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E-mail: matthieu.marechal@udp.cl

Abstract: In this article we propose an Algorithm based on a DC decomposition (Difference of Convex
functions) which solves MPCCs and we prove that it converges to a strongly stationary point under MPCC-
LICQ.

Keywords: Mathematical Programming with Complementarity Constraints; Difference of Convex func-
tions; Numerical Optimization
Mathematics Subject Classification: 49K30,65K10,49M05,49M37,49J53

1 Introduction
The term MPCC stands for Mathematical Programming with Complementarity Constraints. The MPCCs
are often used in economy theory. For example a competitive market with one leader, like a liberalized
electricity market, can be written as a bilevel program, and therefore as a MPCC. The authors Hobbs and
Pang [9] study an electricity market without thermal losses on the transmission lines, and obtain an MPCC
with linear complementarity constaints. Other references about the electricity market and its interactions
with the MPCCs are given [2, 4, 11, 15, 24].

One of the motivations of the MPCC is its link to bi-level programming. Consider the following problem

min g(x, y)
such that x ∈ w

y ∈ S(x),

with,
S(x) := arg min

C(x)
ϕ(x, ·) and C(x) = {y | Ge(x, y) = 0 , G(x, y) ≤ 0}.

That is a bi-level program. Writing the KKT system associated with the problem min
C(x)

ϕ(x, ·), we obtain

the following MPCC:

min g(x, y)
such that x ∈ w

∇yL(x, y, λ, µ) = 0
Ge(x, y) = 0
0 ≤ G(x, y) ⊥ λ ≥ 0,

with L the lagrangian function associated with the problem min
C(x)

ϕ(x, ·). The bi-level program and the

MPCC associated are equivalent for global solutions if a Slater’s constraint qualification is satisfied for the
second level problem. For local solutions, the equivalence can be ensured under Slater’s constraint qualifi-
cation and constant rank constraint qualification [5, Dempe, Dutta, 2012].

One of the methods to solve a MPCC problem is the SQP method, which was studied for example in
[7]. This method permits a numerical resolution of a problem with linear complementarity constraints with
a quadratic rate of convergence under a good assumption. The authors [19] proposed a penalization method
in the case where the complementarity contraints are not linear, in order to replace the nonlinear comple-
mentarity contraints by linear contraints and apply the SQP method. In [10, 12], the authors have studied a
penalty method, but it only allows for a convergence to a C-stationary point under MPCC-LICQ. In a very
recent work [14], the authors propose a partial penalty method and obtain which allows for a convergence to
a M-stationary point under MPCC-NNAMCQ. The authors [18, 20] consider an interior point method, and
obtain a super linear rate of convergence. A method of relaxation of the complementarity constraint was
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considered in [29], and the paper studies the stationarity properties of the limit when the relaxation param-
eter tends to zero. The authors [25] have worked on the relaxation and penalization of the complementarity
contraint of the MPCC. They have examined the properties of distance between the solutions of the MPCC
and of the relaxed problem; moreover, they have studied the boundness of the Lagrange multipliers under
MPCC-LICQ. In [1] the authors prove that a second-order aumented Lagrangian method converges to a
strongly stationary point if the Lagrange multipliers are bounded under MPCC-RCPLD; and converges to
a C-stationary point if the Lagrange multipliers are not bounded.

A DC (Difference of Convex functions) reformulation for MPCC has been studied in many articles, for
example in [13, 16, 21]. The introduction and study of the DC algorithm have been made by [30, 31, 32, 33].
In a recent work [13], the authors used the DC algorithm in LPCCs, and obtained a convergence to a weak
stationary point. But at the same time, they proposed an improvement in order to avoid the weak sta-
tionary points which are not local minimizers, which helps to construct a DC algorithm which converges,
under MPCC-LICQ, to a strong stationary point for MPCC. This paper aims to use a DC reformulation of
a MPCC in order to obtain a new necessary and sufficient condition for a feasible point for a MPCC to be
strongly stationary under MPCC-LICQ. After, the article proposes an algorithm which, under some assump-
tions, converges to a point which is a strongly stationary point under MPCC-LICQ if it is feasible for MPCC.

The article is organized as follows: Section 2 gives the generalities about MPCCs and the different notions
of stationarity for MPCCs. Section 3 gives an optimality condition of DC programs (see e.g. [30, 31, 32, 33]).
Section 4 reformulates MPCCs into a DC program. Section 5 gives an equivalent reformulation for strongly
stationarity in MPCCs using the DC optimality conditions, and use it in Section 6 in order to prove the
convergence of the proposed algorithm to a strong stationary point for MPCC under MPCC-LICQ.

2 Definitions and preliminary results
For this article, we work on the vectorial space Rp×Rm×Rm, with p ∈ N, m ∈ N∗. When w ∈ Rs×Rm×Rm,
we use the notation w := (x, y, z), with x ∈ Rs, y ∈ Rm and z ∈ Rm.

We consider the following MPCC:

min f(w)
subject to g(w) ≤ 0 , h(w) = 0

0 ≤ y ⊥ z ≥ 0
(2.1)

where f : Rn → R, g : Rn → Rq , h : Rn → Rr with n := p+ 2m.

The functions gi are supposed C1 and convex on their domain, and h is supposed to be affine. Therefore,
the set

Ω := {w =: (x, y, z) ∈ Rn | g(w) ≤ 0 , h(w) = 0 , y ≥ 0 , z ≥ 0} (2.2)

is a convex set. The MPCC can be written as

min f(w)
subject to w ∈ Ω ∩∆

where
∆ := {w := (x, y, z) ∈ Rn | 〈y, z〉 = 0} . (2.3)

The function f is supposed to be a C1 and DC function, which means that there exist two C1 and
convex functions f1 : Ω→ R and f2 : Ω→ R be such that:

f := f1 − f2. (2.4)

The following definition allows for the normal cone to Ω to be written with Lagrange multipliers.

Definition 2.1. We say that the constraint set Ω is qualified at a point w ∈ Ω if the following inclusion
holds:

NΩ(w) ⊂

∇g(w)Tλg +∇hT (w)λh −

 0
ν1

ν2

∣∣∣∣ λh ∈ Rq , 0 ≥ g(w) ⊥ λg ≥ 0
0 ≤ ν1 ⊥ y ≥ 0 , 0 ≤ ν2 ⊥ z ≥ 0.


For example if LICQ or MFCQ holds at w ∈ Ω, or if the perturbated set-valued map

M(y) = {w ∈ Rn | G(w) + y ∈ D},
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is calm at (0, w), with G(w) := (g(w), h(w), y, z) and D := (R−)p × {0}q × (R+)2m, then Ω is qualified at
w ∈ Ω.

Given w ∈ Ω, we define the following index sets of active and inactive constraints:

Ig(w) := {i ∈ {1, · · · , p} | gi(w) = 0}
Icg(w) := {i ∈ {1, · · · , p} | gi(w) < 0}
Iy(w) := {i ∈ {1, · · · ,m} | yi = 0}
Iz(w) := {i ∈ {1, · · · ,m} | zi = 0}

(2.5)

Observe that w ∈ Ω is feasible for MPCC (2.1) if and only if Iy(w)∪ Iz(w) = {1, · · · ,m}. For this class
of problem, there exist many notions of stationary points; two are: the weakly and the strongly, which are
defined below.

Definition 2.2. A feasible point w of the MPCC is said to be weakly stationary if there exists a vector
of MPCC multipliers (λg , λh, ν̂1, ν̂2) such that:

∇f(w) +∇g(w)Tλ
g

+∇h(w)Tλ
h − (0, ν̂1, ν̂2) = 0

h(w) = 0, g(w) ≤ 0, λ
g ≥ 0, 〈λg , g(w)〉 = 0

∀i /∈ Iy(w) : ν̂1,i = 0

∀i /∈ Iz(w) : ν̂2,i = 0.

In addition, the feasible vector w is called a strongly stationary point if ν̂1,i ≥ 0, ν̂2,i ≥ 0, for all
i ∈ Iy(w) ∩ Iz(w).

Associated with any given feasible vector w of MPCC (2.1), there is a nonlinear program called the
tightened NLP (TNLP(w)):

min f(w)
subject to g(w) ≤ 0 , h(w) = 0

yi = 0, ∀i ∈ Iy(w)
yi ≥ 0, ∀i /∈ Iy(w)
zi = 0, ∀i ∈ Iz(w)
zi ≥ 0, ∀i /∈ Iz(w)

(2.6)

Note that a feasible point of MPCC (2.1) w is weakly stationary if and only if there exists a vector
MPCC multipliers λ = (λg , λh, ν̂1, ν̂2) such that (w, λ) is a KKT stationary point of the TNLP (2.6). The
following definition gives a very important constraint qualification for MPCC.

Definition 2.3. We say that MPCC-LICQ holds at a feasible point w if for any (λg , λh, ν1, ν2) ∈ Rq+r+2m,
the following implication is true:

∇g(w)Tλg +∇h(w)Tλh − (0, ν1, ν2) = 0
〈λg , g(w)〉 = 0

∀i /∈ Iy(w) : ν1,i = 0
∀i /∈ Iz(w) : ν2,i = 0.

 =⇒ (λg , λh, ν1, ν2) = (0, 0, 0, 0).

A very important link between the solutions of MPCC (2.1) and the strongly stationary points:

Theorem 2.4. [23] If the MPCC-LICQ holds at a local minimizer w of the MPCC, then w is a strongly
stationary point of MPCC.

We now define the B(ouligand)-stationarity for MPCCs.

Definition 2.5. A feasible point w is said to be a B-stationary point if 0 solves the following Linear Program
with Complementarity Constraints, with the vector d ∈ Rn being the decision variable:

min 〈∇f(w), d〉
subject to g(w) +∇g(w)d ≤ 0 , h(w) +∇h(w)d = 0

0 ≤ y + d1 ⊥ z + d2 ≥ 0
(2.7)

The B-stationarity for MPCCs are related to the strongly stationary points:

Theorem 2.6. [28] If a feasible point for the MPCC is a strong stationary point of the MPCC, then it is
a B-stationary point. Conversely, if w is a B-stationary point of the MPCC, and MPCC-LICQ holds at w,
then w is a strongly stationary point of MPCC.
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3 Generalities about the minimization of the difference
of convex functions

In this section we give some results about the minimization of the difference of convex functions. Let X be
a Banach space, u : X → R ∪ {+∞} and v : X → R ∪ {+∞} two convex, proper and continous functions.
We consider the following problem

min
x∈X

u(x)− v(x) (3.1)

which is a DC (Difference of Convex functions) problem. By convention +∞− (+∞) = +∞.

If ψ : Rn → R is a proper function, then we define its subdifferential at x ∈ dom(ψ) as follows:

∂ψ(x) := {x∗ ∈ Rn | 〈x∗, x− x〉 ≤ f(x)− f(x)} .

If ψ is proper, continous and convex on its domain, then for every x ∈ dom(ψ), ∂ψ(x) 6= ∅.

The classical first order optimality condition is 0 ∈ ∂(u − v)(x), which leads to ∂u(x) ∩ ∂v(x) 6= ∅. In
DC program, there is a stronger first order optimality condition, which is given in the follow proposition.
For more informations, see e.g. [31, 33].

Proposition 3.1. We suppose that dom(u) ⊂ dom(v). A necessary condition for x to be a solution of
problem (3.1) is

∂v(x) ⊂ ∂u(x).

Moreover, if v is a polyhedral convex function, the above inclusion is a sufficient condition for x to be a
solution of (3.1).

We recall that a function g : X → R ∪ {+∞} is a polyhedral convex function if there exist an integer
p ∈ N, elements a1, · · · , ap of X∗, some reals b1, · · · , bp, a polyhedral convex set S ⊂ X such that

∀x ∈ X , g(x) = max
i=1,··· ,p

(〈ai, x〉+ bi) + δS(x)

where δS(x) =

{
0 if x ∈ S

+∞ if x /∈ S .

The assumption dom(u) ⊂ dom(v) ensure that for every x ∈ X, we have u(x)− v(x) > −∞.

We can observe that the inclusion ∂v(x) ⊂ ∂u(x) is stronger than the classical first order optimality
condition 0 ∈ ∂(u − v)(x). In Section 5, we will relate in MPCC the ∂v(x) ⊂ ∂u(x) with the strong
stationarity and 0 ∈ ∂(u− v)(x) with the weak stationarity.

4 Reformulation of the MPCC into DC program
We come back to MPCC problem (2.1). The main idea is to penalize the constraint of complementarity and
to formulate the MPCC into a DC program.

We recall that MPCC (2.1) has the following form

min f(w)
subject to x ∈ Ω ∩∆

(4.1)

where Ω and ∆ given by (2.2) and (2.3). We recall that Ω is a convex set because gi are convex functions
and h is an affine function. Moreover, Ω and ∆ are closed sets.

We define the constant α ≥ 0 by:

α = inf

{
dist(w,∆)

dist(w,Ω ∩∆)
| w ∈ Ω \∆

}
. (4.2)

We can easily verify that α ∈ [0, 1].
In what follows we consider a family of functions Φ : Rn → R satisfying the following hypothesis:

(H1) For all w := (x, y, z) ∈ Ω , Φ(w) = 0⇐⇒ 〈y, z〉 = 0. Moreover, Φ(·, y, z) is a constant function on its
domain.
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(H2) There exists a constant c > 0 such that for all w ∈ Ω, one has Φ(w) ≥ cdist(w,∆), where ∆ is given
in (2.3).

(H3) The function Φ is concave on the set {w := (x, y, z) ∈ Rn | y ≥ 0 and z ≥ 0}.
(H4) The subdifferential ∂(−Φ) is uniformly bounded on the set {w := (x, y, z) ∈ Rn | y ≥ 0 and z ≥ 0}.

Example 4.0.1. The functions

Φ(x, y, z) =

m∑
i=1

min{yi, zi} (4.3)

and

Ψ(x, y, z) =
m∑
i=1

(
yi + zi −

√
y2
i + z2

i

)
(4.4)

satisfy all the above hypotheses.

The following proposition allows for a partial penalization of (4.1).

Proposition 4.1. Suppose that α > 0, where α is given in (4.2). Suppose that f : Ω → R is Lipschitz
continous with a constant of Lipschitz L ≥ 0. We consider a function Φ which satisfies the hypothesis
H1, · · · ,H4. Let µ > L

cα
, with c > 0 the constant of the hypothesis H2. The optimization problem

min f(w) + µΦ(w)
subject to w ∈ Ω

(4.5)

admits the same solutions as MPCC (2.1).

Proof. Suppose that w is a solution of MPCC, which implies that w is a solution of (4.1) with Ω and ∆
given by (2.2) and (2.3). Let w ∈ Ω and u ∈ Ω∩∆ be such that ‖w−u‖ = dist(x,Ω∩∆). Since f(u) ≥ f(w)
and µ > L/cα, we have:

f(w) + µΦ(w) ≥ f(w) + µcdist(w,∆) by H2

≥ f(w) + µcαdist(w,Ω ∩∆) by definition of α

= f(w) + µcα‖w − u‖

≥ f(w) +
µcα

L
|f(u)− f(w)|

≥ f(w) + |f(u)− f(w)| because µ >
L

cα

≥ f(w) + f(u)− f(w)

= f(u)

≥ f(w)

= f(w) + µdist(w,∆).

That is true for all w ∈ Ω, then w is a solution of (4.5).

Conversely, assume that w is a solution of (4.5). We first show that w ∈ Ω ∩∆. Suppose that w /∈ ∆
and let w ∈ Ω ∩∆ be such that ‖w − w‖ = dist(w,Ω ∩∆). We have:

f(w) + µΦ(w) = f(w) by H1

= f(w)− f(w) + f(w)

≤ L‖w − w‖+ f(w)

= Ldist(w,Ω ∩∆) + f(w)

≤
L

α
dist(w,∆) + f(w) by definition of α given by (4.2)

≤
L

cα
Φ(w) + f(w) by H2

< µΦ(w) + f(w).

The last inequality results from the inequality µ > L
cα

and from the fact that by H2 we have Φ(w) > 0
because w ∈ Ω \∆. We obtain a contradiction with w ∈ arg min

Ω
f + µΦ, then w ∈ Ω ∩∆.
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Finally, for any w ∈ Ω ∩∆, we have:

f(w) = f(w) + µΦ(w)

≥ f(w) + µΦ(w) because w ∈ arg min
Ω

f + µΦ

= f(w).

That proves that w is a solution of (4.1) which is MPCC (2.1).

We recall that f is a DC function, which means that f = f1 − f2, with f1 and f2 two convex functions.
By the concavity of Φ and by Proposition 4.1, if f is Lipschitz-continuous on Ω and α > 0, where α is given
by (4.2), then for all µ large enough, MPCC problem (2.1) can be written as the following DC program:

min
w∈Rn

(f1 + δΩ)(w)− (f2 − µΦ)(w). (4.6)

We recall that the function δΩ is defined as follows:

∀w ∈ Rn , δΩ(w) :=

{
0 if w ∈ Ω

+∞ if w /∈ Ω.

We finish this section with a sufficient and necessary condition for α given in (4.2) to be not equal to zero,
in the case where Ω is bounded and closed.

Proposition 4.2. We suppose that Ω is bounded and closed. Then α = 0 if and only if there exists an
element w ∈ Ω ∩∆, a sequence (wk) ∈ (Ω \∆)N satisfying limwk = w and

lim
k→+∞

dist(wk,∆)

dist(wk,Ω ∩∆)
= 0.

Proof. By definition of α, if α = 0 then there exists a sequence (wk) ∈ (Ω \∆)N satisfying

lim
n→+∞

dist(wk,∆)

dist(wk,Ω ∩∆)
= 0.

Since the set Ω is compact, there exists a subsequence of (wk)k converging to an element w ∈ Ω.
Without losing generality, we can suppose that the whole sequence (wk) converges. Since the sequence

(wk) is bounded, the sequence (dist(wk,∆∩Ω))k is also bounded, thus limk→∞ dist(wk,∆) = 0. Therefore,
by continuity of dist(·,∆), we obtain dist(w,∆) = 0, thus w ∈ ∆, and then w ∈ Ω ∩∆.

The converse is clear by the definition of α.

From the previous proposition, we can deduce that if Ω is bounded, h and g are affine functions, then
α > 0. Before we define the calmness of a multifunction.

Definition 4.3. Let T : X ⇒ Y a multifunction, where X and Y are Banach spaces. Set (x, y) ∈ Gr(T )
(which means that y ∈ T (x)). We say that T is calm at (x, y) if there exist r, ε, L > 0 be such that:

∀x ∈ B(x, r) , T (x) ∩B(y, ε) ⊂ T (x) +B(0, L‖x− x‖).

We can now prove the following corollary.

Corollary 4.4. Assume that Ω is bounded and closed, and h and g are affine functions. Then α > 0.

Proof. Let w ∈ Ω ∩∆ and a sequence wk → w with wk ∈ Ω \∆. Let us define the function

G(w) :=

(
h(w), g(w), y, z,

m∑
i=1

min(yi, zi)

)
and the multifunction

M(u) := {w ∈ Ω : G(w) + u ∈ D}
with D := Rp− × {0}q × Rm+ × Rm+ × {0}. We observe that M(0) = Ω ∩∆.

Since h and g are affine functions, the multifunction M is polyhedral (because its graph is the union of
polyhedral sets), then it is calm at (0, w) by Robinson’s Theorem [26]. By definition of calmness, there exist
r, ε, L > 0 be such that:

∀u ∈ B(0, r) , M(u) ∩B(w, ε) ⊂M(0) +B(0, L‖u‖). (4.7)
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For each k, we consider dk ∈ D be such that ‖G(wk)− dk‖ = dist(G(wk), D). The function dist(G(·), D) is
continuous, then dist(G(wk), D)→ dist(G(w), D) = 0 because w ∈ Ω∩∆. We deduce that ‖G(wk)−dk‖ < r
for each k large enough. We deduce from (4.7) that:

M(dk −G(wk)) ∩B(w, ε) ⊂M(0) +B(0, L‖dk −G(wk)‖).

Given that G(wk) + dk −G(wk) = dk ∈ D, we have wk ∈M(dk −G(wk)). Since wk → w, we deduce that
wk ∈M(dk −G(wk)) ∩B(w, ε) for all k large enough. Then, for all k large enough, we have:

wk ∈M(0) +B(0, L‖dk −G(wk)‖).

Since M(0) = Ω ∩∆, we have

dist(wk,Ω ∩∆) ≤ L‖dk −G(wk)‖ = Ldist(G(wk), D).

Given that wk ∈ Ω, we have h(wk) = 0, g(wk) ≤ 0, yk ≥ 0, zk ≥ 0, we have

dist(G(wk), D) =

m∑
i=1

min(yki , z
k
i )

≤ m

(
m∑
i=1

min(yki , z
k
i )2

) 1
2

by the Cauchy-Scharz inequality

= mdist(wk,∆).

We finally obtain that dist(wk,Ω ∩∆) ≤ Lmdist(wk,∆), then:

dist(wk,∆)

dist(wk,Ω ∩∆)
≥

1

Lm
> 0.

That is true for all w ∈ Ω ∩ ∆ and for all wk → w with wk ∈ Ω \ ∆, then by Proposition 4.2, we have
α > 0.

5 A new characterization for stationarity in MPCC con-
sidering Optimality Conditions for DC programs

If w is a local solution of (2.1) and MPCC-LICQ holds at this point, then w is a strongly stationary point
by Theorem 2.4, but moreover w solves (4.6), therefore according to Proposition 3.1, the point w satisfies
∂(f2−µΦ)(w) ⊂ ∂(f1 +δΩ)(w). If the function f is differentiable, by the equality f = f1−f2, it is equivalent
to

∂(−µΦ)(w) ⊂ ∇f(w) +NΩ(w). (5.1)

In this section we will show that under MPCC-LICQ, w is a strongly stationary point for MPCC if
and only if inclusion (5.1) is true with Φ satisfying hypotheses H1-H4 and an additional assumption. The
following technical lemma is useful for the proof of Proposition 5.3 and Theorem 5.4.

Lemma 5.1. Let Φ : Rn → R satisfying hypotheses H1-H4, let c > 0 be a constant for Φ in H2 and let w
be a feasible point for MPCC (2.1). Assume that the set{(

(y∗i )i∈Iy(w)\Iz(w), (z
∗
i )i∈Iz(w)\Iy(w)

)
| w∗ := (x∗, y∗, z∗) ∈ ∂(−Φ)(w)

}
(5.2)

is a singleton. Then there exists a polyhedral concave function Φ̃ which satisfies hypotheses H1-H4 with the
same constant c > 0 in H2 and such that:

∂(−Φ̃)(w) ⊂ ∂(−Φ)(w).

Remark 5.2. The assumption (5.2) is satisfied for example by the function given in (4.4).

Proof. The proof will be divided into two steps.

Step 1: We prove that there exist two elements w∗ = (x∗, y∗, z∗) ∈ ∂(−Φ)(w) and w∗ = (x∗, y∗, z∗) ∈
∂(−Φ)(w) satisfying: 

x∗ = x∗ = 0
y∗i = y∗i ≤ −c and z∗i = z∗i = 0 if i ∈ Iy(w) \ Iz(w)
y∗i = y∗i = 0 and z∗i = z∗i ≤ −c if i ∈ Iz(w) \ Iy(w)
y∗i ≤ −c , z∗i = 0 , y∗i = 0, z∗i ≤ −c if i ∈ Iy(w) ∩ Iz(w),
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with c being the constant defined by H2.

Remember that for w ∈ Rn, we write w := (x, y, z), where x ∈ Rs, y ∈ Rm and z ∈ Rm with n = s+2m.
Given that w is a feasible point for MPCC (2.1), we have w ∈ ∆, then hypothesis H1 implies that Φ(w) = 0.

We first assume that Iy(w) ∩ Iz(w) = ∅. Let w∗ = (x∗, y∗, z∗) ∈ ∂(−Φ)(w). Clearly, by H1, we have
x∗ = 0. Let i ∈ Iy(w). We show that y∗i ≤ −c and z∗i = 0.

Consider the vector w := (x, y, z) with z := (z1, · · · , zi−1, zi, zi+1, · · · , zm) and zi > 0. Given that
〈y, z〉 = 0 and yi = 0, we have 〈y, z〉 = 0, then by H1, we have Φ(w) = 0. Therefore:

〈w∗, w − w〉 ≤ −Φ(w) + Φ(w) = 0.

At the same time, we have 〈w∗, w−w〉 = z∗i (zi−zi), which implies that z∗i (zi−zi) ≤ 0 for all zi > 0. Given
that zi > 0 (because Iy(w)∩ Iz(w) = ∅ and i ∈ Iy(w), then i /∈ Iz(w)), we can chose zi ∈]0, zi[, which leads
to z∗i ≥ 0. If we chose zi > zi, we then obtain z∗i ≤ 0, which finally proves that z∗i = 0.

Consider now the vector w := (x, y, z) with y := (y1, · · · , yi−1, yi, yi+1, · · · , ym) and yi > 0. Given that
zi > 0, we have 〈y, z〉 > 0, which proves that w /∈ ∆. We can easily see that dist(w,∆) = yi, then the
hypothesis H2 gives Φ(w) ≥ cyi. This implies that:

〈w∗, w − w〉 ≤ −Φ(w) + Φ(w) ≤ −cyi.

At the same time, we have 〈w∗, w−w〉 = y∗i (yi−yi) = y∗i yi because yi = 0, which implies that y∗i yi ≤ −cyi
for all yi > 0. We finally obtain that y∗i ≤ −c.

In the same way, we prove that if i ∈ Iz(w), then y∗i = 0 and z∗i ≤ −c. Setting w∗ := w∗, we obtain the
two elements of ∂(−Φ)(w) which satisfy

x∗ = x∗ = 0
y∗i = y∗i ≤ −c and z∗i = z∗i = 0 if i ∈ Iy(w) \ Iz(w)
y∗i = y∗i = 0 and z∗i = z∗i ≤ −c if i ∈ Iz(w) \ Iy(w)
y∗i ≤ −c , z∗i = 0 , y∗i = 0, z∗i ≤ −c if i ∈ Iy(w) ∩ Iz(w).

We suppose now that Iy(w)∩Iz(w) 6= ∅. Consider a sequence wn → w be such that for all i ∈ Iy(w)∩Iz(w),
we have i ∈ Iy(wn) \ Iz(wn). Let a sequence w∗,n ∈ ∂(−Φ)(wn). By H4, the sequence (w∗,n)n is bounded,
then it as a converging subsequence, which we denote by w∗ its limit. Given that the subdifferential of
a convex function has a closed graph, we have w∗ ∈ ∂(−Φ)(w). For each i ∈ Iy(w) \ Iz(w), we have
i ∈ Iy(wn) \ Iz(wn) for all n large enough because wn → w, then according to the previous case, y∗,ni ≤ −c
and z∗,ni = 0. Passing to the limit, we have y∗i ≤ −c and z∗i = 0. For each i ∈ Iy(w) ∩ Iz(w), we have
i ∈ Iy(wn)\ Iz(wn) by construction of wn, then using the same arguments as before, we prove that y∗i ≤ −c
and z∗i = 0. For each i ∈ Iz(w)\Iy(w), we prove that y∗i = 0 and z∗i ≤ −c using the same arguments as before.

Consider now a sequence wn → w be such that for all i ∈ Iy(w) ∩ Iz(w), we have i ∈ Iz(wn) \ Iy(wn).
Let a sequence w∗,n = (x∗,n, y∗,n, z∗,n) ∈ ∂(−Φ)(wn). By H4, the sequence (w∗,n)n is bounded, then it
as a converging subsequence, which we denote by w∗ := (x, y, z) its limit. Given that the subdifferential
of a convex function has a closed graph, we have w∗ ∈ ∂(−Φ)(w). For each i ∈ Iz(w) \ Iy(w), we have
i ∈ Iz(wn) \ Iy(wn) for all n large enough because wn → w, then according to the previous case, y∗,ni = 0
and z∗,ni ≤ −c. Passing to the limit, we have y∗i = 0 and z∗i ≤ −c. For each i ∈ Iy(w) ∩ Iz(w), we have
i ∈ Iz(wn) \ Iy(wn) by construction of wn, then using the same arguments as before, we prove that y∗i = 0
and z∗i ≤ −c. For each i ∈ Iy(w) \ Iz(w), we prove that y∗i ≤ −c and z∗i = 0 using the same arguments as
before.

We have then constructed two elements w∗ and w∗ in ∂(−Φ)(w). Given that the set (5.2) is a singleton,

we deduce that for each i ∈
(
Iy(w) \ Iz(w)

)
∪
(
Iz(w) \ Iy(w)

)
, we have y∗i = y∗i and z∗i = z∗i . Finally w∗

and w∗ satisfy: 
x∗ = x∗ = 0
y∗i = y∗i ≤ −c and z∗i = z∗i = 0 if i ∈ Iy(w) \ Iz(w)
y∗i = y∗i = 0 and z∗i = z∗i ≤ −c if i ∈ Iz(w) \ Iy(w)
y∗i ≤ −c , z∗i = 0 , y∗i = 0, z∗i ≤ −c if i ∈ Iy(w) ∩ Iz(w),

Step 2: We now construct the function Φ̃. Let the function Φ̃ be defined as follows:

8



Φ̃(w) :=
∑

i∈Iy(w)\Iz(w)

−y∗i min(yi, zi)

+
∑

i∈Iz(w)\Iy(w)

−z∗i min(yi, zi)

+
∑

i∈Iy(w)∩Iz(w)

min(−y∗i yi,−z∗i zi).

We can easily verify that for all x ∈ Rn, if y ≥ 0 and z ≥ 0, then Φ̃(w) ≥ c
∑m
i=1 min(yi, zi) ≥ 0, and

Φ̃(w) = 0 if and only if 〈y, z〉 = 0. This ensures that hypothesis H1 is satisfied.

Since for all nonegative reals α1, · · · , αm, one has
∑m
i=1 αi ≥

(∑m
i=1 α

2
i

) 1
2 , we deduce that for all y ≥ 0,

z ≥ 0, we have

Φ̃(w) ≥ c

m∑
i=1

min(yi, zi)

≥ c

(
m∑
i=1

min(yi, zi)
2

) 1
2

= cdist(w,∆).

Therefore hypothesis H2 is satisfied by Φ̃ with the same constant c as for Φ. Hypothesis H3 follows
from the concavity of the function (a, b)→ min(a, b).

Hypothesis H4 follows from the fact that −Φ is a polyhedral convex function; thus, its subdifferential is
uniformely bounded.

In order to prove the inclusion ∂(−Φ̃)(w) ⊂ ∂(−Φ)(w), we compute the subdifferential ∂(−Φ̃)(w), and
obtain that ∂(−Φ̃)(w) is the convex hull of the set {w∗, w∗}. Given that the set ∂(−Φ)(w) is convex and
contains the set {w∗, w∗}, we then have ∂(−Φ̃)(w) ⊂ ∂(−Φ)(w).

The above lemma permits us to prove the proposition below.

Proposition 5.3. We suppose f is differentiable on Ω. Let a function Φ satisfy hypotheses H1-H4, and c
be a constant satisfying assumption H2. Let µ > L

cα
, where α is given by (4.2). Let w be a feasible point

for MPCC (2.1). Assume that the set{(
(y∗i )i∈Iy(w)\Iz(w), (z

∗
i )i∈Iz(w)\Iy(w)

)
| w∗ := (x∗, y∗, z∗) ∈ ∂(−Φ)(w)

}
is a singleton. The point w is a solution of the optimization problem

min 〈∇f(w), w〉
subject to w := (x, y, z) , g(w) ≤ 0 , h(w) = 0

y ≥ 0 , z ≥ 0
〈y, z〉 = 0.

(5.3)

if and only if the inclusion holds:

∂(−µΦ)(w) ⊂ ∇f(w) +NΩ(w).

Proof. Given that ‖∇f(w)‖ ≤ L, the function w → 〈∇f(x), w〉 is Lipschitz-continuous with a constant of
Lipschitz L. Observe that both MPCC (2.1) and (5.3) have the same constraint set which can be written
as Ω ∩∆, where Ω and ∆ are defines in (2.2) and (2.3).

Suppose that w is a solution of the MPCC (5.3). According to Proposition 4.1, w is a solution of

min 〈∇f(w), w〉+ µΦ(w)
subject to w ∈ Ω,

which can be written as follows:

min
w∈Rn

〈∇f(w), w〉+ δΩ(w)− (−µΦ(w)) (5.4)
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That is a DC program. According to Proposition 3.1, we have:

∂(−µΦ)(w) ⊂ ∂ (〈∇f(w), ·〉+ δΩ(·)) (w) = ∇f(x) +NΩ(w).

Conversely, suppose that ∂(−µΦ)(w) ⊂ ∇f(w) + NΩ(w). According to Lemma 5.5, there exists a
polyhedral concave function −Φ̃ which satisfies the hypotheses H1, · · · ,H4 with the same constant c > 0 in
H2 and which satisfies:

∂(−Φ̃)(w) ⊂ ∂(−Φ)(w).

We then have ∂(−µΦ̃)(w) ⊂ ∇f(w) + NΩ(w). Given that −Φ̃ is a polyhedral and convex function, by
Proposition 3.1, w is a solution of:

min
w∈Rn

〈∇f(w), w〉+ δΩ(w)− (−µΦ̃(w))

According to Lemma 5.5, the function Φ̃ satisfies assumptions H1, · · · ,H4, then by Proposition 4.1, w is a
solution of

min 〈∇f(w), w〉
subject to w := (x, y, z) , g(w) ≤ 0 , h(w) = 0

y ≥ 0 , z ≥ 0
〈y, z〉 = 0.

Theorem 5.4. We suppose f differentiable on Ω. We suppose f is differentiable on Ω. Let a function Φ
satisfy hypotheses H1-H4, and c be a constant satisfying assumption H2. Let µ > L

cα
, where α is given by

(4.2). Let w ∈ Ω be a feasible point for MPCC (2.1). Assume that the set{(
(y∗i )i∈Iy(w)\Iz(w), (z

∗
i )i∈Iz(w)\Iy(w)

)
| w∗ := (x∗, y∗, z∗) ∈ ∂(−Φ)(w)

}
is a singleton. If w is a strongly stationary point for MPCC, then the following inclusion holds:

∂(−µΦ)(w) ⊂ ∇f(w) +NΩ(w).

If moreover MPCC-LICQ holds at w, then the converse holds truly.

Proof. We first suppose that w is a strongly stationary point. By Theorem 2.6, 0 is a solution of the following
problem where d is a decision variable:

min 〈∇f(w), d〉
subject to g(w) +∇g(w)d ≤ 0 , h(w) +∇h(w)d = 0

0 ≤ y + d1 ⊥ z + d2 ≥ 0.

By convexity of the functions gi, one has {d ∈ Rn | g(w + d) ≤ 0} ⊂ {d ∈ Rn | g(w) + ∇g(w)d ≤ 0}.
Moreover, since h is an affine function and h(w) = 0, one has h(w + d) = ∇h(w)d. Therefore 0 solves the
following problem where d is a decision variable:

min 〈∇f(w), d〉
subject to g(w + d) ≤ 0 , h(w + d) = 0

0 ≤ y + d1 ⊥ z + d2 ≥ 0.

According to Proposition 5.3, the inclusion ∂(−µΦ)(w) ⊂ ∇f(w) +NΩ(w) holds.

Conversely, we suppose that ∂(−µΦ)(x) ⊂ ∇f(w) + NΩ(w) and MPCC-LICQ holds. By Proposition
5.3, w is a solution of the MPCC

min 〈∇f(w), w〉
subject to g(w) ≤ 0 , h(w) = 0

0 ≤ y ⊥ z ≥ 0.

According to Theorem 2.4, w is a strongly stationary point for MPCC since MPCC-LICQ holds at w.

We can observe that the inclusion ∂(−µΦ)(w) ⊂ ∇f(w)+NΩ(w) uses only convex analysis tools because
−µΦ is a convex function and Ω is a convex set, though the constraint sets of the MPCCs are not convex in
general.

Another notion of stationary point for the DC program minw∈W u(w) − v(w), with u and v convex
functions, is that ∂u(w) ∩ ∂v(w) 6= ∅. This notion applied to the DC reformulation of MPCC leads to:

∂(−µΦ)(w) ∩ (∇f(w) +NΩ(w)) 6= ∅.
The following proposition shows that the above condition is related to the weakly stationarity of MPCC

at w. Before proposition we need a lemma:
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Lemma 5.5. Let w a feasible point for MPCC, and w∗ := (x∗, y∗, z∗) ∈ ∂(−Φ)(w). Then for all i /∈ Iy(w),
one has y∗i = 0 and for all i /∈ Iz(w), one has z∗i = 0.

Proof. Let i /∈ Iy(w) and w∗ := (x∗, y∗, z∗) ∈ ∂(−Φ)(w). Let y′i in a neighborhood of yi. We consider
w′ := (x, (y1, · · · , yi−1, y

′
i, yi+1, · · · , ym), z). Let x′ ∈ Rn, y′, z′ ∈ Rm be such that w′ := (x′, y′, z′). We

have y′ ≥ 0, z′ ≥ 0 and 〈y′, z′〉 = 0 since zi = 0 and yi > 0. Therefore, one has Φ(w′) = 0, for all y′i in a
neighborhood of yi, which ensure that y∗i = 0. In the same way, if i /∈ Iz(w), one has z∗i = 0.

We now gives a sufficient condition for a feasible point of MPCC to be weakly stationary.

Proposition 5.6. We suppose f is differentiable on Ω and Lipchitz-continuous with L ≥ 0 a constant of
Lipschitz. Let a function Φ satisfy hypotheses H1-H4, and c be a constant satisfying assumption H2. Let
µ > L

cα
, where α is given by (4.2). Let w a feasible point for MPCC (2.1). If w satisfies the following

property
∂(−µΦ)(w) ∩ (∇f(w) +NΩ(w)) 6= ∅,

and the constraint set Ω is qualified at w (see Definition 2.1), then w is a weakly stationary point for
MPCC.

Proof. Since ∂(−µΦ)(w)∩ (∇f(w)+NΩ(w)) 6= ∅, there exists an element −w∗ := −(x∗, y∗, z∗) ∈ ∂(−Φ)(w)
such that −µw∗ ∈ ∇f(w) +NΩ(w). Therefore one has

∇f(w) + µw∗ ∈ −NΩ(w).

Therefore, since the constraint set Ω is qualified at w, there exist Lagrange multipliers λg , λh, ν1, ν2 such
that

∇f(w) +t ∇g(w)λg +t ∇h(w)λh −

 0
ν1 − µy∗
ν2 − µz∗

 = 0

and
0 ≥ g(w) ⊥ λg ≥ 0 , 0 ≤ ν1 ⊥ y ≥ 0 , 0 ≤ ν2 ⊥ z ≥ 0.

Let the vector λ = (λg , λh, ν̂1, ν̂2) defined by (ν̂1,i, ˆν2,i) = (ν1 − µy∗i , ν2 − µz∗i ). Let i /∈ Iy(w), since w ∈ ∆,
we have zi = 0, moreover since yi > 0, one has y∗i = 0 by Lemma (5.5). Moreover, we have ν1,i = 0 by
complementarity condition, which implies that ν̂1,i = 0. In the same way, if zi > 0, then ν̂2,i = 0. That
implies that (w, λ) is a KKT stationary point of the TNLP (2.6), thus w is a weakly stationary point for
MPCC.

6 DCA Algorithm for MPCC
In this section we apply the DC method, which has been introduced by Pham Dinh Tao and Le Thi
[30, 31, 32, 33], to MPCC.

We recall that the MPCC that we consider, given in (2.1), can be written as follows:

min f(w)
subject to w ∈ Ω

〈y, z〉 = 0,

where the set Ω is given by (2.2). We suppose that α > 0 where α is defined by (4.2), and consider a function
Φ which satisfies hypotheses H1, · · · ,H4, where the hypotheses Hi are given in Section 4. We suppose that
f is L-continuous Lipschitz on Ω. Let c > 0 be the constant given by hypothesis H2. As we have seen in

Section 4, for any µ >
L

cα
, MPCC (2.1) is equivalent to

min f(w) + µΦ(w)
subject to w ∈ Ω

Consider the following DC descomposition of f :

f := f1 − f2, (6.1)

with f1 and f2 two convex functions on Ω. That is, the MPCC is equivalent to the DC program

min
x∈Rn

(f1 + δΩ)(w)− (f2 − µΦ)(w). (6.2)

11



where we recall that δΩ(w) =

{
0 if w ∈ Ω

+∞ if w /∈ Ω
.

The DC algorithm (abbreviated as DCA), starting from an initial point w0 ∈ Ω, constructs two sequences
(wk)k and (vk)k by

vk ∈ ∂(f2 − µΦ)(wk), (6.3)

and
wk+1 ∈ ∂(f1 + δΩ)∗(vk). (6.4)

Remark 6.1. If vk → v and wk → w, given that the subdifferential of a lower semi continuous function
has closed graph, we have v ∈ ∂(f2 − µΦ)(w) and w ∈ ∂(f1 + δC)∗(v). Since w ∈ ∂(f1 + δC)∗(v) ⇔ v ∈
∂(f1 + δC)(w), we deduce that ∂(f1 + δΩ)(w) ∩ ∂(f2 − µΦ)(w) 6= ∅, which is equivalent, under assumption
of differentiability of f1 and f2, to

∂(−µΦ)(w) ∩ (∇f(w) +NΩ(w)) 6= ∅.

Therefore, according to Proposition 5.6, all limit w := (x, y, z) of (wk) is a weakly stationary point for
MPCC if Ω is qualified at w and 〈y, z〉 = 0.

6.1 A regularized scheme of DCA
Throught this subsection we assume that the functions f1 and f2 are differentiable on Ω, where f1 and f2

satisfy (6.1). The DCA constructs the sequences (vk) and (wk) by (6.3) and by (6.4). If Φ is differentiable
at wk, we then have:

vk = ∇(f2 − µΦ)(wk).

Therefore, we have wk+1 ∈ ∂(f1 + δΩ)∗
(
∇(f2 − µΦ)(wk)

)
which implies that:

∇(f2 − µΦ)(wk) ∈ ∂(f1 + δΩ)(wk+1).

The above statement is equivalent to wk+1 is a solution of the following convex optimization problem, which
consists of linearizing the concave part of (6.2):

min f1(w)− 〈∇f2(wk)− µ∇Φ(wk), w〉
subject to w ∈ Ω.

As you can see, if Φ is differentiable at wk, then wk+1 can be obtained from wk solving a convex optimization
problem. But in general, Φ is not differentiable at wk. We consider the family of functions Φρ which are
defined as follows:

∀ρ ≥ 0, ∀w ∈ Ω ,Φρ(w) :=

m∑
i=1

(
yi + zi + ρ−

√
y2
i + z2

i + ρ2

)
. (6.5)

You can observe that for any ρ > 0, the function Φρ is differentiable on Rn. The DC Algorithm regularized
scheme consists of, given the vector wk, choosing a real ρk > 0 and computing the next iterate wk+1 as a
solution of this following convex optimization problem:

min f1(w)− 〈∇f2(wk)− µ∇Φρk (wk), w〉
subject to w ∈ Ω.

(6.6)

We call this algorithm “DC Algorithm for MPCC” (DCA-MPCC). We give some properties about the
function Φρ defined above (6.5). First we introduce the following function θ : R3 → R.

Proposition 6.2. Let θ : R3 → R defined by θ(a, b, ρ) := a+b+ρ−
√
a2 + b2 + ρ2. The function θ satisfies

the following properties:

1. For all a, b ∈ R+, θ(a, b, 0) ≥ 2
2+
√

2
min{a, b}.

2. The function θ(·, ·, 0) is differentiable for all (a, b) ∈ (R+)2 \ {(0, 0)}, and ∂(a,b)(−θ(·, ·, 0))(0, 0) =
B((−1,−1), 1).

3. The function θ is Lipschitz-continuous on R3.

4. For all ρ ≥ 0, θ(·, ·, ρ) is concave on R2.
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Proof. 1. Let a, b ∈ R such that 0 < a ≤ b. We have:

θ(a, b, 0) = a+ b−
√
a2 + b2

=
2ab

a+ b+
√
a2 + b2

≥
2ab

2b+
√

2b2

=
2

2 +
√

2
a

=
2

2 +
√

2
min{a, b}.

If 0 < b ≤ a we obtain the result by the same calculus. If a = 0 and b ≥ 0 or b = 0 and a ≥ 0, then
θ(a, b, 0) = 0 = min{a, b}, that proves the first result of the Proposition.

2. It is clear that θ(·, ·, 0) is differentiable over (R+)2 \ {(0, 0)}. The equality ∂(a,b)(−θ(0, 0, 0)) =
B((−1,−1), 1) is deduced by the equality ∂‖ · ‖(0) = B(0, 1), with ‖ · ‖ an euclidian norm.

3. It is easy to verify that for all (a, b, ρ) ∈ R3, for all x∗ ∈ ∂θ(a, b, ρ), one has ‖x∗‖ ≤ 3
√

2, which
ensures that θ is Lipschitz-continuous on R3.

4. We can observe that
√
a2 + b2 + ρ2 = ‖(a, b, ρ)‖ which is convex with respect to its three variables,

then it is convex with respect to (a, b). Therefore, for all ρ ≥ 0, θ(·, ·, ρ) is a concave function because
it is the difference between a linear function and a convex function.

Since we have Φρ(w) =

m∑
i=1

θ(yi, zi, ρ), we can deduce the following properties about the function

(ρ,w)→ Φρ(w)

Proposition 6.3. The function (ρ,w)→ Φ(w, ρ) satisfies the following properties:

1. There exists a constant c > 0 such that for all w ∈ Ω, Φ0(w) ≥ cdist(w,∆).

2. For all w ∈ Ω, w∗ ∈ ∂(−Φ0)(w) if and only if (y∗i , z
∗
i ) = −∇yi,ziθ(yi, zi, 0) if (yi, zi) 6= (0, 0) and

(y∗i , z
∗
i ) ∈ B((−1,−1), 1) if (yi, zi) = (0, 0).

3. The function (ρ,w)→ Φρ(w) is Lipschitz-continuous on Rn.

4. For all ρ ≥ 0, Φρ is concave on Rn.

Proof. It is a direct consequence of Proposition 6.2 given that Φρ(w) =

m∑
i=1

θ(yi, zi, ρ).

From the previous proposition, we deduce the following corollary.

Corollary 6.4. The function Φ0 given by (6.5) satisfies hypotheses H1, · · · ,H4 given in Section 4.

Proof. It is a direct consequence of Proposition 6.3.

The following theorem gives a convergence result for DCA-MPCC.

Theorem 6.5. We suppose that f is a C1 and a Lipchitz-continuous function with modulus L ≥ 0 on Ω
and Ω is a bounded set. We suppose that f = f1 − f2 with f1 and f2 two C1 and convex functions on Ω.
Moreover, we suppose that f1 or f2 is γ-strongly convex on Ω, with γ > 0. We suppose that α > 0 where α
is defined in (4.2). We choose Φρ defined in (6.5) and let c > 0 be the constant of assumption H2 for Φ0.

We construct a sequence (wk)k with w0 ∈ Ω and wk+1 is a solution of (6.6) with µ >
L

cα
and ρk chosen

such that ρ2
k = o(min{(yki )2 + (zki )2 | i = 1, · · · ,m}), ρk → 0 and

∑
k≥0

|ρk+1 − ρk| < ∞. The following

statements hold:

1. We have ‖wk+1 − wk‖ → 0.
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2. Any limit w := (x, y, z) of the sequence (wk) satisfie

∂(−µΦ0)(w) ∩ (∇f(w) +NΩ(w)) 6= ∅.
If moreover 〈y, z〉 = 0 and Ω is qualified at w (Definition 2.1), then w is a weakly stationary point
for MPCC.

3. Any limit w := (x, y, z) of the sequence (wk) satisfies

f(w) + µΦ0(w) ≤ f(w0) + µΦ0(w0) +M
∑
k≥0

|ρk+1 − ρk|

where M is the constant of Lipschitz of the function (ρ,w)→ Φρ(w).

4. If Ω is bounded and the set

{w ∈ Ω | ∂(−µΦ0)(w) ∩ (∇f(w) +NΩ(w)) 6= ∅}
is finite, then the whole sequence (wk) converges.

Proof. We prove each statement.

1. If there exist k0 ∈ N such that wk0 = wk0+1 then wk = wk0 for any k ≥ k0. We suppose that for all
k ∈ N, one has wk 6= wk+1.

If f1 is γ-strongly convex, then one has

f1(wk+1) ≤ f1(wk) + 〈∇f1(wk+1), wk+1 − wk〉 −
γ

2
‖wk+1 − wk‖2,

or else by convexity of f1, one has

f1(wk+1) ≤ f1(wk) + 〈∇f1(wk+1), wk+1 − wk〉.
If f1 is not γ-strongly convex, then f2 is γ-strongly convex, and since −µΦρk is convex, we obtain

f2(wk+1)− µΦρk (wk+1) ≥ f2(wk)− µΦρk (wk) +
γ

2
‖wk+1 − wk‖2

+ 〈∇f2(wk)− µ∇Φρk (wk), wk+1 − wk〉.
If f2 is not γ-strongly convex, it is only convex (and f1 is γ-strongly convex), thus one has

f2(wk+1)− µΦρk (wk+1) ≥ f2(wk)− µΦρk (wk) + 〈∇f2(wk)− µ∇Φρk (wk), wk+1 − wk〉.
In both cases, the following inequalities hold:

f1(wk+1)− (f2(wk+1)− µΦρk (wk+1)) ≤ f1(wk)− (f2(wk)− µΦρk (wk))

−
γ

2
‖wk+1 − wk‖2 + 〈∇f1(wk+1)

− (∇f2(wk)− µ∇Φρk (wk)), wk+1 − wk〉

≤ f1(wk)− (f2(wk)− µΦρk (wk))

−
γ

2
‖wk+1 − wk‖2.

The last inequality holds true because wk+1 solves problem (6.6), thus ∇f1(wk+1) − (∇f2(wk) −
µ∇Φρk (wk)) ∈ −NΩ(wk+1).

Finally, using the Lipschitz-continuity of (ρ,w) → Φρ(w) (which it is ensured by Proposition 6.3),
one has (with M ≥ 0 a constant of Lipschitz-continuity of (ρ,w)→ Φρ(w)):

γ

2

p−1∑
k=0

‖wk+1 − wk‖2 ≤ f1(w0)− f2(w0)− f1(wp) + f2(wp)

+ µΦρp (wp)− µΦρ0 (w0) +M

p−1∑
k=0

|ρk+1 − ρk|

= f(w0)− f(wp) + µΦρ0 (w0)− µΦρ0 (wp)

+ M

p−1∑
k=0

|ρk+1 − ρk|.

(6.7)

Since the function f and Φρ0 are bounded from below and the serie
∑
|ρk+1 − ρk| is convergent, we

deduce that the serie
∑
‖wk+1 − wk‖2 is also convergent, thus ‖wk+1 − wk‖ → 0.
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2. Take a subsequence (wkj ) such that wkj → w. According to Proposition 6.3, the sequence
(∥∥∇Φρk (wkj )

∥∥)
j

is bounded, then there exists a subsequence (wkjl )l such that ∇Φρkjl
(wkjl ) −→ w∗. We show that

−w∗ ∈ ∂(−Φ0)(w).

Let i ∈ {1, · · · ,m} such that yi + zi > 0. One has

∂Φρkjl

∂yi
(wkjl ) = 1−

y
kjl
i√

(y
kjl
i )2 + (z

kjl
i )2 + ρ2

kjl

→ 1−
yi√

y2
i + z2

i

because ρk → 0

=
∂Φ0

∂yi
(w).

In the same way,
∂Φρkjl

∂zi
(wkjl ) −→

∂Φ0

∂zi
(w). We suppose that y2

i + z2
i = 0. Then one has:

(1− y∗i )2 + (1− z∗i )2 = lim
k→+∞

(
1−

∂Φ

∂yi
(wkjl , ρkjl

)

)2

+

(
1−

∂Φ

∂zi
(wkjl , ρkjl

)

)2

= lim
k→+∞

(y
kjl
i )2 + (z

kjl
i )2

(y
kjl
i )2 + (z

kjl
i )2 + ρ2

kjl

= 1− lim
k→+∞

ρ2
kjl

(y
kjl
i )2 + (z

kjl
i )2 + ρ2

kjl

= 1 because ρ2
kjl

= o((y
kjl
i )2 + (z

kjl
i )2).

Therefore we have −(y∗i , z
∗
i ) ∈ B((−1,−1), 1). According to Proposition 6.3, we finally have −w∗ ∈

∂x(−Φ0)(w).

Since for all j ∈ N, wkj+1 solves the optimization problem (6.6), one has ∇f1(wkj+1)−∇f2(wkj ) +
µ∇Φρkj

(wkj ) ∈ −NΩ(wkj ). From Item 1 of this theorem, we have:

‖wkj+1 − w‖ ≤ ‖wkj+1 − wkj ‖+ ‖wkj − w‖ → 0.

We deduce that wkj+1 → w. Since f1 and f2 are C1 functions on Ω, NΩ has a closed graph and
∇Φρkj

(wkj )→ w∗, we obtain:

∇f(w) + µw∗ ∈ −NΩ(w)

which implies that
−µw∗ ∈ ∇f(w) +NΩ(w).

Since at the same time, −µw∗ ∈ ∂(−µΦ0)(w), we deduce that:

−µw∗ ∈ ∂(−µΦ0)(w) ∩ (∇f(w) +NΩ(w)),

which implies that ∂(−µΦ0)(w) ∩ (∇f(w) +NΩ(w)) 6= ∅.

According to Proposition 5.6, if 〈y, z〉 = 0 and Ω is qualified at w, then w is a weakly stationary point
for MPCC.

3. The inequalities (6.7) imply that:

f(wp) + µΦ0(wp) ≤ f(w0) + µΦ0(w0) +M

p−1∑
k=0

|ρk+1 − ρk|

≤ f(w0) + µΦ0(w0) +M

+∞∑
k=0

|ρk+1 − ρk|.
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We deduce that if w is a limit of wp, then we have:

f(w) + µΦ0(w) ≤ f(w0) + µΦ0(w0) +M

+∞∑
k=0

|ρk+1 − ρk|.

4. The set of limits of the sequence (wk) is nonempty because Ω is a bounded set. It is finite because
by item 2 of this theorem, it is included in the set

{w ∈ Ω | ∂(−µΦ0)(w) ∩ (∇f(w) +NΩ(w)) 6= ∅}

which is finite by assumption. Moreover, item 1 of this theorem implies that the set of limits of the
sequence (wk) is connex. Finally, the set of limits of the sequence (wk) is a singleton, then the whole
sequence (wk) converges.

The convergence to a weakly stationary point is not satisfactory because in general it is easy to obtain
weakly stationary points. The following algorithm allows for obtaining strongly stationary points if MPCC-
LICQ holds. Before, for any w := (x, y, z) ∈ Ω, we introduce the following function Φ̃w : Rn → R with, for
all w := (x, y, z) ∈ Ω:

Φ̃w(w) :=

m∑
i=1

yi+zi>0

(
yi + zi −

√
y2
i + z2

i

)
+

m∑
i=1

yi+zi=0

min{yi, zi}. (6.8)

Difference of Convex functions Algorithm Completed for MPCC (DCAC-MPCC)

Step 0: Choose w0 ∈ Ω and ε0 > 0. Set p = 0.

Step 1: Construct a sequence (wk) by wk+1 solving (6.6). The parameters ρk are chosen such that ρ2
k =

o(min{(yki )2 + (zki )2 | i = 1, · · · ,m}), ρk → 0 and
∑
k≥0

|ρk+1 − ρk| < εp/M , where M is a constant

Lipschitz of (ρ,w)→ Φρ(w).

Step 2: Let wp the limit of the sequence (wk). If for all w∗ ∈ Ext(∂(−Φ̃wp )(wp)), wp is a solution of

min
w∈Ω

1

2
‖w‖2 + 〈∇f(wp)− µw∗ − wp, w〉. (6.9)

then STOP, else go to Step 3.

Step 3: Pick w∗ ∈ Ext(∂(−Φ̃wp )(wp)) be such that wp is not a solution of (6.9), set w̃p as a solution of (6.9)
and go to Step 1 with w0 := w̃p, εp+1 := f(wp) + µΦ0(wp)− f(w̃p)− µΦ0(w̃p) > 0 and p→ p+ 1.

The notation Ext(∂(−Φ̃wp )(wp)) stands for the extremal points for the convex set ∂(−Φ̃wp )(wp). Since
∂(−Φ̃wp )(wp) is a polyhedral set, the set Ext(∂(−Φ̃wp )(wp)) is finite, then Step 2 consists of solving a finite
number of optimization problems. You can observe that (6.9) has a unique solution. Steps 2 and 3 have
been inspired by Section 5.1 in [13].

The following theorem gives a convergence result of DCAC-MPCC.

Theorem 6.6. We suppose that f is a C1 and a Lipchitz-continuous function on Ω with L ≥ 0 its constant
of Lipschitz, that Ω is a bounded set, and that f = f1 − f2 with f1 and f2 two C1 and convex functions
on Ω. Moreover, we suppose that f1 or f2 is γ-strongly convex on Ω, with γ > 0. We suppose that α > 0
where α is defined in (4.2). We choose Φρ defined in (6.5) and let c > 0 be the constant of assumption H2

for Φ0. If the set
{w ∈ Ω | ∂(−µΦ0)(w) ∩ (∇f(w) +NΩ(w)) 6= ∅}

is finite, then the algorithm DCAC-MPCC applied with µ >
L

cα
is well defined and converges in a finite

number of iterations of p to a point w = (x, y, z) ∈ Ω which satisfies

∂(−µΦ̃w)(w) ⊂ ∇f(w) +NΩ(w).

If moreover 〈y, z〉 = 0 and MPCC-LICQ holds at w, then w is a strongly stationary point for MPCC.
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Proof. According to Item 4 in Theorem 6.5, for any w0 ∈ Ω, the whole sequence (wk) generated by Step 1 in
DCACM converges. Then for each iteration p, the element wp is well defined. Therefore Step 2 is well defined.

We now prove that Step 3 is well defined. Let w∗ ∈ Ext(∂(−Φ̃wp )(wp)) be such that wp is not a solution
of (6.9). We prove that εp+1 := f(wp) + µΦ0(wp)− f(w̃p)− µΦ0(w̃p) is positive where w̃p is a solution of
(6.9). Since w̃p solves (6.9) and wp does not solve it, we have:

f1(w̃p)− 〈∇f2(wp) + µw∗, w̃p〉 < f1(wp)− 〈∇f2(wp) + µw∗, wp〉.
The above inequality can be written as follows:

f1(w̃p)− f1(wp)− 〈∇f2(wp) + µw∗, w̃p − wp〉 < 0. (6.10)

Given that ∇f2(wp) + µw∗ ∈ ∂(f2 − µΦwp )(wp) and f2 − µΦ̃wp is a convex function, we have:

〈∇f2(wp) + µw∗, w̃p − wp〉 ≤ f2(w̃p)− µΦ̃wp (w̃p)− f2(wp) + µΦ̃wp (wp).

We apply the previous inequality in (6.10) and we obtain:

f1(w̃p)− f1(wp)−
(
f2(w̃p)− µΦ̃wp (w̃p)− f2(wp) + µΦ̃wp (wp)

)
< 0

which implies
f(w̃p) + µΦ̃wp (w̃p) < f(wp) + µΦ̃wp (wp). (6.11)

Since for any a ≥ 0 and b ≥ 0, we have a+ b−
√
a2 + b2 ≤ min{a, b}, we have:

∀w ∈ Ω, Φ0(w) ≤ Φ̃wp (w). (6.12)

In another way, given that
m∑
i=1

y
p
i +z

p
i =0

min{ypi , z
p
i } =

m∑
i=1

y
p
i +z

p
i =0

(
ypi + zpi −

√
(ypi )2 + (zpi )2

)
= 0

with wp := (xp, yp, zp), we deduce that:

Φ0(wp) = Φ̃wp (wp). (6.13)

Given that w̃p ∈ Ω, by (6.11), (6.12) and (6.13), we have:

f(w̃p) + µΦ0(w̃p) < f(wp) + µΦ0(wp).

Therefore, εp+1 > 0. This finally proves that Step 3 is well defined, then the algorithm is well defined.

We now prove that the algorithm finishes in a finite number of iterations of p. According to Item 3 in
Theorem 6.5, we have, for any iteration p:

f(wp+1) + µΦ0(wp+1) ≤ f(w0) + µΦ0(w0) +M
∑
k≥0

|ρk+1 − ρk|

< f(w̃p) + µΦ0(w̃p) +M
εp+1

M
by construction of (ρk)k

= f(w̃p) + µΦ0(w̃p) + f(wp) + µΦ0(wp)− f(w̃p)− µΦ0(w̃p)

= f(wp) + µΦ0(wp).

This proves that for any iteration p, we have wp+1 /∈ {w0, · · · , wp}. At the same time, according to Item 2
in Theorem 6.5, for any iteration p, we have

wp ∈ {w ∈ Ω | ∂(−µΦ0)(w) ∩ (∇f(w) +NΩ(w)) 6= ∅}
which is a finite set. Then the algorithm converges in a finite number of iterations of p.

Let p be the last iteration of the algorithm. Let w∗ ∈ Ext(∂(−Φ̃wp )(wp)). Given that p is the last
iteration, wp solves (6.9), then the first order optimality condition leads to wp + ∇f(wp) − µw∗ − wp ∈
−NΩ(wp), which implies that µw∗ ∈ ∇f(wp) +NΩ(wp). That is true for all w∗ ∈ Ext(∂(−Φ̃wp )(wp), then

Ext(∂(−µΦ̃wp )(wp)) ⊂ ∇f(wp) +NΩ(wp).

Since ∂(−µΦ̃wp )(wp) = conv
(

Ext(∂(−µΦ̃wp )(wp))
)

and ∇f(wp)+NΩ(wp) is a convex set, we deduce that:

∂(−µΦ̃wp )(wp) ⊂ ∇f(wp) +NΩ(wp).

We assume that 〈yp, zp〉 = 0 and MPCC-LICQ holds that wp. The function Φ̃wp clearly satisfies assumptions
H1, H3 and H4 in Section 4. According to Inequality (6.12), the function Φ̃wp satisfies assumption H2 with
the same constant c as for Φ0. We can observe that the function Φ̃wp satisfies the assumption (5.2) at wp,
then according to Theorem 5.4, wp is a strongly stationary point for MPCC.
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7 Numerical examples
To give more validation of our theoretical results, we test the algorithm on a set of MPCCs derived from
MacMPEC collection [17]. The experiments were performed on Windows 10 Pro, with 3.20 GHz Intel using
5 cores and 8GB RAM. The DCAC-MPCC has been implemented in MATLAB (R2014a).

We only consider the case where g and h are affine functions. In Step 1, we consider the DC-descomposition
f(w) = f1(w)− f2(w) with f1(w) := 0.5α‖w‖2 and f2(w) := 0.5α‖w‖2 − f(w) with α > 0 large enough in
order that f2 is strongly convex on Ω. We solve (6.6) using quadprog on MATLAB. Step 1 finishes when
‖wk+1 − wk‖∞ < 10−1. When we consider a smaller tolerance, the number of iterations of p decreases but
at the same time, the number of iterations in Step 1 increases, then the CPU time of the whole algorithm
increases also.

In Step 2, we know that (6.9) has a unique solution. Given w̃p a solution of (6.9), we deduce from
the uniqueness of solution of (6.9) that wp is a solution of (6.9) if and only if wp = w̃p. Then, for each
w∗ ∈ Ext(∂(−Φ̃wp )(wp)), we test if ‖wp− w̃p‖∞ < 10−3, where w̃p is the solution (6.9). The program (6.9)
is also solved by quadprog on MATLAB.

We obtained the following results. The real value is the optimal value of the optimization problem,
the obtained value is the value that we obtained. The number of iterations corresponds to the number of
iterations of p in DCAC-MPCC.

Name Real value Obtained value Iterations n m q r
bilevel1 0 −7.1054 · 10−15 1 16 6 1 8
bilevel2 -6600 -6600 46 32 12 0 16
ex9.1.2 -6.25 -6.25 2 10 4 0 5
ex9.2.1 17 17 2 10 4 0 5
flp4.1 0 3.6472 · 10−4 1994 110 30 30 30
bard1 17 17 4 8 3 0 3

bard1m 17 17 4 8 3 0 3

8 Conclusion and future works
To our knowledge, this algorithm is the first DC Algorithm which allows for converging to a strongly
stationary point for MPCC. In this paper we do not prove that this algorithm converges to a feasible point
for MPCC, which is a weakness of this article and constitutes a possible extension of this work. In a
future work a natural extension would be to consider the case where Ω is not convex, for example, with a
linearization of the constraints. Moreover, numerical simmulations could be made. A new work (see e.g.
[22]) proposes an acceleration of DCA. This acceleration could be applied to a DC algorithm for MPCCs.
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