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a b s t r a c t

Hydroacoustic techniques are a valuable tool for the stock assessments of many fish species. Nonethe-
less, such techniques are limited by problems of species identification. Several methods and techniques
have been used in addressing the problem of acoustic identification species. In this paper, schools of
eywords:
eural networks
upport vector machines
pecies identification

anchovy, common sardine, and jack mackerel were classified using support vector machines (SVMs) and
two types of supervised artificial neural networks (multilayer perceptron, MLP; and probabilistic neural
networks, PNNs) during acoustic surveys in south-central Chile. Classification was done using a set of
descriptors for the schools extracted from the acoustic records. The problem was approached through
two multi-class SVMs classifiers: one-species-against-one (1-vs-1) and one-species-against-the-Rest (1-

catio
class
ydroacoustic vs-R). Multi-class classifi
better than the PNN. The

. Introduction

Hydroacoustic techniques are a valuable tool for stock assess-
ents and behavioural studies of many fish species, offering

dvantages related to their high sampling capacity in the water col-
mn and in the sense of navigation. Nevertheless, these methods
re limited in terms of direct species identification, which can be
one either by trawl sampling or by scrutinizing the echograms,
pplying expert criteria, and considering additional information
uch as shoal distribution and behaviour patterns (Horne, 2000;
immonds and MacLennan, 2005). Because the second alternative
s time-consuming and depends on the experience of the opera-
or, it incorporates some level of uncertain or ambiguity. Incorrect
pecies classification can limit the usefulness of acoustic abun-
ance estimates. The objective identification of species directly
rom acoustic data may, therefore, make an important contribu-
ion to the accuracy of acoustic abundance estimates (Lawson et
l., 2001).

Horne (2000) and Fernandes et al. (2006) offer an excellent

eview of the progress made in the development of acous-
ic methods and techniques for automatic species identification.
ecently, new studies and statistical techniques have been used for
sh-species identification. Demer et al. (2009) used a statistical-

∗ Corresponding author. Tel.: +56 2 6762416; fax: +56 2 6762402.
E-mail address: hugo.robotham@udp.cl (H. Robotham).

165-7836/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.fishres.2009.10.015
ns showed that the MLP neural network and SVM approach performed
ification rates averaged 79.4% with PNN and 89.5% with MLP and SVM.

© 2009 Elsevier B.V. All rights reserved.

spectral method for echo classification and Fernandes (2009)
used classification-trees for species identification of fish-school
echotraces. Korneliussen et al. (2009) combined acoustic data with
information on the morphological properties of schools and the
geographical distribution of fish. Buelens et al. (2009) applied ker-
nel methods to classify fish schools in single beam and multibeam
acoustic data. Fablet et al. (2009) used a probabilistic model intro-
duced in Bishop and Ulusoy (2005). In almost all these articles, the
authors used multifrequency data.

Several studies have used school descriptors extracted from
acoustic data to classify species. The descriptors are generally
divided into four categories (Scalabrin, 1991; Scalabrin and Massé,
1993; Reid, 1999): morphological (e.g., geometry of the school),
bathymetric (e.g., position of the school in the water column), ener-
getic (e.g., properties of the backscattered signal), and positional
(e.g., distance of the school offshore).

Different statistical methods such as principal-component anal-
ysis (PCA), discriminant function analysis (DFA) and, recently,
classification-trees (Scalabrin et al., 1996; Lawson et al., 2001;
Fernandes, 2009) have been used to classify species based on
acoustic-school descriptors. Some of these techniques have been
compared with heuristic methods like artificial neural networks

(ANNs). Haralabous and Georgakarakos (1996) used DFAs and
ANNs to classify schools of anchovy (Engraulis encrasicolus), sar-
dine (Sardina pilchardus), and horse mackerel (Trachurus trachurus)
in the Thermaikos Gulf, basing their classification on morpholog-
ical, bathymetric, and energetic descriptors of the schools. Also,

http://www.sciencedirect.com/science/journal/01657836
http://www.elsevier.com/locate/fishres
mailto:hugo.robotham@udp.cl
dx.doi.org/10.1016/j.fishres.2009.10.015
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Table 1
List of acoustic descriptors, computations, and units of the acoustic schools.

Descriptor Computations Units

Morphological
Mean height (H) – m
Length (L) – m
Perimeter (P) – m
Area (A) – m2

Elongation (Elon) Elon = L/H –
Fractal dimension (Fdim) Fdim = 2 ln(0.25P)/ln A –

Bathymetrical
Bottom depth (D) – m
Mean school depth (Dm) – m
School altitude index (Arel) Arel = 100(D-Dm)/D –

Energetic
Acoustic energy (Sa) – m2/mn2
16 H. Robotham et al. / Fisheri

immonds et al. (1996) compared the results of species classi-
cations using DFA and ANN for cod (Gadus morhua), haddock
Melanogrammus aeglefinus), saithe (Pollachius virens), mackerel
Scomber scombrus), and horse mackerel (T. trachurus), keeping
he five species under controlled experimental conditions in cages
nd measuring the acoustic responses on eight different frequency
ands (from 27 to 54 kHz). Cabreira et al. (2009) evaluated different
NN configurations for fish identification in the southwest Atlantic
cean using acoustic-school descriptors.

Comparisons of these statistical and heuristic methods have
enerally shown the latter to perform better (Haralabous and
eorgakarakos, 1996; Simmonds et al., 1996). Therefore, in this
tudy, two heuristic techniques (artificial neural networks and
upport vector machine) were selected as automatic methods for
lassifying small pelagic fish species.

Support vector machine (SVM) is a relatively new technique
ype of network developed as a tool for recognizing patterns or dis-
riminating between two groups (Vapnik, 1995). Since preliminary
tudies indicate that SVM may be more effective than ANN at dis-
riminating a single species against a background of N other species
Morris et al., 2001), we compared the results of SVM-based classi-
cation methods with two types of ANNs (multilayer perceptrons,
LP; and probabilistic neural networks, PNNs). The discrimina-

ion study was done using descriptors of morphology, bathymetry,
nergy, and positional for schools of anchovy (Engraulis ringens),
ommon sardine (Strangomera bentincki), and jack mackerel (Tra-
hurus murphyi) in southern-central Chile.

. Materials and methods

.1. Data collection and descriptors

School data were obtained from 11 acoustic assessment surveys
erformed with the R/V Abate Molina, a stern trawler of 43.6 m total

ength, in northern and southern-central Chile (18◦25′S–43◦50′S)
etween 1991 and 2006. The data were collected using a scien-
ific echosounder (SIMRAD EK-500) with a split-beam transducer

ounted on the hull (ES38 38 kHz) with a nominal −3 dB beam
idth of 7◦, calibrated according to standard procedures (Foote et

l., 1987). The ping rate of the echosounder in the surveys was 1 s−1,
he pulse duration was 1 ms and a minimum threshold of −65 dB.
n Engel pelagic trawl with a 14-m vertical opening and 14-mm
esh size in the codend was used to identify the species in the

coustic survey. The flotation line of this net was adapted for fishing
ear the surface.

We used 12 descriptors for each school detected. The descriptors
ere divided into four categories: morphological, bathymet-

ic, energetic and positional (Table 1). The parameters of the
sh schools were determined automatically by the algorithm
HAPES programmed into the software Echoview and described
n Barange (1994), Coetzee (2000), and Lawson et al. (2001).
ach aggregation was manually marked in a region on the image
f the echogram, and each case was individually analyzed. The
arameters used were minimum candidate height = 1 m, minimum
andidate length = 1 m, maximum vertical linking distance = 1 m,
nd maximum horizontal linking distance = 15 m.

Only the schools detected during the survey and present along
he trawl haul route were considered. Fig. 1 presents some typical
chotraces of the shoals of the species studied; it also shows the
mark” of mote, a small pelagic fish (maximum length 11 cm) that
s normally distributed very close to the coast. We selected infor-
ation from those hauls in which ≥90% of the catch was of a same
pecies. The final number of schools used in the analysis was lim-
ted to those in the study area most frequently shared by all three
pecies, thereby allowing us to work with a more homogenous sam-
le in terms of environmental conditions. Moreover, only summer
Acoustic density (MVBS) – dB

Positional
School-shore distance – mn

and daytime observations were considered. Thus, the database for
the experiments was reduced to two surveys performed in 2006
between 25◦50′S and 41◦00′S and 70◦30′W and 73◦00′W. The total
database in these two surveys contains 15,205 isolated schools and
1944 monospecific schools of the species studied validated by the
trawl. A subset of 990 schools was selected for pattern recognition
analysis in the study area: 134 were jack mackerel, 442 common
sardine, and 414 anchovy. A total of 762 schools were used for
calibration and 228 for validation.

2.2. Artificial neural network models: MLP and PNN

Artificial neural networks (ANNs) are mathematical models
inspired by the neural architecture of the human brain. The most
widely studied and used structures are multilayer perceptrons
(MLPs) (Rumelhart et al., 1986). These models ‘learn’ in an iterative
way in which the data set are introduced to the neural network the
necessary times until to reach a determined error level (one iter-
ation where all the data set are introduced to the MLP is named
epoch). These supervised ANNs allow the analysis of complex data
sets and its non-linear partition in two or more groups. A detailed
description of MLPs performance can be found in Tsoukalas and
Uhrig (1997), Gutiérrez-Estrada et al. (2000, 2007), Czerwinski et
al. (2007), and Pulido-Calvo and Portela (2007).

A typical three- or four-layer MLP has one input layer, one or
two hidden layers and one output layer. The processing elements
in each layer are called nodes or neurons. In this work the input
data to the MLP are the school descriptors and the output corre-
sponding to the classification results. The neurons are connected
through a set of connections called weights, which is analogous
to synapse strength in biological neural nets. There are many MLP
calibration or learning methods. In this work the standard back-
propagation algorithm was applied and solved using STATISTICA®

Neural Network software package from StatSoft (2005).
Probabilistic neural networks (PNNs) are a type of ANNs

(Specht, 1990). The neural network architecture for PNN contains
a sequence of layers: input layer (features of school), pattern layer
(schools for calibration samples), summation layer (density func-
tion value by species) and output layer (results of classification).
PNN provides a general solution for classify fish schools based on
Bayes’s technique of classification. The idea is that, given a sample

pattern, we can make a decision as to the most likely species that
sample is taken from. PNNs use a probability density function as
transfer function. The probability density function is estimated by
using multi-dimensional kernels in the pattern layer. In this work, a
Gaussian kernel is used as activation function following Rutkowski
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Fig. 1. Typical echotraces of common sardine (a–c), anchovy (c); mote (Normanichthys crockeri Clark, 1937) (b), and jack mackerel (d) in the central-south area of Chile.
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Fig. 2. Optimal hyperplane on support vector classifiers.

2004), which is controlled for the standard deviation, the width of
he activation function. Thus, a PNN essentially constructs an esti-

ate of the probability density function of each species (class) by
dding together Gaussian curves located at each point in the cali-
ration set. There is no training with PNN in the sense of MLP since
he set of weights are determined from the calibration data.

.3. Support vector machines: SVM

Support vector machines is a statistical classification method
roposed by Vapnik (1995), belongs to the family of linear clas-
ifiers since it seeks separation hyperplanes in the space of
haracteristics. At an algorithmic level, the learning of SVM is mod-
led as a quadratic optimization problem with linear constraints
nd whose size depends on the dimension of the space of the char-
cteristics.

In this work, we have a set of fish school belonging to three dif-
erent species, anchovy, jack mackerel and common sardine, and
hey are represented as a set of pairs of data, {(x1, y1), (x2, y2), . . .,
xn, yn)}, in which xi ∈ Rd represents the vector of characteristics,
or instance, the dimension d is 12 because we are considering 12
escriptors of the fish school (see Table 1) and each fish school is
epresented by the vector xi. On the other hand, yi ∈ {−1,+1} is the
ariable that allows us to identify each fish school or, in our case,
iscern between one species and another. A hyperplane or linear
unction of separation of the data or simply, the classification func-
ion of data can be written as D(x) = ˇtx + ˇ0 and therefore, all the
ossible separation hyperplanes that satisfy all constraints used to
efine the separation of the fish school can be represented com-
actly using the inequalities yi[ˇtxi + ˇ0] ≥ 1 for all fish schools and
or appropriate coefficients, and then, the parameters ˇ ∈ Rd and
0 ∈ R will be the variables of the optimization problem. The main

dea is to find the minimum distance from the separation hyper-
lane to the nearest data (see Fig. 2, taken from Hastie et al., 2001).
e will consider that a separation hyperplane is optimal if the
argin (�) is at its maximum size. Intuitively, larger margins corre-

pond to better generalizations. Therefore, the problem of finding
he optimal hyperplane is equivalent to finding ˇ ∈ Rd, which max-
mizes the margin. In general, the quadratic optimization problem

ith linear constraints is expressed as:

min
1
2

||ˇ||2
[ ] (1)
yi ˇtxi + ˇ0 ≥ 1, i = 1, 2, ..., n

ith respect to ˇ ∈ Rd and ˇ0 ∈ R, i.e., the solution is a vector in Rd+1.
he data points where the constraints are active are called support
ectors, i.e., are the fish schools that define the size of the margin.
earch 102 (2010) 115–122

In order to find a classifier function using the support vector
machine, we must first determine what type of kernel function is
going to be used, as this should reflect a priori knowledge of the
problem. If it seems that the data might not be linearly separa-
ble, for example if we have two different species like anchovy and
common sardine, that the position of the schools in the water col-
umn (bathymetric descriptors) is very similar, the kernel functions
developed for non-vectorial structures should be used (e.g., poly-
nomial, Gaussian, sigmoidal, or inverse multiquadratic kernels).
However, for classification, Gaussian kernels are widely recom-
mended in the literature (Scholkopf and Smola, 2002), since only
the � parameter of the kernel must be estimated and also, it is more
stable. The C is another parameter, independently of the kernel that
has to be estimated, that represents a balance between the size of
the margin and the training error. In this work the SVM models
were calibrated using SVM-light software, developed by Joachims
(2001).

2.4. Data processing: calibration and testing samples

A total of 990 schools were used for these experiments: 134
jack mackerel, 442 common sardine, and 414 anchovy. The sample
was not balanced due to the smaller number of mackerel schools.
Previously to the calibration of any model (MLP, PNN or SVM), the
data set was divided in two subsets: the first one namely calibra-
tion subset, grouped the 77% of the total data: 107 jack mackerel,
339 common sardine, and 316 anchovy schools, and the second
one namely testing subset, with the remaining data (23% of the
total data: 27 jack mackerel, 103 common sardine, and 98 anchovy
schools). This second subset, which is unused during the mod-
els calibrations, was thus prepared solely for the verification or
validation of models classification capacity. In the case of MLP,
into the first subset (calibration) the 20% data (randomly selected)
were used to avoid the MLP overcalibration (Tsoukalas and Uhrig,
1997). Each descriptor was standardized to a mean equal to zero
and a standard deviation equal to one. This procedure is aimed to
avoid the masking of features of interest (Ochoa-Rivera et al., 2007;
Makkeasorn et al., 2008).

In order to solve the tendency of MLPs to get stuck in local
minima, 30 neural networks were calibrated for each neural config-
uration (Iyer and Rhinehart, 1999). The best MLP was then selected
as the one with the lowest error in the validation phase. MLPs with
one and two hidden layers were proved. The number of neurons in
each hidden layer oscillated between 5 and 20. Therefore, a total of
300 neural networks were calibrated and validated.

There is no training with a PNN in the sense of back-propagation
network since all the PNN network parameters (units and weights)
are determined directly from the calibration data. In this work,
smoothing factors (�) between 0.1 and 0.3 were used. The value of
the variance controls the wide of the activation function (Gaussian
curve).

For the SVM method, two parameters must be estimated: C
representing the balance between the size of the margin and the
calibration error, and � representing the parameter of the Gaus-
sian kernel. There is not single procedure for estimating these two
parameters. This study is an attempt to explore all the combina-
tions of parameters in the interval [100, 500] with a subdivision of
50 (in the case of parameter C) and in the interval [0.05, 0.5] with a
subdivision of 0.05 (for parameter �). Each exploration consisted of
100 experiments performed with the same set of parameters (C, �)
and the average classification error was calculated for the testing

data. In each of the 100 iterations, what changed was the data set
used for calibration and testing, i.e., 77% of the data were chosen at
random for calibration and the remaining 23% were used for testing
and calculating the classification errors. Once the best parameters
were found (C, �), a finer separation was done around these, with
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ubdivisions of 0.01 for � and 1 for C. The same calibration and test-
ng sample used with the MLP and PNN was used with the best pair
f parameters (C, �).

The procedure proposed in this work for estimating the set of
arameters (C, �) aims to establish a search criterion that will pro-
ide a better generalization of the learning machine, including all
f the schools through the use of replicates. The estimated param-
ters that were finally applied to the calibration sample (used for
oth ANN and SVM) provided a deterministic solution to the SVM
roblem. This differs from ANN, in which case the solution depends
n the weight of the neurons in the initial phase and the number
f replicates.

.5. Data processing: multi-class SVM

Support vector machines (SVMs) were originally designed for
inary classification. However, they can be used for multi-class
roblems. In general, two strategies are used to approach the
ulti-class SVM problem (Hsu and Lin, 2002). In the first, a series

f binary classifications are solved distinguishing between two
pproaches: one-species-against-one (1-vs-1) and one-species-
gainst-the-Rest (1-vs-R). The second strategy directly considers all
he data in a single optimization formulation, obtaining a problem
hat is far more difficult to solve numerically (Weston and Watkins,
998). Herein, we used the first approach to classify multi-class
VM, applying both criterions 1-vs-1 and 1-vs-R. In the case of 1-
s-1, k(k − 1)/2 classifier functions have to be created between two
pecies, where k represents the number of species to classify, in
ur case k = 3, so we created three classifier functions, and a vot-
ng strategy is used to decide to which species the observation
orresponds. Votes are obtained depending on the evaluation of
ach classifier function, in each fish school’s vector of descriptors
sed for testing. Eventually, we can have some fish school unclas-
ified if all three species have identical votes. With 1-vs-R binary
lassification, the classifiers are defined by labeling the species to
e identified +1 and the remaining species −1. The classification
orresponds to the species whose classifier functions, evaluated
n the fish school’s vector of descriptors used for testing, was
reatest.

.6. Sensitivity analysis

The sensitivity analysis was carried out by replacing each vari-
ble (descriptor) by missing values and assessing the effect of
his on the output error. Following this, the new error calcu-
ated was compared with the original error to obtain a ratio value

ratio = error of the model with a variable with missing values/error
f the model with all variables). In this way, for a given variable x,
ratio with a value equal to or very close to 1 indicates that this

ariable has a very low weight in the general structure of the model
Hunter et al., 2000).

able 2
lassification rates (%) using ANN and SVM according to the type of binary partition on
ommon sardine (S), other (R). Estimation of parameters C and � according was included

Type of partition ANNs

Probabilistic neural networks (PNNs) (%) Multilaye

1-vs-1
J-vs-A 70.4–98.0 85.2–92
J-vs-S 74.1–100.0 96.3–93
S-vs-A 92.2–87.8 96.1–92

1-vs-R
A-vs-R 78.6–79.2 90.8–86
J-vs-R 74.1–99.5 81.5–99
S-vs-R 80.6–81.6 90.3–84
earch 102 (2010) 115–122 119

3. Results

Table 2 shows the parameters (C, �) estimated to solve the prob-
lem of classifying with SVM based on the proposed experimental
procedure with 100 iterations. This table also presents the compar-
ative performance of the artificial neural networks (PNN and MLP)
and SVM using the Gaussian kernel with two approaches (1-vs-1
and 1-vs-R). The classification rate was lowest for the jack mack-
erel schools, although a single exception was obtained with MLP
jack mackerel versus common sardine (J-vs-S). In this case, jack
mackerel presented the highest percentage of correctly classified
cases (96.3%). When comparing the classification percentages of
the schools by species for each method (ANNs and SVM) obtained
with the two partition approaches, the partition one species versus
other species (1-vs-1) presented slightly higher classification rates
than the partition one species versus the rest (1-vs-R).

Tables 3–5 show the confusion matrices for the PNN, MLP and
SVM classification using a multi-class approach, including the per-
centages of grouped cases correctly classified. According to the
multi-class classifications, MLP and SVM performed better than
PNN. Although we cannot conclude from these results that one of
the three classifiers was definitively better than the others, we were
able to determine that PNN was the least effective. The average clas-
sification rates were 79.4% with PNN and approximately 89.5% with
MLP and SVM. The multi-class classification results of SVM 1-vs-1
and SVM 1-vs-R only differed for the anchovy schools, in which the
1-vs-R partition was 1.9% better than the 1-vs-1 partition. At the
multi-class classification level, therefore, no type of partition was
more effective than another. However, the misclassification rates
were different between the methods.

The difference between PNN and MLP was more important for
anchovy and common sardine, while for jack mackerel both models
provided a similar classification level. On the other hand, the com-
parison between the confusion matrices for MLP and SVM indicated
that both methods behaved similarly, although SVM 1-vs-1 incor-
rectly classified three schools of jack mackerel as common sardine
whereas MLP grouped all the errors in a single species (anchovy).
Moreover, SVM 1-vs-1 reported three unclassified cases of common
sardine.

The best multi-class performance was obtained from 1-vs-R:
85.2% of the jack mackerel were correctly classified by the SVM,
90.8% of the anchovy were correctly classified by SVM and MLP, and
90.3% of the common sardines were correctly classified by MLP.

The sensitivity analysis showed that in all cases the most impor-
tant descriptors were the bathymetrical; the school altitude index
and the mean school depth. Between the morphological descrip-

tors, the mean height and fractal dimension were the variables with
higher weights. In comparison with these descriptors, the energetic
descriptors (acoustic energy and acoustic density) showed lower
ratios. The relative relationships between individual ratios of each
descriptor were similar for SVM, PNN and MLP (Table 6).

e-versus-one (1-vs-1) and one-versus-all (1-vs-R): anchovy (A), jack mackerel (J),
in the last column.

SVM

r perceptron (MLP) (%) Gaussian Kernel (%) Parameters (C, �)

.9 85.2–96.9 (100, 0.45)

.3 85.2–99.0 (400, 0.05)

.9 90.3–88.8 (150, 0.45)

.9 86.7–88.5 (150, 0.14)

.0 81.5–99.5 (110, 0.12)

.8 90.3–94.4 (117, 0.15)
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Table 3
Confusion matrix for the multi-class PNN classification. Percentages successful recognition rates by species and average classification rate was included in the last column.

Species Jack mackerel Anchovy Common sardine Unclassifier Total cases Classification rate

One species versus other species
Jack mackerel 20 4 3 – 27 74.1%
Anchovy 25 73 0 – 98 74.5%
Common sardine 0 21 82 – 103 79.6%

228 76.8%

One specie versus the rest
Jack mackerel 20 7 0 – 27 74.1%
Anchovy 0 77 21 – 98 78.6%
Common sardine 0 19 84 – 103 81.6%

228 79.4%

Table 4
Confusion matrix for the multi-class MLP classification. Percentages successful recognition rates by species and average classification rate was included in the last column.

Species Jack mackerel Anchovy Common sardine Unclassifier Total cases Classification rate

One species versus other species
Jack mackerel 23 4 0 – 27 85.2%
Anchovy 3 88 7 – 98 89.8%
Common sardine 0 10 93 – 103 90.3%

228 89.5%

One specie versus the rest
Jack mackerel 22 5 0 – 27 81.5%
Anchovy 0 89 9 – 98 90.8%
Common sardine 0 10 93 – 103 90.3%

228 89.5%

Table 5
Confusion matrix for the multi-class SVM classification. Percentages successful recognition rates by species and average classification rate was included in the last column.

Species Jack mackerel Anchovy Common sardine Unclassifier Total Classification rate

One species versus other species
Jack mackerel 23 1 3 0 27 85.2%
Anchovy 1 87 10 0 98 88.8%
Common sardine 0 8 92 3 103 88.8%
Average rate 228 88.6%

One specie versus the rest
Jack mackerel 23 4 0
Anchovy 0 89 9
Common sardine 0 11 92

Table 6
Ratio values between the classification errors when one descriptor at time is
removed and the classification error with all descriptors included.

Descriptor SVM PNN MLP

Morphological
Mean height (H) 1.21 1.11 1.21
Length (L) 1.17 1.02 1.00
Perimeter (P) 1.04 1.02 1.00
Area (A) 1.04 1.01 1.01
Elongation (Elon) 1.17 1.04 1.01
Fractal dimension (Fdim) 1.17 1.12 1.14

Bathymetrical
Bottom depth (D) 1.38 1.08 1.42
Mean school depth (Dm) 1.55 1.33 3.64
School altitude index (Arel) 2.42 1.53 5.36

Energetic
Acoustic energy (Sa) 1.00 1.00 1.04
Acoustic density (MVBS) 1.17 1.22 1.04

4

w
s

identification. However, there are no records of similar studies in
Positional
School-shore distance 1.46 1.02 1.16

. Discussion
This paper explored the capacity of probabilistic neural net-
orks (PNNs), multilayer perceptron neural networks (MLPs), and

upport vector machines (SVMs) to identify small pelagic fish
– 27 85.2%
– 98 90.8%
– 103 89.3%

schools from two hydroacoustic surveys. Previous studies have
already applied PNN and MLP models to fish school classifica-
tion (Haralabous and Georgakarakos, 1996; Simmonds et al., 1996;
Skander-Hannachi et al., 2004; Cabreira et al., 2009), but to the
best of the writers’ knowledge, the literature contains no studies in
which an SVM approach was applied with this objective. Globally,
the results indicated that MLP and SVM classify fish schools much
better than PNN, unlike the results obtained by others authors such
as Skander-Hannachi et al. (2004).

The classification rate for jack mackerel schools (85.2%) was
lower than for anchovy and common sardine schools, regardless
of the method used. This worse performance could be due to the
imbalance in the calibration data (107 jack mackerel, 339 common
sardine, and 316 anchovy’s schools). Some authors have reported
greater error rates for less-represented classes in other classifica-
tion problems (Barnard and Botha, 1993; Al-Haddad et al., 2000;
Gutiérrez-Estrada and Pulido-Calvo, 2006). Richard and Lippmann
(1991) suggested that corrected classifiers should be obtained.
However, Morris et al. (2001) indicated that further investigations
are required for biological classification applications.

Many studies report different classification rates for species
the South Pacific. Haralabous and Georgakarakos (1996) used an
ANN to classify 96% of the sardine, mackerel, and anchovy schools
in Thermaikos Gulf. Furthermore, Simmonds et al. (1996) obtained
classification rates of 95% using an ANN with an experimental
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esign (measuring caged aggregations) that considered eight fre-
uency bands and five species. Lawson et al. (2001) reported that
8.3% of the species of pelagic fish schooling off South Africa
ould be identified. Cabreira et al. (2009) reported different con-
gurations of ANNs for fish identification using acoustic-school
escriptors for the southwest Atlantic Ocean and the classifica-
ion rates up to 96%, depending on the species, type of network,
nd number of school descriptors utilized. Fernandes (2009) con-
idered a new statistical method based on classification-trees and
eported an average classification rate of 90% (corrected) for mack-
rel and herring. Korneliussen et al. (2009) reported classification
ates of 85% for herring and capelin using a method that combined
ultifrequency, geographical, and morphological data. However,

hese studies differed in several aspects (e.g., size of calibration
amples, species classified, number and type of descriptors, geo-
raphic areas, classification methods), all of which impacted the
nal classification rates.

ANN and SVM represent some of the most advanced pattern
ecognition platforms today. In general SVM works very well in
ractice and it has proven to be very useful and even more effec-
ive than neural networks in the field of species identification in
cology and in other biological applications (Morris et al., 2001;
ermejo, 2007). SVM has few tunable parameters (C and �) and its
raining often involves convex quadratic optimization. The solu-
ions are global and unique, thereby avoiding the convergence
o local minima exhibited by other statistical systems, such as
eural networks. SVM differs from ANN, in which the solution
epends on the weight of the neurons in the initial phase and the
umber of replicates. As with ANN, no statistical assumption is
equired with SVM. On the other hand, the principal criticism of
he classical methods (PCA, FDA) is that the statistical assumption
ould be violated. Species identification based on multifrequency
coustic data is another approach to resolving the classification
roblem, but is limited when trying to distinguish between species
ith similar acoustics properties (Korneliussen et al. (2009)). The

ombination of multifrequency analysis with information about
he morphology and geographical distribution of fish species, that
eported Korneliussen et al. (2009), is an interesting approach for
sh species classification; in this case SVM or MLP could be a useful
ethod of classification between species unclassified with mul-

ifrequency. Recently, Fernandes (2009) considered a statistical
ethod based on classification-tree. This method and SVM have

een used to analyze ecological data and both appear to be alter-
atives for classifying fish species that should be evaluated and
onsidered.

When fish schools have similar acoustic properties that hinder
pecies identification, other complementary information, such as
abitat use could become more relevant for distinguishing between
pecies. Anchovy and common sardine have similar acoustic prop-
rties and biological characteristics; both species co-habit the same
cological area with only a few differences between them. The most
otable of these is the slightly more coastal distribution of the com-
on sardine with vertical migrations to the sea bed during some

eriods of the day. Jack mackerel, on the other hand, is found far-
her offshore. Only jack mackerel have different acoustic properties
rom those of anchovy and common sardine. The acoustic density
f this species is also an important factor in its determination. In
his sense, a multifrequency approach would be the most effec-
ive for distinguishing jack mackerel from anchovy and common
ardine.

In the future, a remote classification work is expected to be con-

ucted using ANN and SVM, jointly incorporating data on the school
escriptors and on multifrequency. The results obtained with SVMs
how this method to be a promising tool for remote species clas-
ification. We suggest that this relatively new technique should
ontinue to be explored in hydroacoustics.
earch 102 (2010) 115–122 121
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