panel of Fig. 2 we show their correspond-
ing probabilities, where for λ = 0.05 then Pav ≈ 2%.

B. Open spin-mechanical dynamics in a non-zero
temperature reservoir and spin post-selection

inaccuracies

As shown above, we solved the dynamics of the open
quantum system uniquely involving the mechanical en-
ergy losses within a thermal reservoir at zero tempera-
ture. Although this might be considered as a first step
approximation towards realistic experimental scenarios,

it is further required to take into account unavoidable
detrimental effects due to the spin decoherence and em-
bedded in a thermal phonon reservoir at non-zero tem-
perature. To model this case, we proceed to solve numer-
ically a more general master equation given by:

dρ̂

dt
= −i[Ĥint, ρ̂] + γ(1 + nm)D [b̂] + γnmD [b̂†]

+ Γ(1 + nq)D [σ̂−] + ΓnqD [σ̂+] +
γφ
2

D [σ̂z] (18)

where Ĥint = b̂†b̂− λσ̂z(b̂† + b̂) and

D
[
Ô
]

=
1

2

(
2Ôρ̂Ô† − ρ̂Ô†Ô − Ô†Ôρ̂

)
(19)

corresponds to the Lindblad term. Also, in the equa-
tion above n = [exp(~ω/kBT )− 1]

−1
is the Planck dis-

tribution, being kB the Boltzmann’s constant and T
the corresponding temperature of the thermal phonon
reservoir. Furthermore, the scaled (by the mechanical
frequency ωm) quantities {γ,Γ, γφ} are the mechanical
damping, spin relaxation, and the spin pure dephasing
rates, respectively. For simplicity we have considered
nm = nq = 10 throughout our numerics.

To quantify the robustness of our setup we make use
of the fidelity, where for two quantum states {%1, %2}
is defined as Tr

[√√
%1%2
√
%1

]
. In particular, as our

target state is a pure state %1 = |ψm〉 〈ψm|, where

|ψm〉 = 1/
√

2(|0〉 + |1〉) [71] is the mechanical qubit in
absence of any source of decoherence. The fidelity then
reduces to:

fidelity =
√
〈ψm| %2 |ψm〉. (20)

Now, we have all the ingredients to explore the limita-
tions of our mechanical qubit state preparation under a
closer experimental realization. Firstly, let us commence
by studying our protocol in absence of spin dephasing,
i.e., γφ = 0 in (18). In Fig. 3-a we show the open evo-
lution as a function of the spin relaxation rate Γ for two
values of the mechanical damping rate γ. As seen from
the figure, in order to have a fidelity above 0.85, we re-
quire to have a value of Γ < 10−3 (shaded region in Fig.
3-a). In Fig. 3-b we study the quantum open dynamics
for γφ 6= 0. To achieve this, we fixed a “good enough”
spin relaxation value found in the previous (shaded re-
gion) figure, and we proceed to plot the fidelity as a func-
tion of the dephasing rate γφ for some values of {γ,Γ}.
As shown in the bottom panel of Fig. 3, the fidelity can
reach values up to above 0.86 even under the full spin-
mechanical open evolution.

Moreover, we have to recall that throughout our
manuscript we have illustrated the operational coupling
regime by considering frequencies of the mechanical os-
cillator in the range of MHz, therefore with a phonon
number occupancy of nm ≈ 10 for a temperature on the
order of milli-Kelvin. Nevertheless, it is important to
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FIG. 3. The figure illustrates the open quantum dynamics
for two different values of the mechanical rate (γ). In (a)
we solved Eq. (18) in absence of the spin pure dephasing rate
(γφ = 0) as a function of the spin relaxation rate Γ. The inset
figure corresponds to the shaded region of the main plot. In
panel (b) we show the evolution of the whole master equation
shown in Eq. (18). Other values are ; t = π, nm = nq =
10, λ = 0.05, and we have post-selected the spin as φ = 0 and
θ according to Eq. (6).

notice that even though we considered nm ≈ 10, the oc-
cupation number of the phonons can indeed be relaxed to
higher values. Naturally, this statement will depend on
the mechanical quality factor (Q=γ−1) considered by us.
As seen from Fig. 3, we considered values of Q=103 and
Q=104 with nm ≈ 10. Here, we notice that the upward
γ(1 + nm) and downward γnm energy transitions in the
Lindbladian are of the order of γ(1+nm) ≈ γnm ∼ 10−2.
Nowadays, mechanical oscillators can be prepared with
Q=105 [72], impliying that our setup would still work
considering a thermal bath with nm ≈ 102. In fact, we
have numerically verified this, i.e our non-classical me-
chanical preparation can still be generated for a set of val-
ues of {nm, γ,Γ, γφ} = {102, 10−5, 10−4, 10−3}, giving us
Pr(n = 0) = 0.518±0.024 and Pr(n = 1) = 0.447±0.022.

Following with a similar analysis discussed before, in
order to exhibit the true quantumness of our mechanical
state preparation, we proceed to compute the probability
number as well as the Wigner quasi-probability distribu-
tion. In Fig. 4-a we show the state preparation under

0 1 2 3 4
0.0
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0.3

0.4

0.5

a) b)

0 1 2 3 4
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0.5

FIG. 4. (Color online) Probability number and Wigner dis-
tributions of (a) the mechanical qubit preparation in ab-
sence of any source of decoherence, and (b) by solving the
full master equation shown in Eq. (18). Our protocol can
be accommodated for decoherence values of the order of
{γ,Γ, γφ} = {10−3, 10−4, 10−3}. Other values were taken as
in Fig. 3

unitary (ideal) evolution, whereas in Fig. 4-b we consider
the mechanical qubit under both spin and mechanical
decoherence embedded in a non-zero thermal reservoir.
There, the prominent negative area of the Wigner distri-
bution exhibits the non-classical feature of our mechani-
cal state preparation. We can conclude that, in principle,
our protocol might be accommodated for a set of values
of the order of {γ,Γ, γφ} ≈ {10−3, 10−4, 10−3} [50, 73].

Lastly, it is important to notice that decoherence such
as shown in Eq. (18) does not constitute the whole detri-
mental effects that our state preparation protocol could
suffer. Although the open quantum dynamics does in
fact constitutes a faithful approach towards a realistic
evolution, it is important to notice that our setup rely
heavily on accurate pre- and post-selection of the spin.
Hence we would like to model the required accuracy in
the preparation of these kind of spin states. In order
to do this, we numerically compute a slight deviation of
the values that fulfill the mechanical qubit preparation,
i.e., a set of angles {θ, ψ} such as satisfy the mechan-
ical qubit preparation condition under ideal conditions
|λη|2(1 − sin θ cosφ) = 1 + sin θ cosφ. In other words,
we pre- and post-select the spin state within a modest
perturbation from those angles as following

|ψf 〉 = cos

(
θ + ∆θ

2

)
| ↑〉+ sin

(
θ + ∆θ

2

)
ei(φ+∆φ)| ↓〉

(21)
such as |∆θ| � θ and |∆φ| � φ. For our under-

standing, this final step gives us a closer experimen-
tal realization up to where our protocol can be finally
accommodated. The procedure then reads as follow-
ing. Firstly, we pre-select the spin state using Eq. (21)
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FIG. 5. (Color online) Mechanical qubit preparation under
non-ideal spin pre/post-selection and full decoherence dynam-
ics. We have taken inaccuracies of |∆θ| ≤ θ × 10−3 and
|∆φ| ≤ φ× 10−3. Other values are t = π, nm = nq = 10, γ =
10−3,Γ = 10−4, γφ = 10−3.

with a random-generated distribution of ∆θ and ∆φ. It
can be seen that the ideal initial spin state considered
by us throughout our manuscript was the superposition
1/
√

2(| ↑〉+ | ↓〉), therefore the pre-selection will be con-
sidering |∆θ| � π/2 and |∆φ| ≈ 0. Secondly, we let the
system to evolve for a time t = π under the full mas-
ter equation given in Eq. (18). Finally, we proceed to
post-select the spin state once again using (21). In Fig.
5, we show the probability phonon distribution under
both full spin-mechanical decoherence and non-ideal spin
pre/post-selection. To remain within a valid mechani-
cal preparation, we have taken an inaccuracy of 0.1%
from the central values {θ, φ}, i.e., |∆θ| ≤ θ × 10−3 and
|∆φ| ≤ φ× 10−3. The large standard deviation shown in
the left panel of Fig. 5 (λ = 0.05) can be easily under-
stood as for this case 〈x̂〉 becomes sharper/narrower at
exactly the value where the coherence is maximal when
λ� 1. Hence, an extremely accurate set of angles {θ, φ}
are demanded in order to prepare the mechanical qubit,
a slight deviation from these central values will become
in a loss of quantum coherence. To overcome this issue,
the fact of having a moderate spin-mechanical coupling
strength λ ≤ 0.25 takes a quite relevant role when the
spin post-selection accuracy is taking into account. The
benefits of having stronger coupling values then arise; a
deviation from the central values do not present a crucial
risk to destroy the mechanical qubit preparation (as the
mechanical quadratures on average become wider), and
therefore the accuracy of the spin pre/post selection can
be relaxed (see the right panel of Fig. 5).

IV. MECHANICAL SINGLE FOCK AND
SCHRÖDINGER’S CAT PREPARATION

In this section, we will explore how to obtain |0〉 or
|1〉 phononic states, as well as Schrödinger’s cat states
through spin post-selection. The generation of Fock
states for linear systems such as quantum harmonic os-
cillators is a challenging task to realize experimentally
(see for example Refs. [24, 48, 49, 74–78]). For instance,

a) 
1.0
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0.6

0.4

0.2

0.0
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b) 

FIG. 6. (Color online) a) Mechanical Schrödinger’s cat state
for t = π, φ = 0, θ = 3π/2, γ = 0.01 and λ = 1. b) As a
consequence of decreasing the coupling, a single Fock number
state n = 1 for the same set of parameters is generated.

the preparation of arbitrary photon Fock states has been
experimentally achieved in superconducting quantum cir-
cuits [74, 75, 78], where a superconducting phase qubit
is driven by classical microwave pulses, leading to the
generation of the Fock states in a waveguide resonator.

Here, it is worthy of note that both |0〉 and |1〉 are
particular solutions from (6). Needless to say that, even
when an initial ground state for the mechanics is consid-
ered, one would not expect this type of non-trivial solu-
tions due to its dynamics alone. This is because each spin
component displaces the mechanical state coherently by
±λ(1 − e−it), thus the election of strong (weak) enough
λ will exhibit higher (near to |0〉) phononic excitations.

From the phonon distribution shown in (14) in ab-
sence of any source of decoherence (c1 = 1, c2 = 0),

Pr(n) ≈ e−4λ2

λ2n(1 + sin θ cosφ(−1)n), it is straightfor-
ward to see that a simple choice of the post-selected an-
gle, e.g. θ = ±3π/2 (φ = 0) will result into a generation
of odd (or even) phonon number distribution (mechanical
Schrödinger’s cat state as shown in Fig. 6-a).

In Fig. 6-b, we generate a phononic Schrödinger’s cat
state working in the strong coupling regime (λ ≈ 1).
Interestengly, as λ decreases (λ ≤ 0.25) we can prepare
the oscillator into a single Fock number state n = 1 (n =
0), this being a consequence of the odd (even) phononic
distribution for modest coherent amplitudes.

Finally, although we are able to prepare the mechanics
into a single phonon Fock state, to post-select the qubit
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in the weak-coupling regime becomes hard to achieve.
This could be easily seen as one proceeds to post-select
the qubit into the state, e.g., {θ = 3π/2, φ = 0}, |ψ〉f =

1/2(−| ↑〉 + | ↓〉). Thus the target qubit becomes more
and more orthogonal with the initial preparation. Of
course, for λ → 0 then the outcome probability P de-
creases rapidly to zero, as the mechanics disentangles
from the spin. Despite of this, considering a coupling
of, let us say λ = 0.1, then the Fock state n = 1 can be
prepared with a probability of Pav = 3.8% on average.

V. BRIEF DISCUSSION ON THE AAV THEORY
AND OUR PREPARATION PROTOCOL

At this point, we would like to stress the high resem-
blance of our protocol with the weak-measurement the-
ory by Aharanov, Albert & Vaidman (AAV) [79, 80].
Essentially, the combination of a weak interaction and
pre/post-selection are shown to lead to an anomalous ef-
fect, namely the weak value amplification (WVA) [79].

In our model one has the main ingredients of the
AAV theory, hence it is interesting to study if any
amplification phenomena occur. To identify this, we
propose to compare the quadrature mean values ob-
tained by post-selection measurements (〈x̂〉post, 〈p̂〉post)
with those obtained by considering the σz eigenstates, i.e.
〈±λη|x̂| ± λη〉 = ±λ(1 − cos t), 〈±λη|p̂| ± λη〉 = ±λ sin t
—similarly as in [81]. Therefore, we define the position
and momentum amplification factors as Q ≡ 〈x̂〉post/2λ
and P ≡ 〈p̂〉post/λ, evidencing in this way, the me-
chanical amplification on average in our approach when
{Q,P} > 1. It can be seen from Fig. 2 that there are
some cases (exactly when the mechanical qubit super-
position is reached) where i) the position quadrature is
amplified up to a factor of Q ≈ 1/(2 × 0.05) = 10 (and
the momentum is not), ii) the momentum quadrature is
amplified P ≈ 1/(0.05) = 20 (and the position is not),
and iii) a combination of both. However, we cannot al-
ways identify the above amplification with the original
WVA framework, since in our case the AAV approxima-
tion breaks down [80] (see Appendix A for more details).

VI. CONCLUDING REMARKS

We have proposed a feasible probabilistic method to
generate a macroscopic mechanical qubit, as well as
Schrödinger’s cat and single Fock number states (n = 1)
for the oscillator. As opposed to previous works [58–
60], we studied an open dispersive spin-mechanical sys-
tem without any spin and/or mechanical driving, but
on non-ideal spin post-selection measurements in the
weak/moderate coupling regime.

To understand the mechanical qubit superposition, we
derive a correspondence between the amplification of the
mechanical quadratures on average and the maximum
value of the mechanical quantum coherence —whereas

the single Fock number state is a direct consequence of
low-amplitude Schrödinger’s cat states.

From an experimental point of view, our scheme shows
to be feasible under current technology, as we demon-
strated in Sec. III-B where our scheme can be acco-
modated in presence of several sources of decoherence.
Moreover, our technique has a probability of production
of 2% < Pav < 24% in the range of 0.05 < λ < 0.2,
respectively.

Lastly, as our protocol is mainly based on spin post-
selection, we would like to illustrate how this procedure
could be addressed. Firstly, in order to pre-select the spin
qubit, we initialize the spin in the | ↑〉 state, subsequently
we apply a (π/2)y rotation around y-axis that prepares
the spin into a coherent superposition. Secondly, on the
spin post-selection, we apply a (θ/2)y rotation (θ is the
post-selected angle) to map the coherent superposition
into σ̂z eigenstates, and then a measure on the spin | ↑〉
component will allow us to read-out the desired post-
selected state.
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Appendix A: Failure of the mechanical quadrature
mean value under weak-measurements

Aharanov, Albert and Vaidman’s (AAV) theory
rapidly attained serious interests and debate since its con-
ception in the late 1980s [79]. In the original paper the
attention is centered in a new paradigm of quantum mea-
surements, where a combination of a weak interaction fol-
lowed by a strong (projective) measurement could lead to
an anomalous effect, namely the mean values of physical
observables go beyond the eigenvalue spectrum. To illus-
trate this, the seminal work considered a spin-1/2 particle
passing through two Stern-Gerlach apparatus. The first
one is aimed to pre-select the spin-1/2 state via weak
magnetic coupling (weak enough not to perturb signifi-
cantly the quantum state), whereas the second one will
post-select the particle state. Surprisingly, the measure-
ment result of the spin component could lie way beyond
its eigenvalue spectrum.

Commonly in AAV’s framework, one is interested in
quantifying the quadratures on average of the mechan-
ical/meter state as they are closely linked to the weak-
value amplification. In the main text, as pointed out
by us, although our protocol has some of the ingredients
of weak-measurements, it breaks down shortly after con-
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sidering our optimal values of coupling strength (λ) and
post-selection values ({θ, φ}).

In this section, we will explicitly show how the me-
chanical quadratures on average differ when these are
computed using standard rules from quantum mechan-
ics —where no approximations on the coupling strength
have been done— and the one following the weak mea-
surements approximations [79, 80]. In order to do this,
let us recall the Hamiltonian:

Ĥint = b̂†b̂− λσ̂z(b̂† + b̂), (A1)

with unitary evolution operator

Û = eλσ̂zΛ̂e−ib̂
†b̂t. (A2)

In the above, we have defined Λ̂ ≡ ηb̂† − η∗b̂, and η ≡
1− e−it. The initial state reads as |ψ(0)〉 = |ψi〉 ⊗ |αm〉,
where |ψi〉 = 1/

√
2(| ↑〉+| ↓〉) and |αm〉 is the mechanical

coherent state. Following with the same procedure of the
AAV’s theory, we proceed to approximate the unitary
operator at first order in the coupling strength as

|ψ(t)〉 ≈
(
I + λσ̂zΛ̂

)
|ψi〉 ⊗

∣∣αme−it〉 . (A3)

This approximation remains valid if and only if λ� 1.
To obtain the relevant mechanical state, we post-select
the spin giving us the following wave-function:

|ψf 〉 〈ψf |ψ(t)〉 = 〈ψf |ψi〉(I+λ〈σ̂z〉wΛ̂) |ψf 〉⊗
∣∣αme−it〉 ,

(A4)
where the weak value is defined by:

〈σ̂z〉w ≡
〈ψf | σ̂z |ψi〉
〈ψf |ψi〉

= A + iB. (A5)

From the above, the unnormalized mechanical state
reads as

|α〉 =
(
I + λ〈σ̂z〉wΛ̂

) ∣∣αme−it〉 . (A6)

On the other hand, let us consider M̂ a quantum ob-
servable of the mechanical object. Therefore, its expec-
tation value is computed as usual

〈M̂〉 =
〈α| M̂ |α〉
〈α|α〉

(A7)

= 〈M̂〉0 + λ(A 〈[M̂, Λ̂]〉0 + iB〈{M̂, Λ̂}〉0)

− 2iλB〈M̂〉0〈Λ̂〉0). (A8)

where 〈Ô〉0 ≡ 〈αme−it|Ô|αme−it〉. We are interested
to contrast our results from the main work (〈x̂〉 = Tr[ρ̂x̂],
where ρ̂ is the mechanical state after the spin post-
selection without any approximation) with the one pre-

sented in Eq. (A8). Thus, let us consider M̂ = x̂ =

(b̂ + b̂†)/2. In this case [x̂, Λ̂] = 1 − cos t, 〈{x̂, Λ̂}〉 =
i
(
(1 + 2|αm|2)Im[η] + 2Im[ηα∗2m e

2it]
)
, 〈x̂〉 = Re[αme

−it],

and 〈Λ̂〉 = 2iIm[ηα∗me
it] giving the final expression:

4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9
−1.0

−0.5

0.0

0.5

1.0

4.2 4.4 4.6 4.8
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9
−1.0

−0.5

0.0

0.5

1.0
(a)

(b)

5.0

FIG. 7. (Color online) Comparison between the position of
the mechanical object on average calculated as in the main
text (no approximations considered) (black solid line), and
the one using weak-measurement approximation (red dashed
line) (see Eq. (A9)).

〈x̂〉AAV = Re
[
αme

−it]+ λA (1− cos t)

− λB
{

(1 + 2|αm|2)Im[η] + 2Im[ηα∗2m e
2it]
}

+ 4λBRe
[
αme

−it] Im
[
ηα∗me

it
]
. (A9)

In particular, we took the mechanical state initialized
in its ground state throughout our work. Hence αm = 0,
and the mean value is then reduced to:

〈x̂〉AAV = λ {A (1− cos t)−B sin t} . (A10)

In Fig. 7 we illustrate the position mean value of the
mechanical oscillator as a function of the post-selected
angles {θ, φ}. In the top panel of Fig. 7 we consider
the case where φ = 0. As expected, if φ = 0 and
θ → 3π/2 then 〈σ̂z〉w → ∞. Therefore, Eq. (A6) be-
comes undefined. Of course, at exactly the angle value of
θ = 3π/2 the weak-measurement approximation is not be
valid, as the original paper forbid orthogonal spin post-
selection related to the initial spin state. However, one
should expect that in the vicinity of θ → 3π/2, the weak-
measurement approximation should hold. As seen in Fig.
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7-a and discussed in the main text, when max(〈x̂〉post) (or
min(〈x̂〉post)) occurs, the mechanical qubit state is pre-
pared. However the weak-measurement approximation
becomes irreconcilable with the exact calculation for an
independent choice of the coupling value λ. On the other
hand, our protocol holds for any set of {θ, φ} fulfilling
|λη|2(1− sin θ cosφ) = 1 + sin θ cosφ, including φ = 0 as
shown in Fig. 7-a.

To explore the validity of the weak-measurement ap-

proximation when φ 6= 0 (no-orthogonal states between
spin pre- and post-selection), we have calculated 〈x̂〉 for
φ = 0.08 (see Fig. 7-b). There, the approximation
is valid for λ ≤ 0.01. However, as discussed before,
an experimental drawback of having λ � 1 is that we
require to achieve extremely high precision in the spin
post-selection, and also the spin outcome probability de-
creases. Thus, even though when φ 6= 0 and λ � 1 the
AAV is valid, the experimental disadvantages become in
a major obstacle for the mechanical qubit preparation.
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