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a  b  s  t  r  a  c  t

The  purpose  of  this  study  was  to compare  the  results  of  the  multi-class  support  vector  machines  (SVM)
classification  method  to those  of  the  classification  tree  (CART)  method  for automatic  classification  of  fish
schools. The  discrimination  study  was  done  using  descriptors  of  morphology,  bathymetry,  energy,  and
space  positions  for schools  of  three  species;  anchovy  (Engraulis  ringens),  common  sardine  (Strangomera
bentincki),  and  jack  mackerel  (Trachurus  murphyi)  from  acoustic  data  in southern-central  Chile.  The  classi-
fication  rate  averages  were  86.8%  with  classification  trees  and  89.5%  with  SVM.  The  levels  of  importance
of  the  descriptors  presented  by  the  two  methods  are  not  fully  concordant  (Kendall’s  rank  coefficient
of  concordance  is  0.77).  However,  the  two  methods  agree  on  the  groups  of  descriptors  considered  as
effective  for  classification.  The  bottom  depth  descriptor  was the most  important  for  classification  trees,
ish while the  school-altitude  index  was  the  most  important  for  SVM.  This  highlights  the  importance  of  the
bathymetric  and  positional  descriptors  in the classification  of species  compared  to energetic  and  mor-
phometric  descriptors.  Advantages  and  disadvantage  of  the  methods  are  presented.  Classification  trees
have the  advantages  over SVM  of being  easier  to implement  and  interpret,  but  have  a lesser  performance.
One  major  problem  with  trees  is  their  high  degree  of  variance.  Because  each  classification  method  has
its own  performance,  limitations  and  advantages,  a good  practice  is  to use  two  or  more  classifiers.
. Introduction

Acoustic techniques are widely used around the world to
tudy the behaviour of fish and estimate their abundance and
istribution. These techniques have made significant progress in
ecent decades with the development of more rapid computers,
ew transducers and microelectronics. Despite the technologi-
al advances in acoustic devices with improvements in detection
apacity and computer processing, there is still the challenge
f species identification directly by acoustics (MacLennan and
olliday, 1996; Horne, 2000; Fernandes et al., 2006; Trenkel et al.,
008). Echograms provide information about size, location and
cho intensity of fish schools, however the species composition is

ot directly known (Fernandes, 2009). An approach to solve this
uestion is to perform algorithms that use different parameters in
he post-processing of acoustic signals to identify species. The pos-
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sibility to provide acoustic species identification of individual fish
schools is based on the assumption that schooling process reflects
differences in the behaviour among species allowing for an infer-
ence about the species. Acoustic species identification will probably
not be successful in discriminating two different species forming
schools.

Species are usually classified by scrutinizing the echograms,
use of expert criteria and additional information from trawl sam-
pling (Simmonds and MacLennan, 2005). Because this procedure
incorporates some degree of subjectivity in interpretation, other
approaches have been developed based on the information pro-
vided by echosounders. Species identification based on school
descriptors of morphology, bathymetry, energy and geographical
position extracted from single-frequency and single beam acous-
tic data represents one approach (Scalabrin et al., 1996). A second
approach uses multi-frequency acoustic data (Korneliussen et al.,
2009), combined with information about the morphological and
geographical distribution of fish species.

A wide range of classification models has been used to clas-
sify fish schools based on acoustics/school descriptors: principal

component analysis and discriminant-function analysis (Nero
and Magnuson, 1989; Vray et al., 1990; Scalabrin et al., 1996;
Lawson et al., 2001); artificial neural networks (Haralabous and
Georgakarakos, 1996; Simmonds et al., 1996, Cabreira et al., 2009);
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earest-neighbor analysis (Richards et al., 1991); k-means clus-
ering (Tegowski et al., 2003); mixture models (Fleischman and
urwen, 2003; Korneliussen et al., 2009), kernel-methods (Buelens
t al., 2009), statistical-spectral (Demer et al., 2009), probabilis-
ic models (Fablet et al., 2009; Lefort et al., 2011), classification
rees (Fernandes, 2009; Lefort et al., 2010; Lefort, 2010) and support
ector machines (SVM, Robotham et al., 2010).

Because the classification methods have different performances,
omparing methods will allow for selecting the best model. Sev-
ral methods have been compared (Haralabous and Georgakarakos,
996; Simmonds et al., 1996; Woodd-Walker et al., 2003; Hutin
t al., 2005; Robotham et al., 2010), however, the performances
f classification trees and support vector machine methods have
ot. Classification trees have been used in applications related
o ecology, botany and medical diagnosis (Breiman et al., 1984;
ipley, 1996; De’Ath and Fabricius, 2000) and only recently

or species identification of fish-school echotraces (Fernandes,
009). Support vector machines are a statistical classification
ethod proposed by Vapnik (1995) that has received consid-

rable attention in different applications in pattern recognition,
uch as face detection, text classification, species identification
n ecology (Morris et al., 2001), fish age classification (Bermejo,
007) and recently for the automatic classification of small
elagic fish species from acoustic survey data (Robotham et al.,
010).

The purpose of this study was to compare the results of
upport vector machines and classification-tree methods for auto-
atic acoustic identification of small pelagic fish species; anchovy

Engraulis ringens), common sardine (Strangomera bentincki) and
ack mackerel (Trachurus murphyi) in southern-central Chile.

. Materials and methods

.1. Data collection

School data were obtained from acoustic surveys performed
ith the R/V Abate Molina in northern and south-central Chile

n 2006. The data were collected using a scientific echosounder
SIMRAD EK-500) with a split-beam transducer (ES38 38 kHz) with

 nominal −3 nmi−2 beam width of 7◦, calibrated according to
tandard procedures (Foote et al., 1987). The ping rate of the
chosounder in the surveys was 1 s−1, the pulse duration was 1 ms.

 minimum threshold of −65 dB was used during the post process-
ng data. An Engel pelagic trawl with a 14-m vertical opening and
4-mm mesh size in the cod end was used to identify the species

n the acoustic survey. The flotation line of this net was adapted for
shing near the surface.

The acoustic records of the fish schools detected by the
chosounder were processed with Echoview 4.60.68. (Myriax,
008). The parameters of the fish schools were determined auto-
atically by the algorithm SHAPES programmed into the software

choview and described in Barange (1994),  Coetzee (2000),  and
awson et al. (2001).  Each aggregation was manually marked in

 region on the image of the echogram, and each case was  indi-
idually analyzed. In order to have the major number of fish
ggregations the parameters to recognize schools in the soft-
are were minimum candidate height = 1 m,  minimum candidate

ength = 1 m,  maximum vertical linking distance = 1 m,  and max-
mum horizontal linking distance = 15 m.  Fig. 1 presents some
chotraces characteristics of the species studied.
.2. Data analysis

The input data for a classification of fish-school is a collec-
ion of acoustics records. Each acoustic record, is characterized by
arch 111 (2011) 170– 176 171

a tuple (x,y), where “x” is the descriptors set and “y” is a set of
category (class) species. We used 12 descriptors for each school
detected, which were grouped into four categories (Scalabrin
and Massé, 1993): (i) Morphological: mean height (m); length
(m); perimeter (m); area (m2); elongation = length/mean; height;
fractal dimension = 2ln(0.25 × perimeter)/ln(area); (ii) Bathymet-
ric: bottom depth (m), mean school depth (m), school altitude
index = 100(1 − mean school depth/bottom depth); (iii) Energetic:
acoustic energy = sA (m2 nmi−2); school internal acoustic den-
sity = sA/area (nmi−2) and (iv) Space position: school-shore distance
(nm).

The classification techniques were applied to the most reli-
able acoustic records, that is, those hauls in which a single species
exceeded 90% of the catch. Only summer and daytime observations
were considered. The final database used for classification was  lim-
ited to the study area most frequently shared by all three species. In
all, 1944 monospecific schools were validated by the trawl. A subset
of 990 schools was  selected for pattern recognition analysis in the
study area: 134 were jack mackerel, 442 sardine, and 414 anchovy.
Both SVM and classification tree methods were trained using the
same training sample and their performances were evaluated with
the same test sample. A total of 762 schools (316 anchovy, 339
common sardine and 107 jack mackerel) were used for training
and 228 (98 anchovy, 27 common sardine and 103 jack mackerel)
for testing. Small or large data sets are not a difficult to produce
accurate classifiers (Breiman et al., 1984). In this work we  used a
large data set. The accuracy was  estimated by using the 23% of data
and the classifier was developed using the other 77% of data. The
SVM models were calibrated using SVM light software, developed
by Joachims (2001) and classification trees with IBM SPSS Statistic
19.

The importance of descriptors in relation to the SVM method
was expressed as the error model when one descriptor at a time is
removed relative to the error model with all descriptors included.
The importance of a variable (predictor) in relation to the classifi-
cation tree method was  defined as the sum across all nodes in the
tree of the improvements (decrease in impurity expressed in the
Gini (Breiman et al., 1984) index) that the predictor had when it
was used as a primary splitter. Finally, for each method, the impor-
tance of a variable is expressed in terms of a standardized quantity
Z. The higher the value of Z, the greater the contribution of the vari-
able in the general structure of the model. Kendallı̌s coefficient of
concordance (Snedecor and Cochran, 1980) was used to measure
agreement between methods.

2.3. Support vector machines

A classification technique that has received considerable atten-
tion is support vector machines. Support vector machines is a
statistical classification method proposed by Vapnik (1995),  origi-
nally designed for binary classification.

In order to present the original optimization prob-
lem, let us suppose that we have a set of pairs of data,{

(x1, y1), (x2, y2), . . . , (xn, yn)
}

, in which xi ∈ Rd represents the
vector of characteristics, for instance, in this work d = 12 because
we are considering 12 descriptors of the fish school and each
fish school is represented by the vector xi. On the other hand,
yi ∈ {−1, +1} is the variable that allows us to classify each fish
school or, in our case, discern between one species and another.
A hyperplane, or linear function of separation of the data, can
be written as D(x) = ˇtx = ˇ0 where,  ̌ ∈ Rd and ˇ0 ∈ R are the
variables of the optimization problem, with feasible set defined

by all possible separation hyperplanes that satisfy all constraints
used to define the separation of each fish school observations.
This set can be represented compactly using the inequali-
ties yi[ˇtxi + ˇ0] for all observations i = 1,2,. . .,n. A separation
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Fig. 1. Some echotraces of common sardine (a and b), anch

yperplane is considered optimal, if the margin (defined as a
istance from the separation hyperplane to the nearest data) is
t its maximum size (Fig. 2). Intuitively, larger margins corre-
pond to better generalizations. Therefore, the problem of finding

he optimal hyperplane is equivalent to finding  ̌ ∈ Rd, which

aximizes the margin. In general, this is a quadratic optimiza-
ion problem with linear constraints defined by inequalities.
he data points, where the constraints are active are called
c), and jack mackerel (d) in the central-south area of Chile.

support vectors, i.e. the fish schools that define the size of the
margin.

When data cannot be separated without error, the problem of
finding the optimal hyperplane can be interpreted in the regular-

ization framework with a ridge penalty term and the inner product
kernel (xi, xj). This optimization problems must also be translated
into its dual form, obtained the following quadratic optimization
problem:
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ig. 2. Separating hyperplanes in a two-dimensional space. Optimal hyperplane on
upport vector machines. The data points at the margin are called support vector
ecause they define the optimal hyperplane.

Maximize the functional

(˛) =
n∑

i=1

˛i − 1
2

n∑
i,j=1

˛i˛j˛i˛jK(xi, xj) (1)

ubject to constraints

n

i=1

˛iyi = 0 (2)

nd

 ≤ ˛i ≤ c

n
∀i = 1, 2, . . . , n (3)

To find a classifier function using the support vector machine,
e must determine what type of kernel function is going to be
sed, which should reflect a priori knowledge of the problem, and
he regularization parameter C.

Therefore, for classification of nonseparable data, the decision
unction is given by:

(x) =
n∑

i=1

˛∗
i yiK(xi, x) (4)

here the parameters ˛∗
i
, i = 1, 2, . . . , n is the solution of the above

uadratic optimization problem.
However, for classification, Gaussian kernels are widely recom-

ended in the literature (Scholkopf and Smola, 2002) since, only
he � parameter of the kernel must be estimated and also, it is more
table. The parameter � defines the width have the inner product
ernel

(x(1), x(2)) = exp

{
−||x(1) − x(2)||2

�2

}
(5)

Even though support vector machines were originally designed
or binary classification; it can be used for multi-class problems.
n general, two strategies are used to approach the multi-class
VM problem (Hsu and Lin, 2002). In the first, a series of binary
lassifications are solved distinguishing between four approaches:
ne-species against-one (1-vs.-1) (Knerr et al., 1990), one-species-
gainst-the-Rest (1-vs.-R) (Bottou et al., 1994), direct acyclic graph
VM (DAGSVM) (Platt et al., 2000) and error correcting output
odes (ECOC) of kernel machine (Dietterich and Bakiri, 1995). The
econd strategy directly considers all the data in a single optimiza-

ion formulation, obtaining a problem that is far more difficult
o solve numerically (Weston and Watkins, 1998; Crammer and
inger, 2001). Robotham et al. (2010) used SVM and Neural Net-
ork to classify small pelagic species. The article showed that the
arch 111 (2011) 170– 176 173

best multi-class performance was obtained from 1-vs.-R. Herein,
we used the 1-vs.-R approach to classify multi-class SVM. With
1-vs.-R, the classifiers (k hyperplanes) are defined by labeling the
species to be identified as +1 and the remaining species −1. The
classification corresponds to the species whose classifier functions
evaluated in the fish schools vector of descriptors used for testing,
was greatest.

2.4. Classification trees

The decision-tree method is a nonparametric approach for
building classification models. A decision tree is a top down tree
structure consisting of internal node, leaf nodes, and branches.
Each node represents a rule involving one of the input variables
(descriptors). Each leaf represents a class (species). The true pur-
pose of a classification tree is to classify the data into distinct
groups or branches that create the strongest separation in the val-
ues of the dependent variable. A classification is made by starting at
the root node and descending to one leaf. This technique employs
a learning algorithm to identify a model that best fits the rela-
tionship between a set of dependent variables (descriptors) and a
set of categories (classes). Examples of some well-known decision
tree algorithms include chi-square automatic interaction detection
(CHAID) (Kass, 1980), classification and regression trees (CART)
(Breiman et al., 1984), induction decision trees (ID3) (Quinlan,
1986), and the extension of earlier ID3 algorithm (C4.5) (Quinlan,
1993).

The main differences between algorithms for tree construction
are the pruning strategy used and the exact rule for splitting nodes
(Ripley, 1996). Most algorithms recursively partition the data, usu-
ally using a binary split. ID3 and C4.5 use the entropy measurement
as their splitting function. The CHAID decision-tree algorithm uses
a splitting criterion based on a chi-square test. CART (classifica-
tion and regression trees) uses the Gini index to measure impurity
at a node, and then chooses the split to maximize the reduction
in impurity. The pruning strategy provides a form of model selec-
tion. Among the reasons for using the pruning are avoiding model
over fitting in the context of decision tree induction and generating
an appropriate size tree by eliminating less informative branches.
Most tree-based methods use a strategy of growing a large tree and
then pruning nodes according to pruning criteria.

In this work we  used the classification and regression tree
(CART) algorithm. CART is a popular approach to construct a
binary-tree based classifier. The algorithm CART for classification
adaptively split the input space into disjoint regions in order to
construct a decision boundary. CARTı̌s algorithm (Breiman et al.,
1984) employs a recursive partitioning strategy where the space of
characteristics is divided into two regions by a split that provides
the best separation of the classes (species) according to some cost
function. The splitting process can be represented as a binary tree
with two  child nodes from each parent node. The process can be
divided in three phases: (i) Construction of the tree, (ii) Pruning the
tree, and (iii) Selection of optimal tree.

3. Results

Table 1 shows the parameters (C, �) estimated to solve the prob-
lem of the multi-class SVM approach. There is no single procedure
for estimating these two  parameters. In this study, the parame-
ters of the Gaussian kernel � = 1/�  and the SVM penalty C were

calibrated by exploring all the combinations of parameters in the
interval [100, 500], with a subdivision of 50 (in the case of param-
eter C) and in the interval [0.05, 0.5] with a subdivision of 0.05 (for
parameter �). Once the best parameters were found (C, �), a finer
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Table  1
Estimation of parameters C and � using SVM according to the type of binary partition
one-versus-all (1-vs.-R): anchovy (A), jack mackerel (J), common sardine (S), other
(R).

Type of partition (1-vs.-R) Parameters (C, �)

A-vs.-R (150, 0.14)

s
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m
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f
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e
t
d
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cient of concordance between the methods was  0.77. There is

T
C

J-vs.-R (110, 0.12)
S-vs.-R (117, 0.15)

eparation was made around these, with subdivisions of 0.01 for �
nd 1 for C (Robotham et al., 2010).

Table 2 shows the confusion matrices for the multi-class SVM
pproach and the classification-tree method. The SVM classifica-
ion rate was only 2.7% higher than that of the classification-tree

ethod. The average classification rate was 89.5% for SVM and
6.8% for the classification-tree method. The SVM performance for
lassifying jack mackerel was 81.5%, 11.1% better than the perfor-
ance of the classification-tree method. The anchovy classification

ate was 90.8% for both methods, while the SVM classification per-
ormance for the common sardine was 90.3%, 2.9% better than the
erformance of the classification-tree method. The jack mackerel
chools had the lowest classification rate.

Fig. 3 shows the decision tree classifier, 14 nodes are displayed
nd the relative importance of the division is indicated by the
mpurity measurements, obtained with the Gini impurity value.
he splitting criterion corresponds to a decrease in impurity. The
runing that was done allowed for reducing the tree size from
0 to 14 nodes. The 1 standard error rule was used (Breiman
t al., 1984; Ripley, 1996) for selecting the right size tree. The

ree shows 8 terminal nodes (3; 5–6; 9–11 and 13–14). The first
ivision has an improvement of 0.121. The two first levels con-
ribute with an improvement of 0.357, equivalent to 81% of the

able 2
onfusion matrix for multi-class one species versus the rest (1-vs.-R) SVM classification a

Species Jack mackerel Anchovy 

1-vs.-R
Jack mackerel 22 5 

Anchovy 0 89
Common sardine 0 10 

CART
Jack  mackerel 19 5 

Anchovy 1 89 

Common sardine 0 13 

Fig. 3. Decision tree for fish
arch 111 (2011) 170– 176

total improvement. Three of the five tree levels are determined
by the bottom-depth bathymetric descriptor. The school inter-
nal acoustic-density descriptor determines the third level of the
tree. The fourth level includes the school-shore distance positional
descriptor and the fifth level includes the school altitude-index
bathymetrical descriptor.

Analyzing the results of the classification-tree methods, it is
possible to distinguish that jack mackerel is a pelagic species
preferentially distributed at greater bottom-depth than anchovy
and sardine. This behaviour is reflected in the bottom-depth
descriptor (>399 m)  that was located in terminal node 6 in the
second level of the tree. The terminal node 6 classified prin-
cipally jack mackerel. The node 3 (bottom-depth ≤47.5 m) and
node 5 (bottom-depth between 112.5 and 399 m)  classified the
anchovy. The terminal nodes 9 and 10 principally separate the
common sardine and anchovy, respectively. The school inter-
nal acoustic-density descriptor (≤2.1 nmi−2) and bottom-depth
(≤64.5 m)  classified common sardine in the terminal node 9.
The school internal acoustic-density descriptor (≤2.1 nmi−2) and
bottom-depth (>64.5 m)  classified anchovy in the terminal node
10. The school internal acoustic-density descriptor (>2.1 nmi−2)
and distance to the coast (≤5.7 nmi) classified common sardine in
the terminal node 11. Finally, the school altitude index separates
anchovy and common sardine (nodes 13 and 14, fifth level).

Fig. 4 shows the standardized importance of the school descrip-
tors for each classification method. The bathymetrical descriptors
(school-altitude index, mean school depth, bottom depth), and
positional descriptors like school-shore distance are the most
important school descriptors in both methods. Kendallı̌s coeffi-
not complete agreement between the methods, the bottom-depth
descriptor was  more important for the classification-tree method
while the school-altitude index was more important for SVM. In

nd classification tree method (CART).

Common sardine Total Classification rate (%)

0 27 81.5
9 98 90.8

93 103 90.3
228 89.5

3 27 70.4
8 98 90.8

90 103 87.4
228 86.8

 school clasification.
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eneral, morphological school descriptors have a low incidence in
he species-classifications of any of these methods.

. Discussion

The purpose of this study was to compare the results of
he classification of the pelagic species of fish common sardine,
nchovy, and jack mackerel with classification trees and the
upport vector machine, using mono-frequency acoustic data in
outhern-central Chile. The performances of both classifiers are
uite similar in classifying species. In general, the average per-
ormance of both methods was good in the classification of the
hree species, the performance of SVM being slightly higher (2.7%).
he average classification rate was 89.5% for SVM and 86.8% for
he classification-tree method. Similarly, even with the poorest
esults with jack mackerel, the difference between the two meth-
ds was 11.1%, the classification rate being 81.5% for SVM and 70.4%
or the classification-tree method. This success rate is similar to
hat has been reported with others methods that have success

ates between 77% and 96% (Haralabous and Georgakarakos, 1996;
immonds et al., 1996; Lawson et al., 2001; Cabreira et al., 2009;
orneliussen et al., 2009; Fernandes, 2009).

The classification will probably be less effective when the
pecies studied have similar biological characteristics, such as indi-
idual size, similar behaviour or acoustical characteristics. In the
resent case, the anchovy and common sardine live closer the coast
han the jack mackerel. The latter species has a broad limit in its
istribution. Although the common sardine and anchovy cohabit
he same space and have similar acoustical properties and very
ew differences in the shapes and sizes of schools, both methods
ave what can be considered good performance in distinguishing
he two species (90.8% for anchovy) and between 87.4% (CART)
nd 90.3% (SVM) for sardine. Jack mackerel is a pelagic species
hat is distributed preferably in the slope at greater bottom-depth
han anchovy and sardine. The bottom-depth descriptor (>399 m)
nd terminal node 6 in the tree method graph (Fig. 3) show this

ehaviour very well. Jack mackerel schools have the lowest classifi-
ation rates, 70.4% (CART) and 81.5% (SVM). The lower performance
ould be due to the imbalance in the training data. These results
ight be considered acceptable, but can be improved.
arch 111 (2011) 170– 176 175

The levels of importance of the descriptors attributed to by
the two methods are not fully concordant (Kendall’s rank coeffi-
cient of concordance is 0.77). However, the two  methods agree
on the groups of descriptors considered effective for classifi-
cation. This highlights the importance of the bathymetric and
positional descriptors in the classification of species with respect
to energy and morphometric descriptors. The bottom depth
descriptor was more important for classification trees while school-
altitude index was  for SVM. Although the energetic descriptors
had low incidence on the separation of species, the descriptor
acoustic-density is remarkable for the classification tree method
(Fig. 4). In general, morphological school descriptors have a low
incidence in the species-classification with either method. These
results are consistent with those of Korneliussen et al. (2009).
These authors used multi-frequency acoustic data combined with
information about morphological and geographical distribution of
fish species to classify fish-schools. They also concluded that the
morphological descriptors used were not effective discriminators,
which coincides with our results. Probably single beam acous-
tic images of fish schools are partial and poor representations of
the real morphology of the fish aggregation. This could explain
that the morphological descriptors were not effective discrimi-
nators. The variability of morphological descriptors may  possible
be reduced by using multibeam echosounders (Trenkel et al.,
2008) and then provide useful information for a better classifica-
tion.

The greatest difficulty in implementing SVM is in the calibra-
tion of the parameters (C, �), because an experimental protocol is
required. The parameters of Gaussian kernel � and the penalty C
will affect the confusion matrix and the final classification rates.
The SVM method operates like a black box in that it is necessary
to include some sensitivity analysis of the school descriptors-
parameters to facilitate the interpretation of the results, which
implies more processing time. Among the main advantages of SVM
method are that no statistical assumptions are required, it works
best when the data set is limited; the solutions are global and
unique, thereby avoiding the convergence to local minima exhib-
ited by other statistical systems, such as neural networks. The
performance is better than those of other techniques.

The classification tree technique has some advantages over SVM
in that it is easier to implement and interpret. As with the SVM
method, no statistical assumptions are required. The binary algo-
rithms allow for assessing the importance of the variables. On the
other hand, a binary algorithm tends to generate multi-leveled
trees. Consequently, it is possible that the tree does not present the
most effective results, above all if the same descriptor (variable) has
been used to divide several consecutive levels. In particular, the tree
(Fig. 3) shows that the two  first levels are determined consecutive
by the bottom-depth bathymetric descriptor. One major problem
with the tree method is the high variance. Often a small change
in the data can result in a very different series of splits, making
interpretation somewhat precarious (Hastie et al., 2001). Bagging
(Breiman, 1996) and random Forest (Breiman, 2001) averages many
trees to reduce this variance.

Fernandes (2009) argues that most of the statistical techniques
proposed for automatic classification of species have limited appli-
cability in acoustic-survey practices. A general criticism of the
classical methods of classification (ICES, 2000) is that the statistical
assumptions can be violated, affecting the robustness of the results.
With regard to artificial neural networks, the main criticisms are
that the technique is difficult to apply and it operates as a black box.
In this context, this author recommends implementing the classi-

fication tree as a standard tool for acoustical surveys. Our results
agree with those of Fernandes (2009),  but because each classifica-
tion method has its own performance, limitations and advantages,
we recommend using multiple classifiers as a good practice.
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The computational efficiency of the tree architecture and the
igh precision of SVM classification have recently been used in a
eneration of multiclass classifiers (Mulay et al., 2010; Madzarov
t al., 2009; Fei and Liu, 2006) that can also be used in the clas-
ification of fish, thus broadening the alternative among available
lassifiers. The development of algorithms of automatic classifica-
ion and the classification of fish species is still an on-going research
ssue.
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