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Soliton instabilities in the easy plane ferromagnet Heisenberg chain
with out-of-plane spin deviation
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In this paper we investigate the presence of out-of-plane spin deviationρ(ξ) in the easy-plane ferromagnetic Heisenberg chain by using the
coupled-boson operators together with the Schwinger transformation for the spin operator; this method allows us to conclude that the critical
behaviour of the instability is due to the velocity of the nonlinear excitations (solitons) only for an appropriate range of the magnetic field.
In this case, when the velocity becomes lower, the stable soliton corresponding toρ(ξ) is distorted by magnons and loses stability. If we
increase the velocity ofρ(ξ), it then decays into high frequency-oscillations. Nevertheless, we find an opposite competence effect produced
by the velocity and the magnetic field onρ(ξ).
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En este trabajo se investiga la presencia de las desviaciones del espı́n fuera del planoρ(ξ), en el plano de f́acil magnetizacíon de una
cadena ferromagnética de Heisenberg, utlizando operadores bosónicos acoplados en conjunto con las transformaciones de Schwinger para
los operadores de espı́n, este ḿetodo permite concluir que el comportamiento crı́tico de las inestabilidades, se debe a la velocidad de
las excitaciones no lineales (solitones). En este caso, cuando la velocidad llega a ser baja, el soliton estable correspondiente aρ(ξ) es
distorsionado por magnones y pierde estabilidad. Si se incrementa la velocidad deρ(ξ) entonces este decae en oscilaciones de alta frecuencia.
No obstante lo anterior, se encuentra un efecto de competencia opuesto entre los efectos producidos por la velocidad y el campo magnético
sobreρ(ξ).

Descriptores: Cadena ferromagnética de Heisenberg; solitones; plano de fácil magnetizacíon; desviaciones del espı́n fuera del plano.

PACS: 47.35.Fg; 94.05.Fg; 96.15.Pf

1. Introduction

Model substances representing magnetic chains have been
investigated in detail by measuring neutron scattering cross
sections Boucher [1] and by several other experimental tech-
niques, Seit and Berner [2]. The results reveal the presence
of nonlinear excitations of the freedom’s magnetic degrees,
which are as elementary as the usual linear modes. A partic-
ular system which theories and experiments have intensively
been studied is the easy-plane linear-chain magnet CsNiF3,
in which the interactions between the spins are ferromag-
netic; to compare theory and experiments, many approxima-
tions have been produced, in particular those involving a sine-
Gordon mapping Mikeska [3].

The easy-plane magnetic behaviour of this system can be
well represented by an easy-plane Heisenberg Hamiltonian
from which it is fairly straightforward used to obtain non-
linear excitations (solitons, domain-walls) if one assumes
some simplifying characteristics present in the low temper-
ature regime; for example, a classical approach for the spin
variables makes it possible in the case of extreme anisotropy,
i.e. (D/J)1/2 À kBT ) and in the continuum limit, to map
the Hamiltonian to a sine-Gordon equation whose static and
dynamic properties are well known. However, there are lively
discussions about the importance of the out-of-plane spin de-
viation in interpreting experimental data. Moreover, quantum
contributions to the statistical behaviour of this system are

also expected due to the fact the spins are quantum variables
associated with a discrete one-dimensional regular lattice.

Since the prediction of solitary spin structures in the pla-
nar ferromagnet [3], the main effort was focused on the
stability of these spin structures, according to Magyari and
Thomas [4]. The kinks in a planar ferromagnet with an in-
plane magnetic field are unstable above a critical-field; this
critical field strength decreases rapidly as the kink velocity
increases toward its maximum value (likewise Kumar, [5]).
An analysis of the limitations of the sine-Gordon (s–G)-like
description of an easy-plane ferromagnetic chain is reported,
and shows that the (s–G) description is valid only for low
magnetic fields and low velocities of soliton motion (also
Mikeska and Osano [6]). They present results of the nonlin-
ear dynamics of a realistic classical easy-plane ferromagnetic
chain in an external magnetic field, in particular concerning
the dependence of soliton solutions on the strength of the
single-ion anisotropy, taking into account nontrivial aspects
of the dynamics of the spinSz (the out-of-plane component)
(see, in the same regard, Seit and Bernner [2]). By means of
the nuclear spin-lattice relaxation of Cs133, they study linear
and nonlinear magnetic excitations in the one-dimensional
easy-plane ferromagnet (CsNiF3). It is shown that the effect
of out-plane fluctuations remains an open question.

Recently, interest in the study and comprehension of
these systems still remains valid. Research into the nonlinear
properties of magnetic systems have attracted a great deal of
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attention due to the new experimental data and the possibil-
ity of their wide applications to different branches of applied
science and technology [7,18].

In this paper, our purpose is to investigate the existence
and the behaviour of the out-of-plane spin deviation in the
ferromagnetic Heisenberg chain with easy-plane anisotropy
in the presence of an external magnetic fieldH parallel to
that plane.

2. Model and theory

The model considered in the present paper is used to take into
account the effects produced by the out-of-plane deviations in
the magnetic system, where the Hamiltonian for the magnetic
chain is given by:

H = −J

2

N∑

n,δ=±a

~Sn · ~Sn+δ + D

N∑
n=1

(Sz
n)2− h

N∑
n=1

Sx
n, (1)

whereJ > 0 is the exchange nearest-neighbour interaction,
~Sn the spin on siten, D > 0 represents the intensity of the
local anisotropy, andh ≡ gµBH.

Proceeding as Ferrer and Pozo do [19], we take the con-
tinuum form of the Hamiltonian:

H = −J

2

∫
dz

(
1
2
(S†(z)S−′′(z) + S−(z)S†′′(z))

+ Sz(z)Sz′′(z)) + D

∫
dz(Sx(z))2

− h

∫
dzSx(z)− 1

2
NJS2. (2)

Following Ferrer and Pozo [20], making use of the Schwinger
coupled-boson representation for the spin operators, we can
write:

S†(z) = a†(z)b(z); S−(z) = b†(z)a(z) (3)

Sz(z) =
1
2
[a†(z)a(z)− b†(z)b(z)],

wherea†(z), a(z), b†(z), b(z) are the usual simple harmonic
oscillator bosonic operators acting at each point of the chain.

In the Heisenberg picture, the dynamic of the above op-
erators is coupled through equations(~ = 1)

iȧ(z, t) = [a(z, t),H]; iḃ(z, t) = [b(z, t),H]. (4)

From these equations, we find two non-linear differential
equations for the spin operators; then, we take the classical
limit of the spin variable, obtaining:
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2
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1
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2
ha, (6)

where for simplicity we assume an implicit dependence of
the operators on thez andt variables, the dot defines∂/∂t,
and the primes denote∂/∂z. In the classical limit of the spin
variable, Schwinger coupled-bosons operators permit us to
define the coherent states|αβ 〉 [19] that are eigenstates of the
bosonic operatorsa andb with eigenvaluesα andβ, respec-
tively, so that it is possible to write the coupled differential
equations for these eigenvalues by bracketing the equations
for the bosonic operators into an arbitrary coherent state (Fer-
rer and Pozo [20]), obtaining the following two non-linear
complex differential equations:

iα̇ = J

(
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8
α′′ − 1

4
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)
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1
4
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2
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2
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1
4
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4
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2
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|β|2β′′ − β′α′∗α− 1

4
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+ J

(
1
2
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4
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4
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+
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(
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1
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)
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2
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whereα = α(z, t) andβ = β(z, t). On the other hand, us-
ing the kinematics conditions associated with the Schwinger
transformation:

|α(z, t)|2 − |β(z, t)|2 = 2ρ(z, t);

|α(z, t)|2 + |β(z, t)|2 = 2S, (9)

whereρ(z, t) accounts for the out-of-plane spin deviations.
Solving forα andβ we get, to the first order inρ(z, t):

α(z, t) =
√

S(1 + ρ(z, t)/2S) exp[iθα(z, t)]

β(z, t) =
√

S(1− ρ(z, t)/2S) exp[iθβ(z, t)], (10)

whereθα(z, t) andθβ(z, t) are real-angle variables.

Rev. Mex. F́ıs. 52 (6) (2006) 522–526



524 J. POZO AND A. LEÓN

FIGURE 1. Phase plane diagramφξ(φ) for the reduced sine-
Gordon equation,i.e. the nonlinear ODE obtained by assuming
ξ ≡ z − vt.

FIGURE 2. Out-of-plane spin deviationsρ(ξ) versusξ and velocity
v. The values of the parameters are:h = 0.1 andD = 0.2.

FIGURE 3. Out-of-plane spin deviationsρ(ξ) versusξ and veloc-
ity v.(low range of the velocity). The values of the parameters are
h = 0.1 andD = 0.2

On the other hand, we note that the averages of the spin
variables are given by:

〈αβ|Sz(z, t)|αβ〉 = 2ρ(z, t)

〈αβ|Sx(z, t)|αβ〉 = <(α?β) = cos(θβ − θα)

〈αβ|Sy(z, t)|αβ〉 = =(α?β) = sin(θβ − θα). (11)

3. Results

Proceeding as Ferrer and Pozo do [20] (from all these equa-
tions) after some algebraic manipulation, the real and imag-
inary parts can be separated; then, considering the case of
permanent form solutions definingξ ≡ z − vt wherev is a
velocity, we obtain to the first order inρ, θα andθβ ,

φξξ =
h

JSCo
sinφ(ξ), (12)

where we have defined φ(ξ)=θβ(ξ)−θα(ξ), and
φξξ = d2φ/dξ2.

So we find that the sine-Gordon equation reduces to the
Ordinary Differential Equation (ODE). Forh < 0, this would
be the simple pendulum equation whose phase plane be-
haviour is well known. Let us look at the situation forh > 0.
SettingY = φξ yields the two coupled first-order equations,

Yξ =
JSC0

h
sin φ(ξ); φξ = Y.

Here, dividing to eliminateξ, we find

dY

dφ
=

JSCo

h

sin φ

Y

From the above equation, we obtain the phase plane dia-
gram for the reduced sine-Gordon equation that is given by
Fig. 1, where the heavy curves indicate the separatrixes con-
necting the saddle points. The arrows indicate the direction
of increasingξ. Kink solution (domain–wall solution) can
be immediately spotted. The separatrix line forφ > 0 and
Y = φξ connecting the origin and the saddle point corre-
sponds to the domain-wall solution, which can be written as

φ(ξ) = arccos

(
1− 2sech2

(√
h

Co
ξ

))
,

whereCo = (3/8S + 1) [21].
We also find the following equation for the out-of-plane

spin deviations:

ρ′′(ξ) + G(ξ) ρ(ξ) = Q(ξ), (13)

where the derivatives are aboutξ and we use the time as a
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parameter. We also define:

G(ξ) =
1
Co

[F (ξ)−H(ξ)]

H(ξ) =
√

3Jvφ′2(ξ)
8S L(ξ)

(14)

L(ξ) =

√
h cosφ(ξ)− 1

2
D − (

3
16

+ S)Jφ′2(ξ) +
4v2

3J

Q(ξ) = −
√

3J

2Co
φ′(ξ)L(ξ).

Equation (13) shows that the out-of-plane spin deviations
are governed by the linear inhomogeneous differential equa-
tion. To obtain the out-of-plane spin deviationsρ(ξ) we per-
form a numerical integration (Pozo and Ferrer [22]), taking
J = 1 andS = 1.

From Fig. 2 it is possible to observe that the critical be-
haviour corresponding to the regions where the out-of-plane
spin deviationρ(ξ) loses instability, is due to the velocity of
these nonlinear excitations (solitons). If we increase the ve-
locity of the out-of-plane spin deviationρ(ξ), then it decays
into high frequency-oscillations. For these values of the pa-
rameters we find that it is only possible to find the stability of
ρ(ξ) between3 < v < 9 (approximately). The same effect
can be observed in Fig. 5 for the high range of the velocity.
When the velocity becomes lower, the stable soliton corre-
sponding toρ(ξ) is distorted by magnons and loses stability;
this situation can be observed in Fig. 3.

In Fig. 4, the effects produced by the magnetic fieldh
on the out-of-plane spin deviationρ(ξ)are shown. Here, the
values of the parameters arev = 5 andD = 0.2, where we
can appreciate the fact that for small values of the magnetic
field,ρ(ξ) has a small amplitude and is distorted by magnons.
Nevertheless, when the magnetic field increases, we find a re-
gion of stability betweenh = 0.64 andh = 1.28, whereρ(ξ)
increases his amplitude, but after the regionξ = 0, it loses
stability and is accompanied by oscillations of the magnon
type.

FIGURE 4. Out-of-plane spin deviationsρ(ξ) versusξ and the mag-
netic fieldh. The values of the parameters arev = 6.0 andD = 0.2

FIGURE 5. Phase plane of out-of-easy-plane deviationsρ′(ξ) (high
range of velocity). The values of the parameters areh = 0.1,
d ≡ D/J = 0.2.

In Fig. 5, we show the phase plane of out-of-easy-plane
deviationsρ′(ξ), for the high range of velocity, where it is
possible to appreciate the critical behaviour of the instability
produced by the velocity, and we observe the form in which
ρ(ξ) decays into high-frequency-oscillations [23,26].

4. Summary and concluding remarks

We have considered in this paper a ferromagnetic Heisenberg
chain with easy-plane anisotropy in the presence of an ex-
ternal magnetic fieldh parallel to that plane, in the classi-
cal continuum limit. Our interest was focussed on investigat-
ing and describing the existence and the behaviour of out-of-
plane spin deviationρ(ξ) in this system by using the coupled-
bosons operators together with the Schwinger transformation
for the spin operator. The results obtained may be summa-
rized as follows:

We find that the out-of-plane spin deviationρ(ξ) is gov-
erned by the inhomogeneous linear differential equation (13).
A similar equation was already obtained by Magyari and
Thomas [4] for the low velocity limit.

The formalism considered in this paper permits us to ob-
tain (as a particular case) the sine-Gordon static case which is
given by Eq. (12), from phase plane diagramφξ(φ), Fig. 1.
The separatrix line connecting the origin and the saddle point
corresponds to the domain–wall solution for the sine-Gordon
equation. The reason why the phase plane is analysed is that
the relevant basic assumption that permanent form solutions
definingξ ≡ z − vt reduce the nonlinear Partial Differential
Equation (PDE) to a nonlinear Ordinary Differential Equa-
tion (ODE).

We observe that the critical behaviour of the instability of
the out-of-plane spin deviation is due to low and high ranges
of velocity of these nonlinear excitations (solitons), which
can be appreciated in Figs. 2 and 3. These regions of insta-
bility of the soliton can be the ones that produce the diverging
out-of-plane spin deviation [6].
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We find an opposite competence effect produced by the
velocity v and the magnetic fieldh on the amplitude of out-
of-plane spin deviationρ(ξ = 0), which can be appreciated
by comparing Figs. 2 or 3 with 4. The amplitude values of
ρ(ξ = 0) decrease when the velocityv increases, and the
amplitude ofρ(ξ = 0) increases when the magnetic fieldh
increases.

Finally, as shown, the existence and the behaviour of out-
of-plane spin deviationρ(ξ) play an important role in the dy-
namic of this system, and permit an agreement with the ex-
perimental interpretation [2].
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