
Thermal effects on sudden changes and freezing of
correlations between remote atoms

in a cavity quantum electrodynamics network
Vitalie Eremeev,1,* Nellu Ciobanu,2 and Miguel Orszag2

1Facultad de Ingeniería, Universidad Diego Portales, Santiago, Chile
2Facultad de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago, Chile

*Corresponding author: vitalie.eremeev@udp.cl

Received February 17, 2014; revised March 31, 2014; accepted April 1, 2014;
posted April 1, 2014 (Doc. ID 206115); published April 23, 2014

We investigate thermal effects on sudden changes and freezing of the quantum and classical correlations of remote
qubits in a cavity quantum electrodynamics (CQED) network with losses. We find that the detrimental effect of
thermal reservoirs on the freezing of correlations can be compensated via an efficient coupling of the fiber connect-
ing the two cavities of the system. Furthermore, for certain initial conditions, we find a double sudden transition in
the dynamics of Bures geometrical quantum discord. The second transition tends to disappear at a critical temper-
ature, hence freezing the discord. Finally, we discuss the feasibility of the experimental realization of the present
proposal. © 2014 Optical Society of America
OCIS codes: (270.5585) Quantum information and processing; (270.5580) Quantum electrodynamics.
http://dx.doi.org/10.1364/OL.39.002668

Quantum correlations play a fundamental role in quan-
tum computation and quantum information processing
[1], where entanglement is usually considered a popular
measure of such correlations. However, more general
measures such as quantum discord (QD) [2,3] and
geometric quantum discord (GQD) with Bures distance
[4–6] have been shown to capture nonclassical correla-
tions, including completely separable systems, e.g., the
deterministic quantum computation with one quantum
bit (DQC1) model.
The unusual dynamics of classical and quantum

decoherence originally reported in [7,8] and confirmed
experimentally in [9–11] has stimulated high interest in
the investigation of the phenomena of sudden changes
in the correlations for different physical systems. Hence,
during the past years, intensive effort has been focused
on explaining the nature of sudden transitions and
freezing effects of quantum correlations and the condi-
tions under which such transitions occur. Also, from
the perspective of applications, how efficiently one could
engineer these phenomena in quantum technologies is
also a matter of interest.
As has been shown in previous studies [6–16], the puz-

zling peculiarities of the sudden transitions and freezing
phenomena are hidden in the structure of the density op-
erator during the entire evolution of a bipartite quantum
system for particular decoherence processes. Never-
theless, important questions remain open—how these
fascinating effects are affected by the presence of noisy
environments and if there are efficient mechanisms to
control them in both nondissipative or dissipative
decoherence models. The state-of-the-art research of
cavity quantum electrodynamics (CQED) networks
[17–20] has shown so far modest progress concerning
the influence of thermal environments on the correla-
tions, and the sudden transitions and freezing phenom-
ena in particular [13,14,20–27]. This Letter presents
interesting novel results in this line of research.
In Fig. 1(b) we show the time evolution of the classical

and quantum correlations for a CQED network as

discussed in [27] and applied to the case of two excita-
tions, with the qubits initially prepared in a class of states
as in Eq. (3) for all the reservoirs at zero temperature. We
observe the quantum-classical sudden transition in the
case of our CQEDmodel similar to other studied systems
[6–16]. Besides the classical correlations (CCs), entropic
QD, and relative entropy of entanglement (REE), we
have also studied two geometrical measures, geometric
entanglement (GE) and GQD defined with Bures distance
[4,5]. We notice that the Bures GQD and QD show similar
behavior, having flat regions not affected by the dissipa-
tion processes during a particular time period, an effect
known as freezing of QD. At the same time, CCs decay
and meet QD at a point where a sudden change occurs.
After this point, the CCs remain constant during another
time period until another sudden change follows and so
we observe periodic revival of the correlations [9,10,16].
On the other hand, the entanglements show different
dynamics, evidencing effects of sudden death and birth
not appearing in the QD and GQD for the given system.

In the following we present briefly the model proposed
in [26,27], schematically shown in Fig. 1(a), and recall the
analytical equations for a generalized model presented in
this Letter. Basically, the model considers a quantum
open system of two remote qubits (two-level atoms)
where each qubit interacts independently with one of

Fig. 1. (a) Remote atoms in the CQED network. (b) Time evo-
lution of the correlations: CC (blue solid), QD (red solid), GQD
(green solid), REE (magenta-dotted), and GE (brown-dashed)
for the reservoirs at zero temperatures. The parameters are the
same as in Fig. 2(a).
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the distant cavities coupled by a transmission line (e.g.,
fiber). For the sake of simplicity, one considers the
approach of a short fiber limit: only one active mode
of the fiber interacts with the cavity modes [20]. The
whole system is open because the cavities and fiber ex-
change energy with their individual thermal baths; hence,
we have a very general case of dissipative decoherence
of the quantum system. The Hamiltonian of the system
under the rotating-wave approximation in units of ℏ
reads

Hs � ωf a
†
3a3 �

X2
j�1

�ωaSj;z � ω0a
†
j aj�

�
X2
j�1

�gjS�
j aj � νa3a

†
j � H:c:�; (1)

where a1�a2� and a3 are the boson operator for cavity
1(2) and the fiber mode, respectively; ω0, ωf , and ωa

are the cavity, fiber, and atomic frequencies, respec-
tively; gj (ν) are the atom (fiber)-cavity coupling con-
stants; and Sz and S� are the atomic inversion and
ladder operators, respectively.
One of the important advances and the novelty of the

present model compared to previous ones [26,27] is
based on the generalization to large number of excita-
tions in the system. To the best of our knowledge,
this approach of many excitations in similar systems
[17–20] is not common, and may be one of few existing
studies.
To describe the evolution of an open quantum-optical

system usually the approach of the Kossakowski–
Lindblad phenomenological master equation is consid-
ered with the system Hamiltonian decomposed on the
eigenstates of the field-free subsystems. However, some-
times a CQED system is much more realistically modeled
based on the microscopic master equation (MME), devel-
oped in [28,29] where the system–reservoir interactions
are described by a master equation with the system
Hamiltonian mapped on the atom-field eigenstates,
known as dressed states. The present system consists
of two atoms within their own cavities connected by a
fiber. We represent the leakage of the two cavities and
the fiber via coupling to individual external environ-
ments, thus identifying three independent dissipation
channels. Commonly, in CQED the main sources of dis-
sipation originate from the leakage of the cavity photons
due to the imperfect reflectivity of the cavity mirrors.
Another mechanism of dissipation corresponds to the
spontaneous emission of photons by the atom; however,
this kind of loss is negligibly small in the CQED regime
considered in our model and, consequently, is neglected.
Hence, it is straightforward to bring the Hamiltonian Hs

in Eq. (1) to a matrix representation in the atom-field
eigenstates basis. To define a general state of the whole
system we use the notation jii � jA1i ⊗ jA2i ⊗ jC1i ⊗
jC2i ⊗ jFi≡ jA1A2C1C2Fi, where A1;2 correspond to
the atomic states, which can be e�g� the for excited
(ground) state, while C1;2 and F define the cavities
and fiber states, respectively, which may correspond
to 0, 1, … n photon states. Because the quantum system

is dissipative, the excitations may leak to the reservoir
degrees of freedom, hence the ground state of the
system, j0i � jgg000i, should be also considered in the
basis of the states. Therefore, in the case of N excitations
in our system, the number of dressed states, jii, having
a minimum of one excitation, i.e., excluding the
ground state j0i, is computed by a simple relation:
dN � N � 2

P
N
k�1 k�k� 1�. For example, in the case of

N � 2 excitations the Hamiltonian Hs in Eq. (1) is de-
composed in a state-basis of dimension 1� d2, i.e., it
is a 19 × 19 matrix; for six excitations, Hs is represented
by a 231 × 231 matrix, and so on. Hence it is evident that
for large N the general problem becomes hard to solve
even numerically. In the present work, we develop our
calculations up to six excitations, which is an improve-
ment as compared to some previous works with, e.g.,
two excitations [20].

Considering the above assumptions and following the
approach of [28,29], the MME for the reduced density
operator ρ�t� of the system is defined in the form given
by Eq. (2) in [27]. In the following we develop the
equation for the density operator ρ�t� mapped on the
eigenstates basis, hϕmjρ�t�jϕni � ρmn for the case of N
excitations in the system:

_ρmn�−iω̄n;mρmn�
XdN
k�1

�
γk→0

2
�2δm0δ0nρkk−δmkρkn−δknρmk�

�γ0→k

2
�2δmkδknρ00−δm0ρ0n−δ0nρm0�

�
; (2)

where δmn is the Kronecker delta; the physical meaning
of the damping coefficients γk→0 and γ0→k refers to the
rates of the transitions between the eigenfrequencies
Ωk and Ω0 downward and upward, respectively, defined
as follows: γk→0 �

P3
j�1 c

2
i γj�ω̄0;k��hn�ω̄0;k�iTj

� 1�, and
by the Kubo–Martin–Schwinger condition we have
γj�−ω̄� � exp�−ω̄∕Tj�γj�ω̄�, where ci are the elements
of the transformation matrix from the states
fj0i; j1i;…; jdNig to the states fjϕ0i; jϕ1i;…; jϕdN

ig {sim-
ilar to Eq. (14) and Appendix A in [26]}. Here
hn�ω̄α;β�iTj

� �e�Ωβ−Ωα�∕Tj − 1�−1 corresponds to the aver-

age number of thermal photons (with kB � 1). The damp-
ing coefficients play a very important role in our model
because their dependence on the reservoir temperatures
imply a complex exchange mechanism between the ele-
ments of the system and the baths. Further, one solves
numerically the coupled system of the first-order differ-
ential equations [Eq. (2)] and compute the evolution of
different kinds of correlations between the two distant
atoms, given some finite temperature of the reservoirs.
In order to get the reduced density matrix for the atoms,
one performs a measurement on the cavities and the fiber
vacuum states, j000i � j0iC1 ⊗ j0iC2 ⊗ j0iF ; later we will
explain how this task can be realized experimentally. We
find that, after the projection, the reduced atomic density
matrix has a X form and the correlations can be com-
puted easily as developed in [4,30–32].

The system under consideration refers to atoms with
long radiative lifetimes trapped in their own cavities
and connected by a fiber. The cavities and fiber exchange
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their energy with individual reservoirs [Fig. 1(a)] which,
for the sake of simplicity, are taken to have the same
damping rate γ1 � γ2 � γ3 ≡ γ. The transition frequency
of the atom is considered a free parameter used to scale
the rest of the dimensionless parameters, which we take
as being similar to some experimental data [33], e.g.,
ωa∕2π � 10 GHz. The atom–cavity couplings satisfy the
constraint of the MME in a Markovian environment,
i.e., 2g ≫ γ [29] and we set the values g1 � g2 � g �
10γ in Figs. 1 and 2. The values of γ and ν will be tuned
to evidence the effects of the thermal baths. We find that
the detunings do not have an important impact on the
effects we discuss here, so we set the values ωf � ωa

and ωa − ω0 � 0.1ωa. In the following, we compute the
time evolution of the atomic correlations, keeping in
mind the main objective of this Letter, which is to find
the influence of thermal baths on these correlations.
To compute the general correlations—classical and
quantum for the given system—we consider the concepts
of mutual information, classical correlations, and
entropic QD as defined and calculated in [2,3,30–32],
as well the GQD with Bures distance, recently developed
by one of us [4,5] and independently in [6]. Let us
consider that the two atoms initially are prepared in a
particular state as Bell-diagonal (BD), described by an
X-type density matrix in Bloch form as

ρ�0� � �I ⊗ I � c⃗ · �σ⃗ ⊗ σ⃗��∕4; (3)

where σ⃗ � �σ1; σ2; σ3� is the vector given by Pauli matri-
ces, I is the identity matrix, and the vector c⃗ � �c1; c2; c3�
defines completely the state with −1 ≤ ci ≤ 1. It is very
important to point out here that the majority of the works
studying the sudden transition and freezing effects of the
correlations in the bipartite quantum system consider the
special decoherence mechanisms (noise channels known
as bit flip, phase flip, and bit-phase flip [6,8,34]) so that
during the time evolution the density matrix preserves
the property of its initial state, i.e., ρ11�t� � ρ44�t� � �1�
c3�t��∕4 and ρ22�t� � ρ33�t� � �1 − c3�t��∕4. For this
scenario the classical correlations and QD are easily
computed with the help of the work of Luo in [30] or
given explicitly in [8]. However, for quantum systems
embedded in natural environments, like heat baths, the
above-mentioned equality of the density matrix elements
is no longer satisfied, as the system evolves in time, even

if initially we have a BD state. Hence, it is of great interest
to study the phenomena of sudden transition and freezing
of the correlations for more general (realistic) dissipation
models, such as our system under the MME approach.

Recently, Pinto et al. in [12] discussed the sensitivity of
the sudden change of the QD to different initial condi-
tions. In this context, the present work shed more light
on this important subject. In particular, for the system
under study, we find that the atomic density matrix pre-
serves the initial BD form only for a short time under the
action of the heat reservoirs. It very quickly evolves into a
more general X-shaped non-BD form. Under these cir-
cumstances, we compute the QD as shown in Figs. 2
and 3 by using a more general algorithm developed in
[31,32]. Furthermore, we also make use of an alternative,
nonentropic measure of the quantum correlations, such
as the GQDwith Bures distance, proposed and calculated
for a bipartite system in [4,5]. Hence, observing in
Fig. 1(b) the effect of the sudden change and freezing
of the correlations for the reservoirs at zero temperature,
it is natural to inquire about the thermal effects on the
classical and quantum correlations when the cavities
and fiber are connected to reservoirs at finite (nonzero)
temperatures. In our numerical analysis, we find that the
freezing effects of the QD and GQD decay by increasing
individually or collectively the temperatures of the
cavities or the fiber. In Fig. 2(a) we show the effect of
heating the fiber to four thermal photons and observe
that the thermal effects act destructively on the freezing
of both the entropic and geometric discords. However,
the sudden transitions persist. The next question is:
Could one recover from the damaging effects of the sys-
tem being coupled to the thermal reservoirs? We find that
we could, in principle, engineer such a recovery by a suit-
able increase in the fiber–cavity coupling. As a matter of
fact, we show in Fig. 2(b) that, when we set the fiber’s
bath temperature to three thermal excitations, such
recovery of the correlations, via the increase of the
fiber–cavity coupling, is feasible, hence by this effect
we understand the important role of the photon as the
carrier of the quantum correlations between the remote
qubits in such a network.

Recently in [34] the authors theoretically described an-
other interesting class of sudden transitions and freezing
of the quantum correlations, which later was observed
experimentally in NMR setups [35]. They found the for-
mation of an environment induced double transition of
Schatten one-norm geometric quantum correlations
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Fig. 2. Dynamics of the correlations: CC (blue), QD (red), and
Bures GQD (green) for γ � 0.008ωa. (a) Varying the tempera-
ture of the fiber’s reservoir given by the average number of
the thermal photons, i.e., n̄3 � 0 (solid line) and n̄3 � 4 (dashed
line) for constant cavity–fiber coupling ν � 10γ. (b) Varying the
cavity-fiber coupling, ν � 10γ (dashed line) and ν � 100γ (dot-
ted line) for constant n̄3 � 4. The initial state is defined by
c⃗ � �1;−0.9; 0.9� in Eq. (3).
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(GQD-1), which is not observed in the classical correla-
tions, and is thus a truly quantum effect.
Motivated by this very recent finding, we simulate the

dynamics of the Bures GQD for our model and find a type
of double sudden transition somewhat different from the
ones observed in [34,35]. To the best of our knowledge,
this kind of double sudden transition and freezing effect
for Bures GQD has not been reported in literature and by
this result we come to an important conclusion that both
the GQD-1 and Bures GQD show similar quantum effects.
In Fig. 3 we see the double sudden changes in the dynam-
ics of Bures GQD for the reservoirs at zero temperatures,
while the QD suffers one sudden change. We observe the
following interesting result: as we increase the tempera-
ture of the fiber’s bath, there is a peculiar tendency to
freeze the GQD and the second transition tends to disap-
pear at a critical temperature.
The experimental realization of the present proposal

hinges on the possibility of realizing quantum nondemo-
lition (QND) measurements of the photon states in the
fiber–cavities system. There is extensive literature on
QND measurements in CQED; for a review see [33]. In
our scheme we propose to measure the two-qubit density
matrix in the condition that all the fields are in vacuum
state, so it is feasible to monitor the probability of this
state during the temporal evolution of the system [27].
In summary, we analyzed here the phenomena of

sudden changes and freezing of correlations in a CQED
network with thermal dissipation channels (Fig. 1).
Double sudden transitions for Bures GQD are observed
for the first time, to the best of our knowledge (Fig. 3).
We conclude that by controlling the dissipation mecha-
nisms one may engineer the quantum correlations with
multiple sudden changes and freezing periods in the
temporal evolution, effects which may have practical
applications. A kind of thermal critical effect in this
model is expected, as it is in other systems [36].
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