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Abstract

This article reports the results of a study on the base state of artificially frustrated ‘‘spin ice’’ systems. We have studied the states of

minimum energy reported by experimental studies on nanoscale ferromagnetic islands and the protocols employed to reach those states.

The main technique employed in this study is a genetic algorithm that has been contrasted with two Montecarlo methods. Nanoscale

islands are modeled through dipolar moments placed on a plane, rectangular array. Studies include the correlation between nanoscale

islands, statistics on vertex types formed in the array for the minimum energy state and intermediate states. The results suggest a failure

in the protocols adopted to minimize energy in these systems. A study on the efficiency between the devised genetic algorithm and the

Montecarlo methods used in the research is also included.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Frustration or competition between interactions is a
common feature of many systems in condensed matter [1].
One of the most common frustrated systems is ordinary
water ice, in which hydrogen ions follow the so-called ‘‘ice
rules’’ [2]. These rules require that the four hydrogen atoms
surrounding each oxygen atom should be placed in a
tetrahedral coordination such that two are close to the
central oxygen atom and the other two are far from that
atom, as shown in Fig. 1a. In magnetic materials
frustration appears when the system cannot minimize its
total energy, minimizing the energy in each individual
spin–spin interaction [3–5]. In a conventional ‘‘spin ice’’
system [6,7], magnetic ions form a lattice of joined
tetrahedra. Spins in these ions point either inward or
outward (Fig. 1b). The dipole interaction favors an in–out
array of the moment configuration, but not all pairs can be
simultaneously satisfied. As a result, the system is
frustrated.
- see front matter r 2007 Elsevier B.V. All rights reserved.
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At low temperatures, the spins in these materials freeze
into exotic disordered states that have many of the features
of spin glasses [8,9], but these ice-like states are different
from disorder-based spin glasses in that there is a very
narrow relaxation time of spins due to the well-ordered
lattices [10,11].
One of the most fascinating aspects of magnetically

frustrated systems is how they locally accommodate the
spin–spin frustration. However, from a practical point of
view, individual spins within the materials are difficult to
be experimentally probed without altering the state of the
system. To overcome this difficulty, magnetically frustrated
systems have been created in which one can directly probe
the individual elements without altering the state of the
system. Previous works have been reported in which
interacting moments are trapped by magnetic fields at
low temperatures [12,13]. Other experimental works report
analogies closer to conventional ‘‘spin ice’’ systems, using
individual arrays of single-domain ferromagnetic systems
[14–19]. In an excellent work by Wang et al. [20], they
report a study on minimum energy states in a system
formed by 80,000 nanoscale ferromagnetic islands on an
array fabricated with lithographic techniques and with
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Fig. 2. (a) Array of nanoscale islands in a two-dimension square lattice.

(b) Two interacting generic domains. Each spin within the domain placed

in R
!

1 interacts with each spin placed in R
!

2 of domain 2.

Fig. 1. (a) Schema of water ice with two hydrogen atoms far from the

oxygen atom and two close to the atom. (b) ‘‘Spin ice’’ schema of a

tetrahedrical lattice in a rare earth.
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different lattice parameters. In the same issue of Nature,
Bramwell [21] discusses the possible true states of minimum
energy for those systems and the efficiency of the
experimental protocol used to reach those states.

Here we report an study of the topological properties of
nanoscale ferromagnetic islands in minimum energy states.
We simulate the arrays studied in the experimental work by
Wang et al., calculating the effective dipolar interaction
between the particles. The techniques used to reach the
minimum energy states are a genetic algorithm and two
Montecarlo methods, which enable us to compare both
methods.

2. Model and simulation

The system under study is composed of a two-dimension
array of single-domain ferromagnetic islands with intrinsic
moments. In order to make the comparison with the
experimental work by Wang, we will use nanoscale islands
of 80 nm width, 220 nm length and 25 nm height. The size is
small enough to allow spins to be aligned in a single
ferromagnetic domain, but large enough to allow stability
of the configuration at 300K. Interaction energy is in the
order of 10�19 J, equivalent to 104 K. The moment of each
island is in the order of 107 Bohr magnetotes. The smallest
lattice parameter is on the range of 320 nm and it will be
moved on to 900 nm. Part of the configuration of the array
on the plane is represented in Fig. 2a. In our simulation we
will study 1024 nanoscale islands which form a square
array.
In order to determine interaction energy between any
domains in the array, we evaluate the effective dipolar
interaction among these domains.
2.1. Effective dipolar interaction

We take two generic domains within the array and
calculate the dipolar interaction between the spins of both
particles, given by the following equation:

Edip ¼
1

2
O
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where O ¼ g2m2B (g is the gyromagnetic factor and mB the
Bohr magneton), c0 is the interplane distance in the z

direction, t1 and t2 represent the thickness of the nanoscale
islands (in this case t5L where L is the magnitude of the
length of the nanoscale islands in the plane). As shown in
Fig. 2b D

!
represents the position vector of the mass center

in one of the two domains respect to the mass center in the
other domain. The energy of Eq. (1) can be expanded to the
r=D ratio, in which r is the module of vector
r!¼ r!2 � r!1. This expansion is documented in great
detail in a work by Politi and Pini [22]. The equation for
dipolar energy can be written as follows:

E � E
ð0Þ
dip þ E

ð2Þ
dip, (2)

where E
ð0Þ
dip is the zero order coupling and E

ð2Þ
dip takes into

account the finite size of the nanoscale islands. These terms
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are given by the following expressions:
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Each particle behaves as a S
!
¼ N s! simple spin, where N

is the total number of spins. In these expressions, S
!k

and

S
!?

represent, respectively, the spin components in the
plane and perpendicular to the plane, G12 is the semi-sum
of the inertia moments of the particles. In the present work
we study the effects of the term E

ð2Þ
dip on the lattice

parameter.

2.2. Genetic algorithm

In order to obtain the configuration of moments with
minimum energy, a genetic algorithm that searches in the
space of the configurations will be used according to the
following methodology:
�
 The possible configuration of moments (simple spins)
will be represented by individuals having a specific
genotype. The genes represent the position of the
nanoscale islands and the magnetic moment. These
genes determine the phenotype of each individual in a
population, the energy of the system, the type of vertex,
the correlation, etc.

�
 Hundred individuals are randomly chosen, and the total

energy of the system for each individual is determined.
The quality of each individual for adaptation is
determined by its energy. The lower the energy the
better the quality.

�
 A diversity mark is given to individuals. They are

ordered in a more or less diverse order according to
different descriptors (gene diversity, vertex diversity,
etc.)

�
 A survival probability is assigned to individuals ordered

according to their quality and diversity, assigning 100%
survival probability to the individual with less energy.
Table 1

�
 Sequence to choose the second individual once the remaining 99

individuals have been ordered by combined range

Individual Quality

ðQÞ

Diversity

ðDÞ

Combined range

CR ¼ 0:1Qþ 0:9D

Survival

probability

I34 58 3 8.5 0.400

I78 67 5 11.2 0.240

I99 99 2 11.7 0.144

I11 50 10 14.0 0.086

The chart only shows the first four individuals.
Mutation operators and gene recombination are applied
to surviving individuals in order to obtain the newer
generation.

Due to the very high degeneration of states in this system,
we have performed a search so as not to be trapped into a
local minimum. This is achieved by means of diversity,
which is far more important than the quality in this system.
In every generation we have 100 individuals. The one
showing the lower energy is chosen and the diversity of the
remaining 99 individuals is calculated (e.g. referring to the
vertex) respect to that chosen individual. When the second
individual is chosen, diversity is measured respect to the
two chosen individuals and so on, until 30 individuals are
chosen. With those 30 individuals, 99 new elements are
generated through mutations and recombinations. The
lowest energy individual is added to this compound of 99
individuals and thus the new generation is obtained. The
following table shows a part of this sequence and the way
to choose individuals in each generation using the range
space, that is, assigning a fix p probability of survival once
the former individuals is chosen. In our case, the value of
the probability is 40% once the individual with the lowest
energy has been chosen (Table 1).
The advantage of this algorithm is the capacity to tunnel

the barriers which separate the consecutive minimals when
searching for possible solutions, using gene recombination.
This procedure makes it possible to drastically reduce the
dimension of the configuration space. Previous articles
have reported the use of this technique in similar systems.
For example, to study minimum energy states in 2- and
3-dimension spin glass [27].
In recent articles by Schmitt et al. [25,26], they showed

the asymptotic convergence of genetic algorithms scaled to
a global optima. If our algorithm is represented by a
Markov Chain, it is possible to verify its compliance with
the properties of the family of genetic algorithms that
converge in a global optima. These properties are: alphabet
(0, 1), multiple-bit mutation, single-cut-point crossover and
power-law scaled proportional fitness selection based upon
a fitness function. In the same article by Schmitt [25,26],
they show both strong and weak ergodicity for these
algorithms.

2.3. Montecarlo algorithm

We use a Montecarlo algorithm to work with ‘‘spin ice’’
systems in the lattice, as previously discussed in the works
by Barkema and Newmann [23,24]. In this model, the ‘‘spin
ice’’ configuration is mapped in the lattice using 3-color
squares. In our work, we generalize this model to study any
vertex configuration—not only spin ice configurations—
using a 3-color code which does not necessarily comply
with the rules of the model used by Barkema et al., as
shown in Fig. 3a. The generalization means that in, in the
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Fig. 3. (a) Configuration of ‘‘spin ice’’ (two in-two out) using a 3-code

color in a section of the studied matrix. (b) Representation of vertex types

studied in the array. (c) Vertex of the lattice with interacting pairs which

favor minimization of energy (above) and vertex with energetically

unfavorable pairs (below).

Fig. 4. (a) The 16 possible vertex types ordered from lower to higher

energy and their percentage in a random initial configuration. (b)

Definition of first neighbors in the correlation study.
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case of our algorithm, two consecutive squares can have
the same color.

The methodology for using the Montecarlo method is
the following:
�
 A configuration of random moments is implemented
using a 3-color mapping for the squares which form the
lattice studied (Fig. 3a), and its total energy is measured.

�
 A square is randomly chosen as the initial seed (be A the

color of the square).

�
 From the two remaining colors, one is randomly chosen

(color B), and a cluster is established. The cluster starts
at the initial seed with the first neighbors of that seed
and the nearest neighbors to those neighbors.

�
 A and B colors are interchanged in the cluster.

�
 The energy of the new configuration is measured and the

change is accepted with the following probability.

P ¼
e�bDE if DE40;

1 in another case:

(
(5)

3. Results

In order to present the results of our simulation, we
discuss the possible types of vertex configuration present in
the array and the definition of the correlation between the
nanoparticles. With this objective in mind, we reproduce
the figures appearing in the work by Wang [20] in order to
define the correlation. Fig. 3b shows the vertex defined by
the four domains which form it. Fig. 3c shows the
interaction of pairs in vertex types which favor or unfavor
minimization of energy. Fig. 4a shows the 16 possible
vertex configurations of four nanoscale islands, separated
into four topological types. These configurations are
ordered from lower to higher energy. We can see that type
I and II configurations correspond to ‘‘spin ice’’ vertex. As
there are 16 possible configurations, we can determine the
expected percentage of vertex types in a random distribu-
tion within the array.
In order to study the correlation between nanoscale

islands, we will use the correlation function defined in the
work by Wang et al. [20]. A set of correlation functions
between different types of neighboring pairs is defined.
‘‘NN’’ represents the first neighbors in a nanoscale islands:
‘‘L’’ represents the next neighbors along the longitudinal
direction to the nanoscale island, and ‘‘T’’ represents the
next neighbors along the transverse direction. This config-
uration is shown in Fig. 4b. If the configuration of the pair
is such that the energy of the dipolar interaction is
minimized, then the correlation function takes the C ¼

þ1 value. If the configuration maximizes energy, then we
get C ¼ �1. Then we determine the average value of
function C for NN, L and T pairs.
In our first simulation we just consider the effective

dipolar interaction among all nanoscale islands within the
array. Our array is composed of 1024 nanoscale islands
distributed as shown in Fig. 2a. Using the genetic
algorithm and the Montecarlo simulation we find the same
minimum energy state with degeneration 2, which corre-
sponds to the state proposed by Bramwell [21]. The
configuration of moments in this state of minimum energy
is represented in Fig. 5. In this configuration, 100% of
vertexes is of Type I, and the average correlation for NN
type pairs is þ1. For T pairs, the average value of the
correlation function is þ1 and �1 for L pairs. These values
imply that there is a strong correlation with the first
neighbors in this state of configuration of moments. This
configuration for the minimum energy is the same for all
simulated lattice parameters.
Fig. 6a shows the energy of the base state when we

include E
ð2Þ
dip and when we do not consider it as a function

of the lattice parameter. Using the information in the figure
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Fig. 5. Configuration of moments in the minimum energy state when

considering only the effective dipolar interaction.
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Fig. 6. (a) Study of the effect generated when considering the term in the

effective bipolar energy of the array, as a function of the lattice parameter.

The graph shows that the term that accounts for the shape of nanoscale

islands is important in a spacing measuring less than 600 nm, supplying

19% of the total energy of the system, when the lattice spacing is 320 nm.

(b) Comparison of energy (relative to the base state) for the first nine

configurations of lower energy, when multipolar contribution is con-

sidered and when it is depreciated. The lattice parameter is 320 nm. A

reflection is made in the y-axis for a better appreciation of the results. 0

configuration corresponds to the minimum energy state.
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we can see that over 600 nm the effect of the form of
nanoscale islands is irrelevant. In addition, when consider-
ing multipolar expansion, we include a study of the
stability of the base state and of the first excited states,
studying the first nine configurations of minimum energy in
a fixed lattice parameter. In Fig. 6b, we show the energy of
the system (relative to the minimum energy state) in two
situations: one, when we consider the multipolar expansion
which accounts for the shape and size of the nanoscale
islands; two, when that term is depreciated. In the figure
below we can see that the multipolar contribution helps to
slightly stabilize the first two states of minimum energy.

3.1. Experimental protocol

In order to simulate the experimental protocol used in
[20], we proceed as follows:
(1)
Fig.

mom
In order to invert the magnetic moment of each
nanoscale island, an e40 energy should be delivered.
(2)
 First, a random configuration family is used, and in the
expression which represents the energy of the system,
the external magnetic field is incorporated.

Ei ¼ Edip � m!i � B
!
þ dðm!i � m!0Þe,

where B
!
¼ B0ðcosðotÞbi þ sinðotÞbjÞ, (6)

d is a function with value 1 when the moment m!i (at the
n iteration of the genetic algorithm or Montecarlo
algorithm), is equal at the initial moment for the same
nanoscale island and zero in another case.
The algorithm preserves the configuration of m!i

moments of the best individual in each iteration. The
direction of the magnetic field rotates at velocity so as
to simulate the effect of the rotation of the sample in
the field. Time takes discreet values (corresponding to
the iterations of the genetic or Montecarlo algorithm).
The value of B0 starts over the value of e and decreases
in discreet steps (frequency n) until it reaches a value
below e. The schema of the protocol used by the
authors is shown in Fig. 7:
7. Magnetic field applied to the sample in order to randomize

ents in the nanoscales.
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The study includes the effect of achieving the minimum
energy state for different values of angular velocity, as
well as the frequency of changes in the direction and
initial value of the field respect to the parameter.
The results are shown in Figs. 8 and 9. These results are
obtained after determining the set of values ðo; v;B0Þ which
optimize the protocol to minimize energy. Figs. 8 and 9
show a study on types I and II vertexes (spin ice vertex) and
NN type correlation. The study allows us to verify that
with the method of the sample which rotates in the
magnetic field, the system is unable to accommodate all
configurations to minimize energy. This situation can be
seen in greater detail if we study one rotating vertex and we
verify the way in which the system adjusts itself, using its
four moments, to minimize energy, and so the system is
frustrated.
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Similar results are obtained if we replace the experi-
mental protocol simulation with another simulation of
numeric origin.
We assume that it is difficult to reach the minimum

energy state in the experimental protocol. To this aim, we
calculate the energy of the system adding the following
stochastic term to the dipolar interaction:

ETotal ¼
X

ij

½E
ð0Þ
dip þ E

ð2Þ
dip�ij þ aRPdðm!i � m!0Þ, (7)

where R is the total energy (as an absolute value) in the
minimum energy state, P is a weight function with integer
values ranging from 0 to 10, a is an adimensional
parameter for adjustment. At the beginning of the
simulation a m!0 moment is assigned randomly to each
nanoscale island and the value of the P function for each
domain. With this additional term we can evaluate the
energy that has to be used to flip the moments of
the nanoscale islands, as a result of the inefficiency of the
protocol.

4. Conclusions

The system studied shows a minimum energy state with
degeneration two, and the configuration of moments is
shown in Fig. 5. The minimum energy state is reached
when considering only the effective, long-range dipolar
interaction, using the three techniques described above,
namely, the genetic algorithm, the Montecarlo method for
‘‘spin ice’’, and the general Montecarlo method. When we
simulate the experimental protocol using a wide range of
values for ðo; v;B0Þ, we cannot make the system achieve the
minimum energy that can be achieved when only the
effective dipolar interaction is considered. Using the best
set of values for ðo; v;B0Þ, we can reproduce the experi-
mental results reported in Ref. [20]. The same results can be
achieved using Eq. (7). This methodology allowed us to
assess the efficiency of the numerical techniques used to
study this type of systems. We conclude that the 3-color
Montecarlo method is more efficient when searching is
done only in the space of ‘‘spin ice’’ configurations (type I
and II vertices), but the genetic algorithm is far more
efficient when searching starts at general configurations,
that is, the four types of vertices. This is vitally important
when studying the protocol with Eqs. (6) or (7).
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