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a b s t r a c t

In this paper, we propose novel second-order cone programming formulations for binary classification,
by extending the Minimax Probability Machine (MPM) approach. Inspired by Support Vector Machines,
a regularization term is included in the MPM and Minimum Error Minimax Probability Machine
(MEMPM) methods. This inclusion reduces the risk of obtaining ill-posed estimators, stabilizing the
problem, and, therefore, improving the generalization performance. Our approaches are first derived
as linear methods, and subsequently extended as kernel-based strategies for nonlinear classification.
Experiments on well-known binary classification datasets demonstrate the virtues of the regularized
formulations in terms of predictive performance.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The Minimax Probability Machine (MPM) [1] is a well-known
machine learning method that minimizes the worst-case (maxi-
mal) probability of a test example being misclassified. This model
assumes that each of the two training patterns is generated
by random variables with a known mean and covariance ma-
trix. Therefore, it provides a robust setting for machine learning.
Robustness is an important virtue since it guarantees that pre-
dictive performance does not deteriorate much with changing
environments [2–4].

Robust machine learning methods in the area of MPM are usu-
ally formulated as Second-Order Cone Programming (SOCP) prob-
lems [5]. Robustness is usually conferred via chance constraints
which provide bounds for each class accuracy (also referred to
as class recall), for even the worst possible data distribution.
Using an appropriate application of the Chebyshev inequality,
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this problem can be written equivalently as a linear SOCP prob-
lem [1,3,4]. Although linear SOCP models can be solved efficiently
via interior point algorithms [6], research on nonlinear SOCP
optimizers is much more recent [3], limiting the opportunities for
novel machine learning formulations.

One disadvantage of MPM is that it does not include a regu-
larization term for the construction of the separating hyperplane.
Regularization is used for avoiding ill-posed problems, but also
for fitting the training samples well, while reducing the risk of
overfitting at the same time [7]. For example, the Tikhonov regu-
larization, or l2-norm, has been used widely in learning machines;
a strategy that was popularized by the Support Vector Machine
(SVM) method [7]. This strategy is still among the most popular
classification methods, and has been widely used in domains
such as computer vision [8,9], medical diagnosis [10,11], and
business analytics [12,13]. Saketha Nath and Bhattacharyya [4]
proposed a regularized alternative for MPM, in which the l2-norm
was minimized. However, this approach uses fixed values for
the misclassification rates, rather than optimizing these measures
with the optimization problem.

Another disadvantage of MPM is that it assumes a unique
class recall for both classes. In other words, it assumes that
both classes are equally important. The Minimum Error Minimax
Probability Machine (MEMPM) [14] is a relevant MPM extension
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which minimizes a convex combination of the misclassification
rates, balancing the two classes based on their prior probabilities.

In this paper, we propose regularized MPM and MEMPM for-
mulations, in which the l2-norm of the weight vector is mini-
mized jointly with the error rates. Unlike the model proposed by
Saketha Nath and Bhattacharyya [4], these rates are a part of the
optimization problem, leading to nonlinear Second-Order Cone
Programming (NSOCP) formulations.

The remainder of this paper is organized as follows: in Sec-
tion 2, we present the robust formulations that are relevant for
our proposal: MPM, MEMPM, and the maximummargin approach
proposed by Saketha Nath and Bhattacharyya [4]. The proposed
regularized methods are detailed in Section 3. The results of the
numerical experiments on benchmark datasets are reviewed in
Section 4. Finally, the main conclusions of this work are provided
in Section 5, where future developments are also proposed.

2. Prior work on robust binary classification using SOCP

In this section, we briefly introduce the foundations for dif-
ferentiable nonlinear second-order cone programming. Subse-
quently, the models that are relevant for our proposal are for-
malized, namely the MPM [1], the MEMPM [14], and the robust
regularized approach by Saketha Nath and Bhattacharyya [4]. This
section concludes with a discussion of current trends and recent
studies on robust classification with SOCP.

2.1. Preliminaries on nonlinear second-order cone programming

Let g:ℜn
→ ℜ

m be a function defined by g(x) = (g1(x), ḡ(x)),
where g1:ℜn

→ ℜ, ḡ:ℜn
→ ℜ

m−1, and m ≥ 2. A second-order
cone (SOC) constraint has the form g1(x) ≥ ∥ḡ(x)∥, where ∥ · ∥

denotes the Euclidean norm. In the case in which m = 1, the
constraint is defined simply by g(x) ≥ 0. We note that this is
equivalent to having g(x) ∈ Km, where Km

= {(y1, ȳ) ∈ ℜ×ℜ
m−1

:

y1 ≥ ∥ȳ∥}, for m ≥ 2, and K1
= ℜ+.

With this notation, a nonlinear Second-Order Cone Program-
ming (NSOCP) problem is defined as:

min
x∈ℜn

{f (x) ; g j(x) ∈ Kmj , j = 1, . . . , J}, (1)

where f :ℜn
→ ℜ and g j:ℜn

→ ℜ
mj (j = 1, . . . , J) are

continuously differentiable functions. In the particular case where
the function f is linear and g j are affine, Eq. (1) becomes a Linear
Second-Order Cone Programming (LSOCP) problem.

There are several alternatives for solving an NSOCP problem
numerically; see e.g. [15–17]. Recently, we have proposed an inte-
rior point algorithm for solving NSOCP problems, which achieves
positive results on medium-sized problems [18]. This approach,
called FDIPAsoc , is formalized in Section 3.3.

2.2. The minimax probability machine

Let X1 an X2 be n-dimensional random vectors that generate
the two classes of a binary classification problem, where their
respective mean and covariance matrices are given by (µi, Σi),
with µi ∈ ℜ

n and Σi ∈ Sn
+
, for i = 1, 2, where Sn

+
denotes the set

of symmetric positive definite matrices. Let us denote the family
of distributions which have a common mean and covariance by
X ∼ (µ, Σ).

The main goal of the MPM method is to determine a hyper-
plane of the form w⊤x + b = 0, with w ∈ ℜ

n
\ {0} and b ∈ ℜ,

such that it separates the two classes with maximal probability
with respect to all distributions [1]. This formulation is given by
max
w,b,α

α

s.t. inf
X1∼(µ1,Σ1)

Pr{w⊤X1 + b ≥ 0} ≥ α,

inf
X2∼(µ2,Σ2)

Pr{w⊤X2 + b ≤ 0} ≥ α,

(2)

where α ∈ (0, 1) represents the lower bound for each class recall,
or, in other words, the worst-case accuracy.

A robust formulation can be obtained by using Theorem 2.1
(see [1, Lemma 1] for details), which is presented next:

Theorem 2.1 (Multivariate Chebyshev Inequality). Let x be a
n-dimensional random variable with mean and covariance (µ, Σ),
where Σ is a positive semidefinite symmetric matrix. Given a ∈

ℜ
n

\ {0}, b ∈ ℜ, such that a⊤µ + b ≥ 0, and α ∈ (0, 1), the
condition

inf
x∼(µ,Σ)

Pr{a⊤x + b ≥ 0} ≥ α

holds if and only if a⊤µ + b ≥ κ(α)
√
a⊤Σa, where κ(α) =

√
α

1−α
.

Using the Chebyshev inequality presented in Theorem 2.1, the
optimization problem (2) is equivalent to

max
w,b,α

α

s.t. w⊤µ1 + b ≥ κ(α)
√
w⊤Σ1w,

− (w⊤µ2 + b) ≥ κ(α)
√
w⊤Σ2w.

(3)

After some algebraic manipulations, we see that Formulation
(3) can be written equivalently as (see [1, Theorem 2], for details):

min
w

√
w⊤Σ1w +

√
w⊤Σ2w

s.t. w⊤(µ1 − µ2) = 1.
(4)

This problem can be reduced to a linear SOCP problem, which can
be solved efficiently via interior point algorithms [5,19].

Remark 1. In practice, the mean and the covariance matrix
are usually not available. Therefore, their respective empirical
estimations are used instead.

Remark 2. A kernel-based version of the MPM model can be
obtained. This version can be found in Lanckriet et al. [1, Theorem
6].

2.3. Minimum error minimax probability machine

The Minimum Error Minimax Probability Machine (MEMPM)
[14] extends the MPM method by considering two different
worst-case accuracies, one for each class, instead of a single
variable α. Let θ ∈ (0, 1) be the prior probability of class X1,
and, consequently, 1 − θ is the prior probability of class X2. The
MEMPM method is given by the following formulation:

max
w,b,α1,α2

θα1 + (1 − θ )α2

s.t. inf
X1∼(µ1,Σ1)

Pr{w⊤X1 + b ≥ 0} ≥ α1,

inf
X2∼(µ2,Σ2)

Pr{w⊤X2 + b ≤ 0} ≥ α2.

(5)

Following the reasoning behind MPM, the following robust
model can be obtained by using the Chebyshev inequality:

max
w,b,α1,α2

θα1 + (1 − θ )α2

s.t. w⊤µ1 + b ≥ κ(α1)
√
w⊤Σ1w,

− (w⊤µ2 + b) ≥ κ(α2)
√
w⊤Σ2w,

(6)

where κ(αk) =

√
αk

1−αk
, for k = 1, 2.

In order to solve Problem (6), the authors first set one of the
accuracies as fixed, optimizing only one of them. Assuming that
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α1 is fixed, Formulation (6) becomes

max
α2,w̸=0

θ
γ 2

γ 2 + 1
+ (1 − θ )α2

s.t. w⊤(µ1 − µ2) = 1,
(7)

where

γ = γ (w) =
1 − k(α2)

√
w⊤Σ2w√

w⊤Σ1w
. (8)

Remark 3. Note that, if α2 is fixed, Formulation (7) is equivalent
to solving the problem

max
w̸=0

{γ (w) : w⊤(µ1 − µ2) = 1},

which has the remarkable property that every local optimum is
a global one.

Based on this fact, the authors propose an iterative proce-
dure for solving Formulation (7): fix α2 and maximize γ , then
update α2 following the Quadratic Interpolation method (see
Bertsekas [20] for details), and repeat until convergence.

After obtaining α2 and w using the Quadratic Interpolation
procedure, the variable α1 is given by α1 =

[γ (w)]2

[γ (w)]2+1
, with γ (w)

obtained by Eq. (8).

Remark 4. In order to obtain a nonlinear classifier, the kernel-
based version of the MEMPM problem can be derived. The for-
mulation can be found in [14, Section 4].

Other MPM and MEMPM extensions include the Biased Min-
imax Probability machine (BMPM) [21], which aims at biasing
the model towards one class by fixing one class recall while
optimizing the other one; or the Structural Minimax Probability
Machine (SMPM), which uses two mixture models to capture the
structural information related to each training pattern, instead
of simply considering the prior probability distribution for each
category [22].

2.4. Maximum-margin classifiers with specified error rates

A Robust Maximum-Margin Classifier (RMMC) was proposed
by Saketha Nath and Bhattacharyya [4], which extends the rea-
soning behind MEMPM and includes a regularization term known
as the ℓ2-norm. This model minimizes the Euclidean norm of
w, which is equivalent to maximizing the separation margin
between the two training patterns. This strategy is inspired by
the Support Vector Machine (SVM) method [7], which maximizes
the margin between the two class patterns represented as convex
hulls.

The RMMC constructs a classifier in such a way that the
probability of correct classification for each class k should be
higher than αk ∈ (0, 1), k = 1, 2, even for the worst possible
data distribution. Unlike MPM or MEMPM, αk are pre-specified
parameters that have to be defined arbitrarily, or tuned using a
validation strategy. The RMMC formulation follows:

min
w,b

1
2
∥w∥

2

s.t. w⊤µ1 + b ≥ 1 + κ1∥S⊤

1 w∥,

− (w⊤µ2 + b) ≥ 1 + κ2∥S⊤

2 w∥,

(9)

where Σk = SkS⊤

k , and κk =

√
αk

1−αk
for k = 1, 2. Formulation

(9) has two linear SOC constraints, and it can be also written as
a linear SOCP problem with three linear SOC constraints, thereby
being solved efficiently by interior point methods for SOCP [5,19].

Notice that the constraints in Formulation (9) have the same
structure as those related to the MPM and MEMPM problems.

Saketha Nath and Bhattacharyya demonstrate that RMMC is
equivalent to maximizing the separation margin between the two
class patterns represented as ellipsoids instead of convex hulls
(see [4] for details).

Remark 5. A kernel version can be derived for nonlinear classi-
fication; see [4] for a detailed formalization of this formulation.

3. Regularized minimax probability machine for classification

In this section, a regularized formulation is proposed for ex-
tending the MPM and MEMPM approaches. Following the rea-
soning behind SVM classification and RMMC, the ℓ2-norm is used
for margin maximization and to avoid ill-posed problems. Besides
margin maximization, our proposal also minimizes the worst-
case error rates for future data η1 and η2 related to the two
classes.

Our approach is first derived as a linear method in Section 3.1,
and subsequently extended as a kernel-based model in Sec-
tion 3.2. Finally, the optimization strategy proposed for solving
the NSOCP problems is described in Section 3.3.

3.1. Linear regularized minimax probability machine

Formally, our proposal finds w ̸= 0, b, η1, and η2 by solving
the following model:

min
w,b,η1,η2

1
2
∥w∥

2
+ C1η1 + C2η2

s.t. inf
X1∼(µ1,Σ1)

Pr{w⊤X1 + b ≥ 0} ≥ 1 − η1,

inf
X2∼(µ2,Σ2)

Pr{w⊤X2 + b ≤ 0} ≥ 1 − η2,

(10)

where Xk are the n-dimensional random vectors that gener-
ate the examples from class k = 1, 2, and (µk, Σk) are their
corresponding mean and covariance matrices, respectively. Ad-
ditionally, Ck > 0 is a trade-off parameter. Variables ηk ∈ (0, 1)
can be interpreted as the upper bounds for the misclassification
probability of class k in a worst-case setting.

Thanks to an appropriate application of the multivariate
Chebyshev inequality (cf. Theorem 2.1), Formulation (10) can be
written as

min
w,b,η1,η2

1
2
∥w∥

2
+ C1η1 + C2η2

s.t. w⊤µ1 + b ≥

√
(1 − η1)/η1

√
w⊤Σ1w,

− w⊤µ2 − b ≥

√
(1 − η2)/η2

√
w⊤Σ2w,

w⊤µ1 + b ≥ 0,

− w⊤µ2 − b ≥ 0,
η1, η2 ≥ 0.

(11)

Note that the first four constraints of Problem (11) are posi-
tively homogeneous in w, b; that is, if (η1, η2,w, b) is a feasible
solution, then (η1, η2, tw, tb) is also feasible for any t > 0. Then,
without loss of generality, we can assume that w⊤µ1 + b ≥ 1,
−w⊤µ2 − b ≥ 1. Therefore, the following formulation can be
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derived by defining κk =
√
(1 − ηk)/ηk for k = 1, 2:

min
w,b,κ1,κ2

1
2
∥w∥

2
+ C1

1
κ2
1 + 1

+ C2
1

κ2
2 + 1

s.t. w⊤µ1 + b ≥ κ1∥S⊤

1 w∥,

− w⊤µ2 − b ≥ κ2∥S⊤

2 w∥,

w⊤µ1 + b ≥ 1,

− w⊤µ2 − b ≥ 1,
κ1, κ2 ≥ 0,

(12)

where Σk = SkS⊤

k , for k = 1, 2. Note that Formulation (12) is an
NSOCP problem since it contains a nonconvex objective function
with two nonlinear SOC constraints and four linear constraints.
We refer to this formulation as the ℓ2-MEMPM model.

Remark 6. An ℓ2-regularized version of the MPM problem can
be derived from Formulation (12) by setting κ1 = κ2. In this case,
the ℓ2-MPM model follows:

min
w,b,κ

1
2
∥w∥

2
+ C

1
κ2 + 1

s.t. w⊤µ1 + b ≥ κ∥S⊤

1 w∥,

− w⊤µ2 − b ≥ κ∥S⊤

2 w∥,

w⊤µ1 + b ≥ 1,

− w⊤µ2 − b ≥ 1,
κ ≥ 0,

(13)

with C > 0. Notice that the ℓ2-MPM model is also an NSOCP
problem.

3.2. Kernel-based regularized minimax probability machine

In this section, the ℓ2-MEMPM and ℓ2-MPM models (For-
mulations (12) and (13), respectively) are extended as kernel
methods for deriving nonlinear classifiers. Let us denote by m1
and m2 the number of elements of the positive and negative class,
respectively. Also, we denote by A ∈ ℜ

m1×n the data matrix for
the positive class (i.e. for yi = +1), and by B ∈ ℜ

m2×n the data
matrix for the negative class (i.e. for yi = −1).

The kernel-based version for the ℓ2-MEMPM is obtained by
rewriting the weight vector w ∈ ℜ

n as w = X⊤s + Mr, where
X = [A; B] ∈ ℜ

m×n is the data matrix containing both training
patterns, M is a matrix whose columns are orthogonal to the data
points, and s and r are vectors of combining coefficients with the
appropriate dimension. Additionally, the empirical estimates of
the mean µk and covariance Σk are given by

µ̂1 =
1
m1

A⊤e1, µ̂2 =
1
m2

B⊤e2, Σ̂k = SkS⊤

k , k = 1, 2,

with

S1 =
1

√
m1

(A⊤
− µ̂1e⊤

1 ), S2 =
1

√
m2

(B⊤
− µ̂2e⊤

2 ),

where ek ∈ ℜ
mk are all-ones vectors. Thus, one has

w⊤µk = s⊤gk, w⊤Σkw = s⊤Ξks, k = 1, 2,

where

gk =
1
mk

[
K1kek
K2kek

]
∈ ℜ

m,

Ξk =
1
mk

[
K1k
K2k

](
Imk −

1
mk

eke⊤

k

) [
K⊤

1k K⊤

2k

]
∈ ℜ

m×m,

with Imk ∈ ℜ
mk×mk denoting the identity matrix, and K11 = AA⊤,

K12 = K⊤

21 = AB⊤, and K22 = BB⊤ are matrices whose elements

are inner products between data points. For instance, the (l, s)
entry of matrix Kkk′ corresponds to (Kkk′ )ls = (xkl )

⊤xk′s .
The inner product (xkl )

⊤xk′s can be replaced by a kernel function
K(xkl , x

k′
s ), where xkl corresponds to the lth vector of the class

k ∈ {1, 2}, leading to the following nonlinear formulation:

min
s,b,κ1,κ2

1
2
s⊤Ks + C1

1
κ2
1 + 1

+ C2
1

κ2
2 + 1

s.t. s⊤g1 + b ≥ κ1

√
s⊤Ξ1s,

− s⊤g2 − b ≥ κ2

√
s⊤Ξ2s,

s⊤g1 + b ≥ 1,

− s⊤g2 − b ≥ 1,
κ1, κ2 ≥ 0,

(14)

where K = [K11,K12;K21,K22].
Similarly, the kernel-based version for the ℓ2-MPM model can

be obtained directly by using Formulation (14), leading to the
following NSOCP problem:

min
s,b,κ

1
2
s⊤Ks + C

1
κ2 + 1

s.t. s⊤g1 + b ≥ κ
√
s⊤Ξ1s,

− s⊤g2 − b ≥ κ
√
s⊤Ξ2s,

s⊤g1 + b ≥ 1,

− s⊤g2 − b ≥ 1,
κ ≥ 0.

(15)

3.3. The FDIPAsoc strategy for solving NSOCP problems

In order to solve the ℓ2-MPM and the ℓ2-MEMPM models
in both their linear and kernel versions, we use the interior-
point algorithm called FDIPAsoc [18], which is designed for solving
NSOCP problem (1). Notice that formulations (12), (13), (14),
and (15) have the structure of an NSOCP problem. For instance,
Formulation (12) can be rewritten by defining u = (w, b, κ1, κ2) ∈

ℜ
n+3, leading to the following objective function:

f (u) =
1
2
∥w∥

2
+ C1

1
κ2
1 + 1

+ C2
1

κ2
2 + 1

,

and the following constraints:

g1(u) = (w⊤µ1 + b, k1S⊤

1 w), g2(u) = (−w⊤µ2 − b, k2S⊤

2 w),

g3(u) = w⊤µ1 + b − 1, g4(u) = −w⊤µ2 − b − 1, g5(u) = κ1,

g6(u) = κ2,

where Km1 = Km2 = Kn+1, Kmj = ℜ+ for j = 3, . . . , 6.
Next, we introduce some notations, and the idea of the al-

gorithm proposed by Canelas et al. [18]. Let K be the Cartesian
product of second-order cones, namely, K = Km1 ×· · ·×KmJ . Let
us define g(u) := (g1(u), . . . , g J (u)) ∈ ℜ

m, where m =
∑J

j=1 mj.
We denote by Ω := {u : g(u) ∈ K} the feasible set, by Sn

++

the set of symmetric positive definite matrices, and by Arw(u) :=(
u1 ū⊤

ū u1Im−1

)
the arrow matrix conformed by u = (u1, ū) ∈

ℜ × ℜ
m−1. We say that two vectors u and v operator commutes

if Arw(u) Arw(v) = Arw(v) Arw(u).
Let L : ℜ

n
× ℜ

m
→ ℜ be the Lagrangian function associated

with the NSOCP problem:

L(u, z) = f (u) − ⟨g(u), z⟩,

where z = (z1, . . . , zJ ) ∈ ℜ
m is the Lagrange multiplier vector.

Then, the Karush–Kuhn–Tucker (KKT) conditions for Problem (1)
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are given by

∇uL(u, z) = ∇f (u) − J g(u)⊤z = 0, (16)

⟨g j(u), zj⟩ = 0, j = 1, . . . , J, (17)

g j(u), zj ∈ Kmj , j = 1, . . . , J. (18)

Note that the relation (17) can be replaced by Arw(g j(u))zj =

Arw(zj)g j(u) = 0, for j = 1, . . . , J (see [5, Lemma 15]).
The proposed algorithm is based on a Newton-like iterative

process for solving the nonlinear system of equations (16)–(17),
which can be stated as follows:(

B −J g(u)⊤
Arw(z)J g(u) Arw(g(u))

)(
d1
y1

)
= −

(
∇f (u)

0

)
, (19)

where J g(u) denotes the Jacobian matrix of g at u, Arw(z) =

diag(Arw(zj)) is a block diagonal matrix with Arw(zj) as its en-
tries, (u, z) is the starting (interior) point of the iteration, and
B ∈ Sn

++
. Typically, B is chosen as a quasi-Newton estimate

of ∇
2
uL(u, z). In particular, when B = ∇

2
uL(u, z), we get the

well-known Newton iteration of (16)–(17).
It can be shown that d1 is a descent direction of the objective

function [18, Lemma 3.2], but it cannot be taken as a search
direction since it is not always a feasible direction when u is at the
boundary of the feasible set. In order to obtain a feasible direction,
we add a positive vector on the right side of the second equality
of Eq. (19) [18, Lemma 3.3]; that is, we consider the following
linear system for ρ > 0:(

B −J g(u)⊤
Arw(z)J g(u) Arw(g(u))

)(
d
ŷ

)
= −

(
∇f (u)

ρz

)
. (20)

Since the feasible direction d obtained by the system (20) is not
necessarily a descent direction for all ρ > 0 [18,23], we need to
impose a convenient upper bound on ρ. This bound is obtained
by imposing the following condition (see [23]):

⟨d, ∇f (u)⟩ ≤ ξ⟨d1, ∇f (u)⟩, ξ ∈ (0, 1). (21)

Under this assumption, the feasible direction d will also be a
descent direction. The algorithm FDIPAsoc for solving the NSOCP
problem is presented in the next column (see Algorithm 1).

The global convergence for the FDIPAsoc algorithm can be
reached under some assumptions on the parameters. This holds
since any accumulation point u∗ of the sequence {uk

} generated
by Algorithm 1 is a KKT point of the NSOCP problem. For a proof
of this statement, we refer the reader to [18, Theorem 3.8].

4. Experimental results

The proposed regularized methods were applied to an il-
lustrative toy dataset, and to sixteen benchmark datasets from
the UCI Repository [24]. First, the geometrical interpretation for
our proposal is illustrated in Section 4.1 using the toy dataset.
Then, a description of the dataset is provided in Section 4.2,
including relevant aspects of the experimental setting, such as
model validation and implementation. Finally, the main results
are summarized in Section 4.3, including a statistical performance
analysis and discussions.

4.1. An illustrative example

The purpose of this analysis is to provide the geometrical
interpretation for the proposed ℓ2-MPM and ℓ2-MEMPM models,
and compare them with the original methods (MPM and MEMPM,
respectively). Our reasoning follows from the RMMC method [4].
Given µ, S, and κ , the constraint w⊤µ + b ≥ κ∥S⊤w∥ related to
the RMMC method is satisfied if and only if w⊤x+ b ≥ 0 for all x

Algorithm 1 FDIPAsoc algorithm
Input: ξ, η, ν ∈ (0, 1), ϕ > 0, and λm > 0.
Output: Solution uk.
1: Start with u0

∈ int(Ωa) = {u ∈ int(Ω) : f (u) < a}, for some
a ∈ ℜ; z0 ∈ int(K) such that it operator commutes with g(u0),
and B0

∈ Sn
++

. Set k = 0.
2: Compute dk

1 and yk1 by solving the linear system:(
Bk

−J g(uk)⊤

Arw(zk)J g(uk) Arw(g(uk))

)(
dk
1

yk1

)
= −

(
∇f (uk)

0

)
.

(22)

3: if dk
1 = 0 then

4: return uk and stop.
5: end if
6: Compute dk

2 and yk2 by solving the linear system:(
Bk

−J g(uk)⊤

Arw(zk)J g(uk) Arw(g(uk))

)(
dk
2

yk2

)
=

(
0
zk

)
. (23)

7: if ⟨dk
2, ∇f (uk)⟩ > 0 then

8: set ρk
= min

{
ϕ∥dk

1∥
2, (ξ − 1) ⟨dk1,∇f (uk)⟩

⟨dk2,∇f (uk)⟩

}
.

9: else
10: set ρk

= ϕ∥dk
1∥

2.

11: end if
12: Compute dk

= dk
1 + ρkdk

2 and ŷk = yk1 + ρkyk2.
13: (Armijo line search): Let g j(uk) = λ1(g j(uk))vjk1 + λ2(g j(uk))vjk2

its spectral decomposition. Compute tk as the first number of
the sequence {1, ν, ν2, . . .} satisfying

f (uk
+ tkdk) ≤ f (uk) + tkη∇f (uk)⊤dk,

g(uk
+ tkdk) ∈ int(K) , and

λi(g j(uk
+ tkdk)) ≥ λi(g j(uk)) , if ⟨vjki , ŷjk⟩ < 0

and λi(g j(uk)) < λm,

where ŷk = (̂y1k, . . . , ŷJk), with ŷjk ∈ ℜ
mj .

14: Set uk+1
= uk

+ tkdk. Define zk+1
∈ int(K) such that operator

commutes with g(uk+1), and Bk+1
∈ Sn

++
.

15: Replace k by k + 1 and repeat from Step 2.

belonging to the ellipsoid.1 B(µ, S, κ), where µ denotes its center,
S determines its shape, and κ its size. Taking this into account, the
MPM and MEMPM methods look for the largest ellipsoids that
separate two the two training patterns, while our proposal aim
at finding a good balance between maximizing the margin and
the size of the ellipsoids.

The toy dataset consists of 30 points of the class +1 gener-
ated from a two-dimensional Gaussian distribution with mean
µ̂1 = [0; 3] and covariance matrix Σ̂1 = [1, 0; 0, 3], and 30
points of the class -1 generated from a two-dimensional Gaussian
distribution with mean µ̂2 = [0; −2] and covariance matrix
Σ̂2 = [2, 0.5; 0.5, 3].

For these experiments, 10-fold cross-validation was used to
set the various hyperparameters. The linear versions of the four
methods were studied. The average performances in terms of
Area Under the Curve (AUCx100) achieved by MPM, ℓ2-MPM,
MEMPM, and ℓ2-MEMPM were 90.00, 91.67, 90.00, and 93.33,
respectively. These results show that our proposal is able to
improve predictive performance slightly for the two variants.

1 Formally an ellipsoid is defined by B(µ, S, κ) = {z ∈ ℜ
n

: z = µ +

κSu, ∥u∥ ≤ 1}.
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Fig. 1. Geometrical interpretation for the MPM (dashed red lines) and ℓ2-MPM
(solid black lines) approaches. Bk(µk, Sk, κ) (with κ = 1.37) and Bk(µk, Sk, κ0)
(with κ0

= 1.34) denote the ellipsoids for each method and each class.

Fig. 2. Geometrical interpretation for the MEMPM (dashed red lines) and ℓ2-
MEMPM (solid black lines) approaches. Bk(µk, Sk, κk) (with κ1 = 1.44 and
κ2 = 1.35) and Bk(µk, Sk, κ0

k ) (with κ0
1 = 1.62 and κ0

2 = 1.18) denote the
ellipsoids for each method and each class.

The solutions obtained by MPM and ℓ2-MPM are presented
in Fig. 1, while the MEMPM and ℓ2-MEMPM methods are il-
lustrated in Fig. 2. In both figures, the optimal hyperplanes are
highlighted together with the ellipsoids that represent the two
training patterns. The solid lines are used for our proposals, while
the dashed lines represent the original approaches that do not
consider regularization. For the MPM method, the ellipsoids are
tangent to each other, and hence, the optimal hyperplane is the
common tangent to the ellipsoids [1]. In ℓ2-MPM, in contrast, the
optimal hyperplane is tangent to one of the ellipsoids.

It can be observed in Figs. 1 and 2 that the final hyper-
planes are relatively similar, however, those constructed with
our proposals seem to be flatter in the sense that they tend to
ignore the least relevant attribute (the x-axis), leading to a better
generalization.

Table 1
Number of variables, sample size, percentage of observations in each class, and
imbalance ratio (IR) for all datasets.
Dataset #features #examples %class(min.,maj.) IR

Class-balanced datasets
TITA 3 2201 (32.3,67.7) 2.1
DIA 8 768 (34.9,65.1) 1.9
HEART 13 270 (44.4,55.6) 1.25
AUS 14 690 (44.5,55.5) 1.2
IMAGE5 19 2310 (38.1,61.9) 1.6
PHONE 19 5404 (29.3,70.7) 2.4
RING 20 7400 (49.5,50.5) 1.0
WAVE 21 5000 (33.1,66.9) 2.0
GER 24 1000 (30.0,70.0) 2.3
WBC 30 569 (37.3,62.7) 1.7
IONO 34 351 (35.9,64.1) 1.8
SPLICE 60 1000 (48.3,51.7) 1.1
Class-imbalanced datasets
YEAST3 8 1484 (11.0,89.0) 8.1
YEAST4 8 1484 (3.4,96.6) 28.1
FLARE 10 1389 (4.9,95.1) 19.4
IMAGE1 19 2310 (14.3,85.7) 6.0

4.2. Experimental setting and datasets

We compared the predictive performance of our proposals
and alternative approaches on the following binary classification
datasets from the UCI [24] and KEEL [25] repositories: Titanic
(TITA), Pima Indians Diabetes (DIA), Heart/Statlog (HEART), Aus-
tralian Credit (AUS), Phoneme (PHONE), Ring, German Credit
(GERMAN), Wisconsin Breast Cancer (WBC), Ionosphere (IONO),
and Splice.

One goal of the experimental section is to assess the influence
of skewness in the class distribution, also known as the class-
imbalance issue. This is of particular interest for assessing the
gain in considering two different class recall variables αk, with
k ∈ {1, 2} (MEMPM and ℓ2-MEMPM approaches), instead of a
single one α (MPM and ℓ2-MPM approaches). Therefore, we study
datasets with a wide range of Imbalanced Ratios (i.e. the quotient
between the number of examples of the majority class and the
minority class).

The following multiclass classification datasets were cast into
class-imbalanced binary classification problems and used for
benchmarking: Solar Flares, in which two classes were con-
structed from the occurrence of zero M-class flares in 24 h
versus one or more in the same time period (FLARE); Image
Segmentation (IMAGE), in which the positive class is image 1 and
image 5 (IMAGE1 and IMAGE5, respectively), while the remaining
classes were used as the majority class; Waveform (WAVE), in
which the positive class is wave class 1; and Yeast, in which
class and ME3 and ME2 were studied as the minority class, while
the negative examples belong to the rest (YEAST3 and YEAST4,
respectively). The detailed information on these datasets can be
found in the KEEL dataset repository [25]. The relevant meta-data
is summarized in Table 1.

We performed a model comparison using 10-fold cross-
validation with the Area Under the ROC Curve (AUC) as the per-
formance measure. The following binary classification approaches
were studied using linear and Gaussian kernels:

• The well-known soft-margin SVM proposed by Cortes and
Vapnik [26].

• The MPM method by Lanckriet et al. [1] (Formulation (2)).
• The MEMPM method by Huang et al. [14] (Formulation (5)).
• The maximum-margin SOCP framework by Saketha Nath

and Bhattacharyya [4], which we refer to as the RMMC
method (Formulation (9)).
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• The twin SVM method by Shao et al. [27] (TWSVM). This
popular SVM strategy constructs two nonparallel hyper-
planes in such a way that each function is closer to one of
the classes, and as far from the other at the same time. This
is done by solving two quadratic programming problems of
smaller size when compared with the standard soft-margin
SVM formulation. See [27,28] for the detailed derivation of
this strategy.

• The Nonparallel SVM method by Tian et al. [29] (NPSVM).
This technique is a generalization of the TWSVM method,
constructing two twin hyperplanes similar to TWSVM. Ad-
ditionally, NPSVM represents each class using ϵ-insensitive
tubes for providing a better alignment between each classifi-
cation function and the class that it represents. In contrast to
TWSVM, the NPSVM method is able to derive a kernel-based
model directly from the dual form of the twin problems. We
refer the reader to Tian et al. [29] for the detailed derivation
of this method.

• The proposed ℓ2-MPM and ℓ2-MEMPM approaches (For-
mulation (13) and Formulation (12), respectively, for the
linear versions, and Formulation (14) and Formulation (15),
respectively, for the kernel-based versions).

The following values for the hyperparameters were explored:
C, C1, C2, C3, C4, σ ∈ {2−7, 2−6, 2−5, . . . , 25, 26, 27

}, θ

∈ {2−7, 2−6, . . . , 2−1, 1 − 2−1, . . . , 1 − 2−6, 1 − 2−7
}, ϵ ∈

{0.1, 0.2, 0.3, 0.4}, and α1, α2 ∈ {0.2, 0.4, 0.6, 0.8}. Notice that
parameter C is included in the soft-margin SVM and ℓ2-MPM
methods; parameters C1, C2 in the ℓ2-MEMPM method; C1, C2,

C3, C4 in the TWSVM method; C1, C2, C3, C4, and ϵ in the NPSVM
model; θ in the MEMPM method; and α1 and α2 in the RMMC
model. Gaussian kernel parameter σ is included in all kernel-
based approaches.

The following tools were used for implementing the alterna-
tive approaches: LIBSVM [30] for soft-margin SVM, the codes de-
veloped by Yuan-Hai Shao, author of Twin-Bounded SVM [27], for
TWSVM,2 the QUADPROG Matlab solver for NPSVM, the SeDuMi
Matlab Toolbox [6] for RMMC and MPM, and the codes provided
by Huang, author of the MEMPM method.3 We note that our
proposal was implemented using our self-developed optimization
strategy, called FDIPAsoc , which is described in Section 3.3.

4.3. Summary of results

Next, a summary of the results is presented for the sixteen
datasets. Table 2 shows the best performance for each method
in terms of average AUCx100. The best strategy for each dataset
is highlighted in bold type. For each method and dataset, the
maximum predictive performance between the linear and the
Gaussian kernels is presented.

It can be observed in Table 2 that the proposals achieve very
positive predictive performances, having the largest AUC in seven
of the sixteen datasets. Furthermore, they both perform better
than their respective unregularized counterparts (the MPM and
MEMPM methods), demonstrating the virtues of including a reg-
ularization term for these approaches. The RMMC and TWSVM
methods also achieve a very positive predictive performance.

In order to confirm the previous results, the Friedman test
and Holm’s test are used to assess statistical significance. This
approach was recommended in [31] for comparing classification
performance among various machine learning methods. First,
the average rank for each method is computed based on the

2 These codes are publicly available on http://www.optimal-group.org/.
3 These codes are publicly available on http://www.cse.cuhk.edu.hk/irwin.

king/software/mempm.

Table 2
Performance summary for the various binary classification approaches.
Dataset SVM RMMC TWSVM NPSVM MPM ℓ2-MPM MEMPM ℓ2-MEMPM

TITA 71.1 71.1 71.1 71.1 71.1 70.9 70.0 72.1
DIA 72.1 76.3 75.6 76.3 75.2 75.2 72.5 76.6
HEART 79.4 84.7 85.0 85.8 83.9 84.3 83.4 85.3
AUS 86.2 86.9 87.6 87.1 86.4 87.2 86.3 87.2
IMAGE5 67.9 70.7 67.6 69.7 66.3 70.4 57.3 71.8
PHONE 88.0 88.5 88.4 87.4 86.7 84.9 72.1 86.9
RING 98.0 98.1 98.1 96.8 97.5 98.0 75.3 98.1
WAVE 88.3 89.0 89.1 87.0 88.0 88.0 86.9 88.3
GER 69.4 72.2 72.4 73.0 72.0 73.1 70.7 73.2
WBC 97.3 97.4 97.0 98.4 96.5 97.4 96.6 97.6
IONO 94.1 95.2 95.4 95.2 90.5 95.2 86.0 94.6
SPLICE 88.1 88.7 88.9 88.6 81.2 87.6 80.8 88.4
YEAST3 87.0 93.0 92.0 92.4 91.7 92.6 91.0 92.6
YEAST4 64.4 85.0 82.3 74.7 81.9 84.1 80.8 85.2
FLARE 53.8 73.4 70.3 60.9 69.5 73.2 65.1 73.3
IMAGE1 99.7 99.3 99.8 99.8 98.5 99.3 98.6 99.3

Table 3
Holm’s post-hoc test for pairwise comparisons.
Method Mean rank Avg. AUC × 100 p value α/(j − 1) Action

ℓ2-MEMPM 2.53 85.66 – – Not reject
RMMC 2.81 85.59 0.75 0.05 Not reject
TWSVM 3.09 85.04 0.52 0.02 Not reject
NPSVM 3.94 84.01 0.10 0.02 Not reject
ℓ2-MPM 4.25 85.09 0.05 0.01 Not reject
SVM 5.94 81.55 0.00 0.01 Reject
MPM 6.12 83.56 0.00 0.01 Reject
MEMPM 7.31 79.59 0.00 0.01 Reject

AUC value on all datasets. Next, the Friedman test with Iman–
Davenport correction is used to assess whether or not all ranks
are equal statistically [31]. In case the null hypothesis of equal
ranks is rejected, the Holm’s post-hoc test is used for pairwise
comparisons between the method with the highest rank and
those remaining [31].

The F statistic obtained with the Friedman test and Iman–
Davenport correction is F = 17.1, with a p value below 0.001,
rejecting the null hypothesis of equal ranks. The results for the
Holm’s test are presented in Table 3 for the various binary clas-
sification methods. For each technique we present the average
rank, the average AUC × 100, the p value for the Holm’s test, the
significance threshold, and the outcome of the test. The outcome
is ‘reject’ when the p value is below the significance threshold,
implying that the corresponding approach is outperformed by the
one with the best ranking. We used α = 5% as the significance
level, with j = 1, . . . , 5 being the overall ranking for a given
method.

In Table 3, it can be seen that ℓ2-MEMPM outperforms MPM,
MEMPM, and SVM statistically. According to this analysis, there
are no significant differences among the three regularized clas-
sifiers that use robust classification, and the twin classification
approaches TWSVM and NPSVM. However, the proposed ℓ2-
MEMPM achieves the best overall performance among the eight
methods. Interestingly, the MPM and MEMPM achieve the worst
predictive performance, and therefore the regularized versions
of these methods make them competitive in comparison with
state-of-the-art SVM strategies.

The final set of experiments considers the training times for
all methods and datasets. This analysis was performed on an
HP Envy dv6 with 16 GB RAM (750 GB SSD), and an i7-2620M
processor with 2.70 GHz. All methods were implemented on
Matlab R2014a and Microsoft Windows 8.1 Operating System
(64-bits). The results are reported in Table 4.

In Table 4, it can be seen that all training times are tractable
and under seventeen minutes for all datasets. Our proposals

http://www.optimal-group.org/
http://www.cse.cuhk.edu.hk/irwin.king/software/mempm
http://www.cse.cuhk.edu.hk/irwin.king/software/mempm


134 S. Maldonado, M. Carrasco and J. López / Knowledge-Based Systems 177 (2019) 127–135

Table 4
Running times, in seconds, for all datasets and methods.
Dataset SVM RMMC TWSVM NPSVM MPM ℓ2-MPM MEMPM ℓ2-MEMPM

TITA 0′′ .203 0′′ .391 3′′ .330 2′′ .558 0′′ .844 21′′ .72 0′′ .168 24′′ .68
DIA 0′′ .061 0′′ .631 0′′ .928 1′′ .039 1′′ .108 3′′ .845 0′′ .766 3′′ .634
HEART 0′′ .008 0′′ .363 0′′ .111 1′′ .419 0′′ .994 0′′ .247 0′′ .434 0′′ .330
AUS 0′′ .050 0′′ .364 0′′ .864 1′′ .605 1′′ .023 2′′ .617 1′′ .419 2′′ .058
IMAGE5 0′′ .766 1′′ .406 13′′ .43 10′′ .62 3′′ .133 340′′ .5 0′′ .031 444′′ .4
PHONE 0′′ .047 1′′ .090 476′′ .4 6′′ .886 1′′ .863 26′′ .06 4′′ .500 33′′ .20
RING 1′′ .609 1′′ .254 121′′ .7 24′′ .85 3′′ .008 991′′ .2 0′′ .801 1004′′ .4
WAVE 1′′ .059 1′′ .113 42′′ .69 14′′ .26 2′′ .168 128′′ .7 0′′ .555 174′′ .8
GER 0′′ .001 0′′ .497 1′′ .591 3′′ .519 1′′ .178 6′′ .805 0′′ .725 7′′ .483
WBC 0′′ .039 0′′ .314 0′′ .418 1′′ .984 1′′ .055 12′′ .33 1′′ .566 12′′ .97
IONO 0′′ .016 0′′ .370 0′′ .216 1′′ .989 1′′ .120 1′′ .908 3′′ .175 3′′ .423
SPLICE 0′′ .266 0′′ .584 1′′ .303 11′′ .88 1′′ .184 6′′ .998 1′′ .563 8′′ .636
YEAST3 0′′ .075 0′′ .394 3′′ .113 4′′ .681 0′′ .986 13′′ .29 0′′ .547 15′′ .52
YEAST4 0′′ .128 0′′ .867 2′′ .300 4′′ .642 1′′ .444 13′′ .07 0′′ .477 15′′ .43
FLARE 0′′ .050 0′′ .539 1′′ .377 6′′ .073 1′′ .125 17′′ .98 1′′ .014 24′′ .47
IMAGE1 0′′ .189 0′′ .764 6′′ .463 11′′ .03 1′′ .384 101′′ .0 0′′ .583 120′′ .1

Table 5
Best hyperparameter configuration for all datasets and methods.

SVM TWSVM NPSVM RMMC ℓ2-MPM MEMPM ℓ2-MEMPM

C C1 = C2 C3 = C4 C1 = C2 C3 = C4 ϵ (α1, α2) C θ C1 C2

TITA 2−2 20 2−1 20 20 0.1 (0.2,0.6) 23 2−1 2−6 22

DIA 22 2−7 20 2−4 2−5 0.2 (0.2,0.4) 27 2−2 2−6 27

HEART 27 2−2 2−1 2−6 2−7 0.4 (0.6,0.4) 26 2−1 21 2−1

AUS 21 2−4 2−1 2−6 2−3 0.1 (0.2,0.6) 2−2 2−1 2−2 23

IMAGE5 24 2−2 27 21 21 0.2 (0.4,0.4) 27 2−1 27 20

PHONE 27 2−7 2−4 27 27 0.2 (0.2,0.4) 23 2−1 2−7 24

RING 27 20 21 2−4 2−5 0.3 (0.6,0.2) 24 2−3 27 26

WAVE 20 22 26 2−3 2−1 0.2 (0.6,0.4) 20 2−1 2−1 21

GER 22 2−3 2−1 26 26 0.3 (0.4,0.4) 26 1 − 2−2 25 26

WBC 26 2−5 2−2 24 21 0.2 (0.6,0.8) 27 2−1 26 25

IONO 24 25 24 2−1 2−4 0.5 (0.4,0.8) 27 2−1 27 27

SPLICE 2−5 2−2 25 25 26 0.5 (0.2,0.6) 27 2−1 2−6 22

YEAST3 27 2−7 2−5 20 2−1 0.4 (0.6,0.4) 27 2−1 24 27

YEAST4 21 2−7 2−2 24 24 0.1 (0.2,0.2) 27 2−1 24 27

FLARE 21 2−7 22 21 21 0.1 (0.8,0.4) 27 1 − 2−2 27 24

IMAGE1 27 2−5 2−5 24 24 0.3 (0.4,0.4) 27 2−1 26 26

show longer running times when compared with the alternative
approaches, however, this is to be expected since we are propos-
ing the first strategy, to the best of our knowledge, for solving
nonlinear SOCP problems in a machine learning context, while
the remaining methods consider well-known, highly optimized
solvers. We conclude that the additional computational effort is
worth doing given the positive predictive results achieved by the
regularized ℓ2-MPM and ℓ2-MEMPM methods.

Finally, the best hyperparameter configuration for all datasets
and classification approaches in their linear versions are reported
in Table 5.

5. Concluding remarks

We have proposed a novel classification approach based on
the MPM [1] and MEMPM [14] methods, in which we introduce
a regularization term that leads to the ℓ2-MPM and ℓ2-MEMPM
formulations. Our proposals are non-convex SOCP problems, and
we propose an efficient strategy, called FDIPAsoc , for solving dif-
ferentiable nonlinear SOCP problems [18]. Our methods also share
similarities with the RMMC approach proposed by Saketha Nath
and Bhattacharyya [4], which also considers a robust framework
and includes a regularization term. However, this method as-
sumes that each class recall η is a fixed parameter, rather than
aiming at maximizing them in the optimization process. There-
fore, our proposal reduces the number of hyperparameters that
need to be tuned with a validation process.

From our experiments, we conclude that the use of a regu-
larization strategy leads to significant improvements in perfor-
mance, and may be worth losing the convexity of the problem.

We propose a suitable algorithm for solving non-convex second-
order cone programming formulations, such as ℓ2-MPM and ℓ2-
MEMPM, which achieves the best results in tractable running
times.

There are many opportunities for future research. Several ap-
plications can benefit from robust approaches for binary classi-
fication. Robustness in artificial intelligence refers to the effec-
tiveness of a method when being tested on new data that has a
distribution that is slightly different from the training set [2–4].
In this sense, most business applications face changing environ-
ments, such as evolving granting policies in credit scoring, or
dynamic fraud patterns in fraud prediction. Robust methods such
as those proposed in this study can be useful for enhancing pre-
dictive performance. Furthermore, since these methods optimize
the two class recalls independently, they are suitable for dealing
with the class-imbalance problem. Notice that the previously
mentioned business analytics tasks usually face this issue. Finally,
the profit that leads a classifier can be computed for a given task
and incorporated in the modeling process. Recent work on profit
metrics includes the adaptation of decision trees [32] and logistic
regression [33] for maximizing profit within the model training,
and these ideas can be adapted to our proposals.
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