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In this work we apply multi-class support vector machines (SVMs) and a multi-class stochastic SVM for-
mulation to the classification of fish schools of three species: anchovy, common sardine, and Jack Mack-
erel, and we compare their performance. The data used come from acoustic measurements in southern-
central Chile. These classifications were carried out by using a diver set of descriptors including morphol-
ogy, bathymetry, energy, and space positions. In both type of formulations, the deterministic and the sto-
chastic one, the strategy used to classify multi-class SVM consists in employing the criterion one-species-
against-the-Rest. We thus provide an empirical way to adjust the parameters involved in the stochastic
classifiers with the aim of improving its performance. When this procedure is applied to the classification
of fish schools we obtain a classifier with a better performance than the deterministic classifier.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Acoustics surveys are used to estimate the abundance and to
study the behavior of many species. The last decades shows a great
progress in the development of acoustics devices, and of new
methods and techniques for automatically identifying species
(see Fernandes et al., 2006; Horne, 2000). The echograms obtained
with acoustics devices provide information of size, location and
echo intensity of fish schools. However, its classification is still
not detectable by modern devices. Indeed, according to Horne
(2000), the species identification is the big challenge of fisheries
and plankton acoustics.

A wide range of statistical techniques have been used to classify
mono-specific fish-school. Fernandes (2009) presents a complete
list of studies including principal component analysis, discrimi-
nant-function analysis, artificial neural networks, nearest-neighbor
analysis, k-means clustering and mixture models. Buelens, Pauly,
Williams, and Sale (2009) use kernel methods to classify fish
schools in single beam and multibeam acoustic data. In Robotham,
Bosch, Gutierrez-Estrada, Castillo, and Pulido-Calvo (2010), sup-
port vector machine methods (tool for discriminating between
two groups, see Cortes & Vapnik, 1995; Vapnik, 1995) are used
for the automatic classification of small pelagic fish species from
acoustic surveys data. The results obtained by this approach was
compared with an artificial neural networks methods.
ll rights reserved.
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Typically, the methods used to classify species of fishes require
a scrutiny process of the echograms, the guide of expert criteria
and additional information from trawl sampling (see Simmonds
& MacLennan, 2005. This procedure incorporates some grade of
subjectivity). Thus, other approaches have been developed based
only on the information provided by the echosounders. For in-
stance, the identification of species based on school ‘‘descriptors
parameters’’ from single-frequency acoustic data represents one
type of approach. A second type of approach, which will not be ex-
ploded in this work, makes use of multifrequency acoustic data
(see Korneliussen, Heggelund, Eliassen, & Johansen, 2009).

The purpose of this article is to compare the results of sup-
port vector machines (deterministic SVM) and classification
when the uncertainty of data is incorporated for automatic
acoustic identification of small pelagic fish species; anchovy
(Engraulis ringens), common sardine (Strangomera bentincki) and
Jack Mackerel (Trachurus murphyi) in southern-central Chile.
The latter makes no precise assumption on the class-conditional
densities with given mean and covariance matrix, that is, it is a
‘‘worst-case’’ setting.
1.1. Data collection and descriptors

School data were obtained from 11 acoustic assessment sur-
veys performed with the R/V Abate Molina in northern and
south-central Chile (18�250S–43�500S) between 1991 and 2006.
The data were collected using a scientific echosounder (SIMRAD
EK-500) with a split-beam transducer (ES38 38 kHz) with a nom-
inal �3 dB beam with of 7�, calibrated according to standard
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procedures (Foote, Knudsen, Vestnes, MacLennan, & Simmonds,
1987). The ping rate of the echosounder in the surveys was 1
vs-1, the pulse duration was 1 ms and a minimum threshold of
�65 dB. An Engel pelagic trawl with a 14-m vertical opening
and 14-mm mesh size in the codend as used to identify the spe-
cies in the acoustic survey. The flotation line of this net was
adapted for fishing near the surface.n and Massé (1993) is/are ci-
ted in the text but not provided in the reference list. Please pro-
vide it/them in the reference list or delete these citations from
the text.

The acoustic records of the fish schools detected by the echo-
sounder were processed with Echoview 3.0 software (Sonardata).
Schools were identified by fishing hauls carry out using a mid-
water trawl. The parameters of the fish schools were determined
automatically by the algorithm SHAPES programmed into the
software Echoview and described in Barange (1994) and Coetzee
(2000). Each aggregation was manually marked in a region on
the image of the echogram, and each case was individually ana-
lyzed. The parameters used were minimum candidate
height = 1 m, minimum candidate length = 1 m, maximum verti-
cal linking distance = 1 m, and maximum horizontal linking
distance = 15 m.

The input data for a classification of fish-school is a collection
of acoustics records. Each acoustics record, is characterized by a
duple (x,y), where x 2 Rn is the n-dimensional descriptors vector
and y is a category (class) species which belong this descriptor.
We used 12 descriptors for each school detected, which were
grouped in four categories (see Scalabrin & Massé, 1993):

1. Morphological: mean height (H), length (L) and perimeter (P)
with units in meter (m); area (m2) and unidimensional
descriptors:
– Elongation ¼ length

mean height.
– Fractal dimension ¼ 2 ln 0:25P

ln area .
2. Bathymetric: Bottom depth (D) and mean school depth (Dm)

with units in meter and unidimensional descriptor:
– School altitude index ¼ 100 D�Dm

D .
3. Energetic: Acoustic energy (m2/mn2) and acoustic density (dB).
4. Space position: School-shore distance (mn).

Some bathymetric and morphological descriptors are presented
in Fig. 1.
Fig. 1. Representation of bathymetric
2. Support vector machines

In this section we describe the support vector machines (SVMs)
developed by Cortes and Vapnik (1995), and second-order cone
programming SVMs formulation based on the first two moments
of each class, the mean and covariance (Saketha Nath & Bhatta-
charyya, 2007; Shivaswamy, Bhattacharyya, & Smola, 2006).

2.1. l2-Support vector machines

Support vector machines (SVMs) is a statistical classification
method originally designed for binary classification. Given a set
T ¼ fðx1; y1Þ; . . . ; ðxm; ymÞg of m training data, where xi 2 Rn repre-
senting the ith training data and yi 2 {�1,1} the class label of xi,
SVM provides the optimal hyperplane f(x) = w>x � b that separates
two classes. When the training data are linearly separable, this
hyperplane separates two classes with no training error, and max-
imizes minimum distance from the training data to the hyper-
plane. In order to maximize this minimum distance, we need to
classify correctly the vectors xi of the training set into two different
classes yi, using the smallest norm of coefficients w. The maximum
hyperplane problem can be formulated as the following Quadratic
Programming (QP) optimization problem (see Cortes & Vapnik,
1995):

min
w;b

1
2
kwk2

yiðw>xi � bÞP 1; i ¼ 1; . . . ;m:
ð1Þ
2.2. Support vector machines under uncertainty

Let X1 and X2 be two random vector variables associated to the
positive and negative classes, respectively. In order to construct a
maximum margin linear classifier such that the false-negative
and false-positive error rates do not exceed g1 2 (0, 1] and
g2 2 (0, 1], respectively, we consider the following Quadratic
Chance-Constrained Programming (QCCP) problem:

min
w;b

1
2
kwk2

Prfw>X1 � b 6 �1g 6 g1;

Prfw>X2 � b P 1g 6 g2:

ð2Þ
and morphological descriptors.
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In other words, we require that the random variable Xi lies on the
correct side of the hyperplane with probability greater than 1 � gi

for i = 1, 2. Assume that for i = 1, 2 we only know the mean
li 2 Rn and covariance matrix Ri 2 Rn�n of the random vector Xi.
In this case, for each i = 1, 2 we want to be able to classify correctly,
up to the rate gi, even for the worst distribution in the class of dis-
tributions which have common mean and covariance Xi � (li,Ri),
replacing the probability constraints in (2) with their robust
counterparts

sup
X1�ðl1 ;R1Þ

Probfw>X1 � b 6 �1g 6 g1; sup
X2�ðl2 ;R2Þ

Probfw>X2 � b P 1g 6 g2:

Thanks to an appropriate application of the multivariate Chebyshev
inequality, this worst distribution approach leads to the following
quadratic second-order cone programming (QSOCP) problem (see
Lobo, Vandenberghe, Boyd, & Lebret, 1998; Alizadeh and Goldfarb,
2003), which is a deterministic formulation of (2) (see Alvarez,
López, & Ramírez, 2010; Saketha Nath & Bhattacharyya, 2007 for
all details):

min
w;b

1
2
kwk2

w>l1 � b P 1þ j1kS>1 wk
b�w>l2 P 1þ j2kS>2 wk;

ð3Þ

where Ri ¼ SiS
>
i (for instance, Cholesky factorization) and gi and ji

are related via the formula ji ¼
ffiffiffiffiffiffiffiffi
1�gi
gi

q
, for i = 1, 2.

Note that any feasible hyperplane must separate the means,
hence the natural condition l1 – l2 is necessary for (3) to be fea-
sible. Since ji ? 0 when gi ? 1, the problem (3) can be made fea-
sible whenever l1 – l2 by choosing appropriate values for g1 and
g2. The election of different values of g1 and g2 leads to classify
with preferential bias towards a particular class. For instance, in
many binary medical classification problems, the cost of misclassi-
fying one category is higher than the other, and in these applica-
tions it is desirable to employ a classifier with selective
sensitivity or specificity (Cismondi et al., 2012). This is the case
of medical diagnosis of cancer (e.g. Nahar, Imam, Tickle, Shawkat
Ali, & Chen, 2012; Kononenco, 2001), where the cost of misclassi-
fying a cancer patient is higher than the cost of misclassifying of
a healthily patient.

Finally, since ji ?1when gi ? 0, we note that problem (3) be-
comes unfeasible for small values of g1 and/or g2.

2.2.1. Practical implementation
So far we have assumed that the mean-covariance pairs (li,Ri)

are known. However, in many practical situations we only have the
training data set T ¼ fðx1; y1Þ; . . . ; ðxm; ymÞg. Assuming that T con-
sists of two samples of independent observations of the random
vectors X1 for y = 1 and X2 for y = �1, the idea is to replace (li,Ri)
with a statistical estimator ðl̂i; bRiÞ; this can be done by computing
the sample mean and covariance for each class from the available
observations.

We denote by T1 ¼ x1
1; . . . ; x1

m1

h i
2 Rn�m1 a n �m1 data matrix

for positive class and by T2 ¼ x2
1; . . . ; x2

m2

h i
2 Rn�m2 a n �m2 data

matrix for negative class. The empirical estimates of the mean
and covariance are given by

li ¼ l̂i ¼
1

mi
Ti1mi

; Ri ¼ bRi ¼ SiS
>
i with Si ¼

1ffiffiffiffiffiffi
mi
p Ti � li1

>
mi

� �
;

for i = 1, 2, where 1mi
denotes a vector of ones of dimension mi. Since

w 2 Rn, it can be written as w = [T1,T2]s + Mr, where M is a matrix
with its columns as vectors orthogonal to training data points and
s, r are vectors of combining coefficients. The columns of T1, T2

and M together span entire Rn. Now, the terms involving w in the
constraints of (3) can be written as
w>li ¼ s>gi; w>Riw ¼ s>Gis; i ¼ 1;2;

where

g1 ¼
1

m1
½K111m1 ; K211m1 �; g2 ¼

1
m2
½K121m2 ; K221m2 �;

G1 ¼
1

m1
½K11; K21� Im1 �

1
m1

1m1 1>m1

� �
½K11;K12�

and

G2 ¼
1

m2
½K12; K22�ðIm2 �

1
m2

1m2 1>m2
Þ½K21;K22�

with Imi
denoting the identity matrix of dimension

mi �mi;K11 ¼ T>1 T1;K12 ¼ K21 ¼ T>1 T2;K22 ¼ T>2 T2 matrices whose
elements are inner products of data points. For instance, the entry
(i, j) for the matrix K12 is

ðK12Þij ¼ x1
i ; x

2
j

D E
: ð4Þ

Thus, the formulation (3) can be written as:

min
s;b

1
2

s>Ks

s>g1 � b P 1þ j1

ffiffiffiffiffiffiffiffiffiffiffiffi
s>G1s

p
b� s>g2 P 1þ j2

ffiffiffiffiffiffiffiffiffiffiffiffi
s>G2s

p
;

ð5Þ

where K = [K11,K12;K21,K22]. Note that in order to solve the above
problem, we need to know only the dot products of training data
points. Thus, one can solve the above problem in any feature space
as long as the inner products in that space are available.

Many practical situations cannot directly solved with the for-
mer approach. Consequently, one usually introduces a kernel for-
mulation. This consists of considering a kernel function
k : Rn � Rn ! R satisfying the Mercer conditions (see Mercer,
1909). Thus, for instance, the inner product (4) is replacing by
ðK12Þij ¼ k x1

i ; x
2
j

� �
. The typical kernel functions include the Gauss-

ian kernel defined by k(u,v) = exp(�cku � vk2) with c 2 Rþ, and
the polynomial function k(u,v) = (u>v + 1)d with d 2 N. After
choosing this kernel function, the quantities g1, g2, G1, G2 and K
can be computed. In the case when K is positive definite, we can
use the Cholesky factorization K = L> L to obtain a full rank matrix
L 2 Rm�m. Thus, introducing a new variable v = Ls, the formulation
(5) is rewritten as follows

min
v;b

1
2
kvk2

v>h1 � b P 1þ j1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v>H1v

p
b� v>h2 P 1þ j2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v>H2v

p
;

ð6Þ

where hi = L�>gi and Hi = L�>GiL�1, for i = 1, 2.
Again, Hi being positive semidefinite can be written as

Hi ¼ DiD
>
i . Then, (6) can be written in the standard QSOCP form

min
v;b

1
2
kvk2

v>h1 � b P 1þ j1kD>1 vk;
b� v>h2 P 1þ j2kD>2 vk:

ð7Þ

Clearly, by introducing a new variable t and a constraint kvk 6 t, (7)
can be casted as the following linear SOCP with three blocks (cf. Ali-
zadeh & Goldfarb, 2003)

min
t;v ;b

t

t P kvk;
v>h1 � b P 1þ j1kD>1 vk;
b� v>h2 P 1þ j2kD>2 vk:

ð8Þ



Table 1
Classification rates (%) using deterministic binary 1-vs-R classifiers.

Species Classification rate (%) Parameters (C,c)

Anchovy vs rest 86.7 88.5 (150,0.14)
Jack mackerel vs rest 81.5 99.5 (110,0.12)
Common sard. vs rest 90.3 94.4 (117,0.15)

1 This matrix represents the count of classifier’s class predictions with respect to
the actual outcome on some labeled learning set.
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Hence, one can classify a new data point x using the following deci-
sion function

f ðxÞ ¼ signðw>x� bÞ ¼ signðs>hðxÞ � bÞ; ð9Þ

where s = L�1v and hðxÞ ¼ h1ðxÞ
h2ðxÞ

� �
with ðhiðxÞÞl ¼ k xi

l; x
� �

for
l = 1, . . . ,mi and i = 1, 2.

3. Numerical results and discussion

Support vector machines (SVMs) were originally designed for
binary classification. However, they can be adapted for multi-class
problems. According to Weston and Watkins (1999), Hsu and Lin
(2002) two strategies are used to approach the multi-class SVM
problem. A first strategy consist of solving a series of binary classi-
fications using two possible approaches: one-species-against-one
(1-vs-1) and one-species-against-the-Rest (1-vs-R). A second strat-
egy directly considers all the data in a single optimization formu-
lation. The latter leads to an optimization problem which is
much more difficult to solve numerically (Weston & Watkins,
1999). In this paper, we use the first strategy together with crite-
rion 1-vs-R. This constructs M binary SVM classifiers, each of which
separates one class from all the rest. Throughout this article this set
of machines is called multi-class 1-vs-R classifier, in contrast with
each binary 1-vs-R classifier used to construct it.

Thus, the deterministic ith binary 1-vs-R classifier is a SVM
trained with all the training examples of the ith class with positive
labels, and all the others with negative labels. That is, the ith SVM
solves problem (1) where the decision function is given by

fiðxÞ ¼ w>i x� bi: ð10Þ

So, it solves

min
wi ;bi

1
2
kwik2; ~yj w>i xj � bi

� �
P 1; j ¼ 1; . . . ;m; ð11Þ

where ~yj ¼ 1 if yj = i and ~yj ¼ �1 otherwise. Then, at the classifica-
tion phase, a sample x is classified in the class which attains the
largest value of fi(x), that is, x is in the i⁄th class when
fi� ðxÞ ¼maxffiðxÞ : i ¼ 1; . . . ;Mg. In the (exceptional) case when this
maximum is attained in more than one class sample x is (by con-
vention) classified in the class associated with the lowest index i⁄.

Based on this idea and on the stochastic approach described in
Section 2, we can similarly construct stochastic binary 1-vs-R classi-
fiers and stochastic multi-class 1-vs-R classifiers. More precisely, in
order to construct a stochastic binary 1-vs-R classifier, we solve (7)
instead of (11), where now the variable v is replaced by wi, and
function f, defined in (9), is replaced by fi, defined in (10).

In the next section we construct several multi-class 1-vs-R clas-
sifiers and we use the average rate of correct classifications in or-
der to compare their performance. Each multi-class 1-vs-R
classifier is composed by three binary 1-vs-R classifiers, one for
each fish species. All our numerical experiment were solved using
different codes in Matlab. Indeed, we have used the SVM-Light
software (http://svmlight.joachims.org/) for solving deterministic
SVM and the SeDuMi software for solving SOCP problems of the
form (8) (http://sedumi.i.e.lehigh.edu/).

3.1. Deterministic and stochastic formulation with kernel

A well-known variant of the deterministic binary 1-vs-R classi-
fier is to consider margins to classify each class. Roughly speaking,
the relevance of these margins in the SVM is driven by a penalty
positive parameter denoted by C (the penalization is stronger
when C is larger). In Robotham et al. (2010) the estimation of the
parameters C and c was realized for divers machines for classifying
fish-schools using acoustic data (all of them with Gaussian kernel).
In Table 1, these parameters appear together with the classification
rate of each one of the three deterministic binary 1-vs-R classifier.

Next, in Table 2 we present the confusion matrix1 obtained for a
deterministic multi-class classification based on the last three deter-
ministic binary 1-vs-R classifiers.

Our first idea is to use some attributes of this confusion matrix
(for instance, classification rate, average rate) to compare the per-
formance of the deterministic multi-class 1-vs.-R classifier pre-
sented above with the performances of several stochastic multi-
class 1-vs.-R classifiers. They are constructed for different sets of
parameters g1 and g2 (each classifier contains six parameters,
one pair for each of the three binary 1-vs.-R classifiers). For this,
we first set the values of parameters g1 and g2 as the proportion
of each class among the total. For instance, in the machine anchovy
vs. the rest, the values of these parameters are given by:

gA
1 ¼

Total Anchovy
Total fish

¼ 98
228

¼ 0:43 and gA
2 ¼

Total Rest
Total fish

¼ 130
228

¼ 0:57:

Tables 3 and 4 illustrate the performances of each stochastic binary
1-vs-R classifiers and of the stochastic multi-class 1-vs-R classifier.
The latter via its confusion matrix.

Notice that this choice of parameter leads to a worst perfor-
mance than the deterministic classifier. This is reflected in lower
classification rates for the three binary 1-vs-R classifiers (see
Table 1 and compare with Table 3). In particular, in the stochastic
binary Jack Mackerel vs. the rest classifier, the decision function
seems to became more important than in the deterministic case.
Indeed, there are three anchovy and one common sardine misclas-
sified as Jack Mackerel (see Tables 2 and 4). However, in the deter-
ministic SVM neither anchovies nor common sardine were
classified as Jack Mackerel.

3.2. Sensitivity analysis of stochastic multi-class 1-vs-R classifiers

In this section, we evaluate the average classification rate of di-
vers stochastic multi-class 1-vs-R classifiers when g2 (false-posi-
tive rate) varies. We start this analysis from the results
established in Table 4, it shows the relative importance of the sto-
chastic binary 1-vs-R Jack Mackerel vs. the rest classifier in the per-
formance of the stochastic multi-class 1-vs-R classifiers. Then, we
think it is interesting to start our sensitivity analysis by decreasing
the value of g2 from

gJ
2 ¼

Total Rest
Total fish

¼ 201
228

¼ 0:88:

Since g2 represents the false-positive rate, lower values of this value
should improve the accuracy of this particular stochastic binary 1-
vs-R Jack Mackerel vs. the rest classifier. However, the performance
of the whole stochastic multi-class 1-vs-R classifiers could be affect
if the rest of the stochastic binary 1-vs-R classifiers behaves badly.
The remaining parameters remain unaltered (see Table 3) as well as
the number of species used for testing: 98 anchovy, 27 Jack Mack-
erel and 103 sardines.

http://svmlight.joachims.org/
http://sedumi.i.e.lehigh.edu/


Table 2
Confusion matrix for deterministic multi-class 1-vs-R classifier.

Species Anchovy Jack mackerel Common sardine Testing data Classification rate (%) Average rate (%)

Anchovy 89 0 9 98 90.8
Jack mackerel 4 23 0 27 85.2 88.4
Common sard. 11 0 92 103 89.3

Table 3
Classification rates (%) using stochastic binary 1-vs-R classifiers.

Species Classification rate (%) Parameters

c (g1,g2)

Anchovy vs rest 87.8 80.0 0.14 (0.43,0.57)
Jack mackerel vs rest 74.1 80.6 0.12 (0.12,0.88)
Common sard. vs rest 91.3 86.4 0.15 (0.45,0.55)

Table 4
Classification rates (%) using stochastic multi-class 1-vs-R classifier.

Species Anchovy Jack mackerel Common sardine Testing data Classification rate (%) Average rate (%)

Anchovy 86 3 9 98 87.76
Jack mackerel 4 22 1 27 81.48 84.57
Common sard. 15 1 87 103 84.47

Table 5
Confusion matrices for different values of gJ

2.

Parameter Species Anchovy Jack mackerel Common sardine Classification rate (%) Average rate (%)

Anchovy 87 2 9 88.78

gJ
2 ¼ 0:78 Jack mackerel 4 22 1 81.48 84.91

Common sard. 15 1 87 84.47
Anchovy 88 1 9 89.80

gJ
2 ¼ 0:68 Jack mackerel 4 22 1 81.48 85.25

Common sard. 15 1 87 84.47
Anchovy 88 1 9 89.80

gJ
2 ¼ 0:58 Jack mackerel 4 22 1 81.48 85.25

Common sard. 15 1 87 84.47
Anchovy 89 0 9 90.82

gJ
2 ¼ 0:48 Jack mackerel 4 22 1 81.48 85.59

Common sard. 15 1 87 84.47
Anchovy 89 0 9 90.82

gJ
2 ¼ 0:38 Jack mackerel 4 22 1 81.48 85.59

Common sard. 15 1 87 84.47
Anchovy 88 1 9 89.80

gJ
2 ¼ 0:28 Jack mackerel 4 23 0 85.19 86.49

Common sard. 15 1 87 84.47
Anchovy 86 3 9 87.76

gJ
2 ¼ 0:18 Jack mackerel 3 24 0 88.89 87.04

Common sard. 15 1 87 84.47

Table 6
Confusion matrices for different values of gA

2.

Parameter Species Anchovy Jack mackerel Common sardine Classification rate (%) Average rate (%)

Anchovy 86 2 10 87.76
gA

2 ¼ 0:47 Jack mackerel 3 24 0 88.89 88.66

Common sard. 10 1 92 89.32
Anchovy 84 3 11 85.71

gA
2 ¼ 0:17 Jack mackerel 2 25 0 92.59 89.21

Common sard. 10 1 92 89.32
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Table 7
Confusion matrix for our final experiment.

Species Anchovy Jack mackerel Common sardine Classification rate (%) Average rate

Anchovy 85 3 10 86.73
Jack mackerel 2 25 0 92.59 89.55
Common sard. 10 1 92 89.32
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Table 5 above presents the confusion matrices for the stochastic
multi-class 1-vs-R classifiers obtained for different values gJ

2 in the
stochastic binary 1-vs-R Jack Mackerel vs. the rest classifier. As ex-
pected, lower values of gJ

2 imply better classification rates for this
particular classifier. This has also led to a improvement of the aver-
age classification rate of the stochastic multi-class 1-vs-R classifi-
ers, even when this positive behavior is not ensured by this
choice. Indeed, this average rate could be worse due to a poorer
performance of one of the two other stochastic binary 1-vs-R clas-
sifiers. This effect can be seen for instance in the variation of the
performance of the stochastic binary anchovy vs. the rest classifier
with respect to gJ

2, which is non-monotonic and seems to attains its
best performance for gJ

2 between 0.38 and 0.48. Notice that during
these experiments the classification of the stochastic common sar-
dine vs. the rest remains unaltered. This situations suggest us to
proceed our experiment by varying the values gA

2 corresponding
to the false-positive rate of the stochastic binary anchovy vs. the
rest classifier.

For this, we set gJ
2 ¼ 0:18 and keep constant the rest of values of

all parameters except for gA
2. We have inspected several values of

gJ
2 but only two of them give meaningful results: gA

2 ¼ 0:47 and
gA

2 ¼ 0:17. They are reported in Table 6 via their confusion
matrices.

Finally, we made a last experiment where only the false-posi-
tive rate of the stochastic binary common sardine vs. the rest
classifier, gS

2, varies. The analysis is similar than the previous ones
and they are thus omitted. The final parameters are then set as fol-

lows: gA
1;gA

2

� �
¼ ð0:43; 0:17Þ; gJ

1;g
J
2

� �
¼ ð0:12;0:18Þ and gS

1;gS
2

� �
¼

ð0:45;0:25Þ. The results are summarized in Table 7.
In Table 7 above shows that the average rate obtained by our

last stochastic multi-class 1-vs-R classifier is 89.55%. This value is
better than the one obtained by the deterministic multi-class 1-
vs-R classifier 88.4% (see Table 2). So, despite of the uncertainties
on the data, we have construct a more performant machine via
an inspection procedure regarding false-positive rates g2.
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