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a b s t r a c t

Artificial spin ice systems exhibit monopole-like magnetic excitations. We develop here a theoretical
study of the thermal phase transition of an artificial spin ice system, and we elucidate the role of the
monopole excitations in the transition temperature. The dynamics of the spin ice is described by an
efficient model based on cellular automata, which considers both thermal effects and dipolar interac-
tions. We have established the critical temperature of the phase transition as function of the magnetic
moment and the energy barrier of reversion. In addition, we predict that thermal gradients in the system
induce the motion of elementary excitations, which could permit to manipulate monopole-like states.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Artificial spin ice systems are highly frustrated arrangements of
nanomagnets, where the localized magnetic moments interact
through dipolar fields. The equilibrium magnetic configuration in
artificial spin ice systems resembles the order of hydrogen and
oxygen atoms in another frustrated system, namely water crystals.
The experimental and theoretical research focused on artificial
spin ice systems has grown considerably in recent years, due to
both the possible technological applications and the interesting
physical effects involved [1–9]. In the first experimental in-
vestigations, the artificial spin ice samples were composed of
magnetic nanoislands with high reversal barriers (about ∼10 K4 ),
and therefore thermal effects were not observed at room tem-
perature. Interesting works have been published on thermal acti-
vation in artificial spin ice systems [10–17]. In a recent work, Ka-
paklis and colleagues studied experimentally thin films composed
of few atomic monolayers [18]. The reversal barriers of their na-
noislands are well below the room temperature and therefore
their experiments are ideal to study thermal fluctuations. More-
over, when the temperature is increased, this system presents a
transition from a frozen to a dynamic state; which is characterized
by the emergence of localized excitations.

From the theoretical point of view, the existence of two types of
elementary magnetic excitations, namely heavy and light mono-
poles, has been predicted in the context of magnetic reversions in
artificial spin ice systems [19]. In the one case, the magnetic in-
version is accompanied by the appearance of static magnetic
monopoles (heavy monopoles) and the absence of Dirac chains. In
the second case, elemental magnetic excitations appear in the
system and move long distances along the sample (light mono-
poles), giving rise to extensive Dirac chains during the magnetic
reversion. In general, both types of excitations emerge artificial
spin ice systems during the magnetic reversal.

In this work we study the dynamics of elementary monopoles-
like excitations in a square array of nanomagnets, as function of
the temperature and the magnetic properties of the individual
components of the array. Our results show that the critical tem-
perature of the phase transition strongly depends on the energy
barrier for the reversion of the nanomagnets and on their mag-
netic moment. This study confirms the presence of two forms of
elementary excitations (light and heavy monopoles) and its in-
fluence on the critical temperature of phase change. Furthermore,
we found propagation of light monopoles driven by temperature
gradients.
2. Frustrated cellular automata model and physical system

A cellular automaton (CA) is a mathematical structure used to
model the dynamics of complex systems. It is formed by many
simple entities that interact locally. A variety of models based on
CA have been used to efficiently study problems in biology, phy-
sics, chemistry, engineering and material sciences [20,21]. They
represent an excellent alternative to models based on differential
equations and to Monte Carlo algorithms because they can simu-
late highly complex systems with a low computational cost. The
first attempt to use CA in the study of magnetism was the model
proposed by Vichniac [22], which was subsequently developed by
Pomeau [23] and Hermann [24] and is termed the VPH model. This
is being used to resolve an Ising type spin system. To avoid a
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Fig. 1. (a) Square lattice of nanoislands. There are four different types of nanoislands in the lattice. (b) Each cell is surrounded by eight neighboring cells.
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“feedback catastrophe”, the automaton is updated in more than
one step. The model functioned well at high temperatures ( )>T TC ,
but failed at low temperatures. Subsequently, Ottavi et al. [25]
used a microcanonical algorithm in a CA to resolve the Ising spin
system. A determinist version of this model provided acceptable
results at a low temperature [25]. Owing to the popularity of the
different types of Monte Carlo algorithms used in problems asso-
ciated with spins, the development of CA models for these systems
did not continue. In this work we used a stochastic CA model,
different from previous models, developed specifically to resolve
the dynamic of frustrated spins in artificial spin ice systems. This
model allows the simulation of spin ice systems efficiently. In our
model, the cells represent nanoislands, and the local interaction
among the cells is the dipolar effect. The state of the cells stands
for the magnetic moment, and the evolution rule is obtained by
local energy minimizations. This model is a variation of the nu-
merical scheme proposed in Ref. [26], which has been compared
and validated [27] with the experimental work of Mengotti et al.
[8]. Fig. 1(a) shows a square lattice of nanoislands, where each cell
represents an anisotropic magnet with form of a parallelepiped.
The long axis of the parallelepiped is a preferred direction for its
magnetization (easy axis), and therefore the localized moment
takes only two possible orientations. Then, the orientations of the
magnetization and the island (horizontal or vertical) defines four
independent types of nanoislands in the system (see Fig. 1). In
order to model the nonlocal dipolar interaction as the interaction
between a cell and a few of its neighbors, we conducted a careful
study considering a different number of neighbors. As a result of
this study, we established that it is enough to consider the eight
closest neighbors to each cell to recovery all the dynamic prop-
erties. Fig. 1(b) shows the configuration of the first neighbors that
we consider.

The simulation scheme of the CA is summarized in the fol-
lowing steps:

� Each time step in the algorithm is divided into four stages.
� In each temporal step, a sequence of the four colors is chosen

randomly.
� For every cell of a given color, we calculate the total energy as

the sum of the energy associated to the external magnetic field
and the dipolar field (up to eight neighbors). The magnetic
moment of the nanoisland is reverted if its new energy is lower
than the previous energy. If the energy is larger, the moment
reversion occurs with a probability given by the Boltzmann
distribution:

� The above step is repeated for the three remaining colors.
� The CA update finishes. This sequence represents the global
update of the system.

The main difference of this model with a model kinetic Monte
Carlo, is that in the CA, all nanoislands are inspected in a step of
the algorithm (parallel upgrade), instead in the Monte Carlo ap-
proach, one generates a Markov chain of configurations using a
pseudo-random number generator. We can also add that this al-
gorithm satisfies detailed balance, because it is alternately updated
on four sublattices [28–30].

We consider a square array of 7200 nanomagnets. The total
lengths of the sample are μ × μ36 m 36 m, and the distance be-
tween two adjacent nanomagnets (the lattice constant) is

= →a 500 700 nm. Possible manufacturing imperfections of the
film are taken into account using a variable magnetic moment
within the lattice. Moreover, the magnetic moment of individual
islands is defined by β′ =m m0 0 , where β is a dimensionless
Gaussian random variable with β = 1 and standard deviation

( )( )β β= − 〈 〉s 2
1
2 .

Fig. 2(c) shows the color coding used in this work to represent
the monopole-type elementary magnetic excitations. As we can
see from this figure, the configuration of vertices are classified
according to its energy. If each magnetic moment is interpreted as
a bar with two magnetic charges at the ends (þ1 and �1), we can
evaluate the net charge, at each vertex, because the ends of the
four bars converge. In a square lattice of magnets, the magnetic
moments are ordered in minimum energy configurations, called
“spin ice” (two in and two out), in analogy to the way the water
crystallizes. In spin ice vertices, the total charge is zero. The first
two rows of Fig. 2(c) correspond to spin ice configurations and
hence they are energy minima. In the third and fourth rows, we
can appreciate the violation of the rules of spin ice, leading to the
appearance of magnetic excitations (monopoles). These mono-
poles can be positive or negative (þ2 or �2). In the last row you
can appreciate monopoles with value is þ4 or �4, whose occur-
rence is unlikely in both the simulations and the experiment and
that will not be considered in this study. In a previous result [19], it
showed that the reversion dynamic presents two distinct me-
chanisms of magnetic reversion, with different elemental excita-
tions for each mechanism. The first mechanism presents a rever-
sion with the appearance of magnetic monopoles that do not
move in the samples (heavy monopoles) and the absence of Dirac
chains. In the other mechanism elemental magnetic excitations
(light monopoles) appear that move great distances in the sample,
giving rise to extensive Dirac chains during the magnetic



Fig. 2. (a) Logarithm of the total number of excitations as function of temperature. As this figure illustrates, the slope of the curve decreases for temperatures above a critical
value, which is associated to the thermal phase transition. (b) Order parameter (Beta) as function of temperature. (c) Color scheme used along this work. Red vertex represent
a positive magnetic monopole, while the blue vertex stand for negative monopoles. (For interpretation of the references to color in this figure caption, the reader is referred
to the web version of this paper.)
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reversion. The two kinds of monopoles (heavy and light) have
magnetic charge of þ2 or �2.
3. Critical temperature of the phase transition

Let us start studying the phase transition between the ordered
and disordered states. We proceed is as follows: initially the sys-
tem is at a temperature above room temperature without mag-
netic field. The temperature is decreased, and at each step of the
algorithm we recorded the most relevant physical observables
involved in the process. We can see in Fig. 2(c), the first two rows
correspond to vertices spin ice type. In a completely random
phase, the fraction of such vertexes is 0.375 (we denominate this
value g1). We will use this data to define the order parameter, as
follows: the fraction of vertices spin ice type ( )Nsi , above g1 and

divided by ( )− g1 1 value, will be our order parameter. Mathe-

matically, we have = −
−Beta N g

g
1

1 1
si . Thus, the order parameter will

take the value zero, in a completely disordered phase and will take
the value 1 in the ordered phase completely. Additionally, we will
use the fraction of elementary excitations (monopoles), to verify
the phase transition. This fraction is inversely proportional to or-
der parameter beta. For the graphics remain clear, we show the
logarithm of the fraction of elementary excitations (Fig. 2(a)). Fig. 3
shows the state of the system at different temperatures, which is
characterized by the presence of magnetic monopoles and Dirac
strings. The nanomagnets painted white, represent magnetic
moment upward and to the right, while the nanomagnets painted
black, represent magnetic moment down and to the left respec-
tively. In this simulation, the values are:

μ= = = ·a s m600 nm, 0.03, 3 10 B0
6 and B¼0. Furthermore, the

relationship between the magnetic moment of each nanomagnet

and the temperature is: ( )( ) = ′ −m T m 1 T
T0

1/2

0
, with =T 700 K0 in

this simulation. We define “energy barrier” for each nanomagnet,
as the energy required to reverse the magnetic moment of each
island. The value of the “energy barrier” in this simulation is
=E k200 K/B B. The initial temperature of the system was 500 K and

it was decreased to 70 K, using steps of 0.05 K. We will call “Study
1” to this set of parameters. The logarithm of the ratio of mono-
poles (positive and negative) is shown in Fig. 2(a) and order
parameter (Beta) as function of temperature is shown in Fig. 2(b).

The analysis of these results clearly indicates that the system
changes from a disordered phase to an order phase when the
temperature decreases. The critical temperature at which the
phase transition occurs is =T 190 KC (see Fig. 2(a) and (b)). It is
interesting to note that the total magnetization of the sample has
an initial value zero in the disordered state, remaining at this value
in the ordered state. This is due to the ordered state, there is al-
most no vertices with elementary excitations (monopoles), and
therefore the system has a majority of spin ice vertices, and
therefore with null total magnetization. When inspecting the or-
der parameter in Fig. 2(a) and (b), we can conclude that the system
suffered a continuous phase transition of second order. It is known
that the elementary excitations are divided into heavy monopoles
and light monopoles [19]. The presence of a class of these excita-
tions (heavy or light), or both types, depends on the energy barrier
of reversion EB, and the magnetic moment m0 of each nanoisland
[19]. For the values of the magnetic moment and the energy of
reversal of the system shown in Fig. 3, only light monopole are
present. In order to understand the effect of light and heavy
monopoles in the phase transition, we studied the critical tem-
perature as function of the magnetic moment and energy barrier
of reversion, with the same parameters used in study 1. The results
of this study are shown in Fig. 4.

As Fig. 4 illustrates, the critical temperature increases with the
energy barrier of magnetic reversal. Also, when we increase the
value of the magnetic moment of the nanoislands, an increase
occurs in the phase change temperature. We incorporated a
logarithmic trendline to display the kind of growth in
temperature.

For values lower than 600 K in the energy barrier of magnetic
reversal, in Fig. 4, the elementary excitations present are light



Fig. 4. Phase change temperature as function of the magnetic reversal energy. The
upper curve represents the results obtained for a magnetic moment μ= ·m 4 10 B0

6

and the lower curve corresponds to a value of the magnetic moment μ= ·m 3 10 B0
6 .

Also incorporated in the graph, a logarithmic trendline for each case.

Fig. 3. Simulation of phase change from a disordered state to an ordered state. The black and white bars represent the magnets and its magnetic polarization state. Red and
blue circles represent the magnetic monopoles. The nanomagnets painted white, represent magnetic moment upward and to the right, while the nanomagnets painted
black, represent magnetic moment down and to the left respectively. (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this paper.)
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monopoles. In the disordered state, monopoles emerge, move and
collide with other monopoles, disappearing and re-emerging
elsewhere. In the ordered state, monopoles emerge and move until
the system minimizes the energy locally and disappear. The be-
havior of heavy monopoles does not depend on the order of the
system, and it is characterized by pairs of heavy monopoles with
opposite charge appearing and disappearing in the same place. We
can explain the slope of the curves in Fig. 4, with the two types of
monopoles present in these artificial spin ice systems. In the first
part of the curves (values less than 400 K), the slope is greater
than on the right side, because the dynamics of elementary ex-
citations is governed by light monopoles, and therefore a small
variation in the value of the magnetic moment or reversal energy
barrier, causes a major change in the temperature of phase change.
In contrast, in the zone dominated by heavy monopoles (right side
of Fig. 4), a change in the magnetic moment or energy barrier,
causes a small change in the phase change temperature.

We conducted simulations to elucidate how the critical tem-
perature depends on the separation distance between the na-
noislands, with the same parameters used in study 1. Fig. 5 shows
that the temperature decreases with larger separation distances.
Our results are in agreement with experimental evidence [18].
When the separation distance between the nanomagnets in-
creases the dipolar interaction decreases, causing disorder at lower
temperatures. Furthermore, a study of the critical temperature,
depending on the system size (number of magnets present in the
array) was performed. We concluded from this study that the
temperature does not depend on the size of the system.

An interesting result was obtained when we include an ex-
ternal magnetic field. The magnetic field makes an angle of 45°
with respect to the horizontal direction (x-axis) and we have used
the same parameters used in study 1 and a magnetic moment
μ= ·m 4 10 B0

6 . We call “crossover temperature” ( )Tc , to the tem-
perature at which the system passes from a disordered phase to an
ordered phase in the presence of a magnetic field. Fig. 6 shows the
crossover temperature as a function of the magnitude of the ap-
plied magnetic field; and the magnetization of the system for
some field values. It can be seen that the crossover temperature,
has two different behaviors. In the first case, when the magnetic
field increases, the crossover temperature decreases. We can ex-
plain this behavior with the screening effect produced by the
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magnetic field on the dipolar interaction between the nano-
magnets. This shielding disfavors the magnetic ordered at high
temperatures. When the magnitude of the field surpasses a
threshold value, the effect is opposite to the previous. This is ex-
plained because the field does sort the system. It can be seen from
magnetization curves that with increasing magnetic field, the
system starts with a non-zero magnetization. Depending on the
magnitude of the field, the magnetization becomes zero in the
ordered state, (configuration spin ice of the minimum energy), or
is magnetized in the ordered state, (configuration spin ice, with
more energy). It is worth noting that the use of an external
magnetic field allows one to control the crossover temperature. An
interesting result of this part of the study is that since the appli-
cation of an external field breaks time reversal symmetry, we
expect a fundamental change in the type of crossover. However,
this does not occur until a threshold field value, where the
crossover as phase transition of second order behaves and the
ordered and disordered states are presented. The sample has an
Fig. 6. Crossover temperature as a function of the magnitude of the applied magnetic fie
some values of the magnetic field.

Fig. 5. Critical temperature as function of the distance between the nanomagnets.
initial magnetization in the disordered state, because the magnetic
field monopoles migrate in the direction of the field (or contrary to
direction of the field), magnetizing the sample. For fields above the
threshold, the transition remains second order, but the ordered
state, is now magnetic.
4. Migrations of the elemental excitations

Finally, we study the propagation of magnetic monopoles in-
duced by thermal gradients. The parameters involved in this study
only allow the presence of light monopoles. The sample is initially
magnetized with the nanomagnets to the right and up respec-
tively. The central region of the array of nanomagnets is main-
tained at a temperature well below the phase change temperature.
Thermal excitations are generated in two ways, the first consists to
heat a thin strip of the right end of the square array and a thin
strip of upper zone, as shown in Fig. 7(a) (red zone). This way of
heating the system generates monopoles in the thin strip, but only
positive monopoles move into the sample, (positive current of
monopoles). The second way is to heat a thin strip around the
contour of the sample. This generates a positive current of
monopoles, moving down and to the left and a second negative
current of monopoles, moving up and to the right, as shown in
Fig. 7(b). The parameters for this simulation are:

μ= = = · =a s m B600 nm, 0.03, 5 10 0B0
6 . Further, =T 700 K0 and

the energy barrier for the inversion of the magnetic nanoislands is
=E k400 K/B B. The system remains at a constant temperature of

30 K and the ends are heated from 30 K to 120 K. It can be seen in
Fig. 7(a), the positive monopole leave the hot zone and travel
through the system at the other end. This mechanism would
provide a controlled flow of a single class of magnetic excitations.
In part (b) of Fig. 7, one can see a current of magnetic charges
composed of positive and negative charges. Fig. 8 shows the ratio
of magnetic charge depending on the temperature of the heated
ends. The time period considered for the step of our algorithm is
ld (in a direction of 45° to the horizontal). Small graphs show the magnetization, for



Fig. 8. Monopoles density as function of hot zone temperature, this ratio is defined as the number of monopoles divided by the total number of vertices. The black and gray
curves stand for the positive and negative monopoles, respectively. (a) Two-sides heating. (b) Four-sides heating.

Fig. 7. Propagation of magnetic monopoles. (a) Positive magnetic current driven by thermal excitations in two hot edges. (b) Positive and negative magnetic current,
triggered by thermal excitations in the four hot edges of the system.
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× −1 10 s10 [31]. This part of our study was performed with dif-
ferent time intervals for the increase in temperature. For the si-
mulation shown in Figs. 7 and 8 the rate of increase in tempera-
ture was 1.5 K/ns.
5. Conclusion

This paper presents a numerical study of monopoles-like
magnetic excitations in presence of thermal fluctuations. We de-
scribed the system using an efficient model based on cellular au-
tomata that considers both the temperature of the system and
dipolar interactions. Our results show a continuous second order
transition from an ordered to a disordered state when the tem-
perature increases. We found that the critical temperature of the
phase transition strongly depends on the type of magnetic
monopoles present in the system; which agrees with previous
hypotheses[19] regarding the important role that the heavy and
light monopoles play in the dynamics. When thermal gradients are
applied on the sample, the magnetic charges propagate in a pre-
ferred direction fixed by the temperature profile. Hence, we can
control the motion of magnetic charges, which could be a future
tool for applications in information handling.
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