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Abstract
We present a novel method for reliability-based design optimization, which is based on the approximation of the safe region
in the random space by a polytope-like region. This polytope is in its turn transformed into quite a simple region by using
generalized spherical coordinates. The failure probability can then be easily estimated by considering simple quadrature
rules. One of the advantages of the proposed approach is that by increasing the number of vertices, we can improve arbitrarily
the accuracy of the failure probability estimation. The sensitivity analysis of the failure probability is also provided. We
show that the proposed approach leads to an optimization problem, where the set of optimization variables includes all the
original design variables and all the parameters that control the shape of the polytope. In addition, this problem can be solved
by a single iteration scheme of optimization. We illustrate the performance of the new approach by solving several examples
of truss topology optimization.

Keywords Reliability-based design · Truss topology optimization · Stochastic structural model

1 Introduction

According to Choi et al. (2007), the study of structural reli-
ability is concerned with the calculation and prediction of
the probability of limit-state violations, at any stage dur-
ing a structure’s life. The reliability analysis is the appli-
cation of known mathematical and engineering procedures
with the purpose to model uncertainties, and obtain quanti-
tative information about their effect on the structural behav-
ior. In particular, the reliability analysis provides the esti-
mation of the probability of limit-state violation, also called
failure probability. Reliability-based design optimization
(RBDO) is a subtopic of design optimization, where we look
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for an optimal design that must satisfy certain specified
constraint related to the failure probability. There is a vast
literature about RBDO, and we refer the reader to ref-
erences (Choi et al. 2007; Ditlevsen and Madsen 1996;
Schuëller and Jensen 2008). A generic formulation of a
RBDO problem is as follows:

In the previous problem, x ∈ R
n is the vector of design

variables, f is the objective function, P{·} is the probability
function, Ω(x) is the safe region in the random space, Pf is
a given upper bound on the failure probability, and h is the
vector function of deterministic constraints on the design
variable. The probability P{Ω(x)} is called reliability of the
design x, while 1 − P{Ω(x)} is the failure probability. The
safe region is given by

Ω(x) = {ξ ∈ R
m : g(x, ξ) ≤ 0},

where ξ is the vector of random variables and g(x, ξ) is the
vector of limit state functions, i.e., for the design x, ξ is
considered a failure realization if any component gi(x, ξ) >
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0. The probability density function fξ associated to the
random variable ξ provides a mathematical expression for
the reliability:

P{Ω(x)} =
∫

Ω(x)
fξ dξ . (1)

It is usually assumed that ξ corresponds to a multivariate
normal distribution. This assumption does not imply a
severe loss of generality, since other types of distribution
can be related to the normal distribution through a nonlinear
change of variables.

Problem (P ) is usually rather hard to solve, since any
evaluation of the probability constraint required in the
iterative optimization process implies an entire reliability
analysis of the current design. Methods for this include
those called sampling methods, such as Monte Carlo
Simulation, Stochastic Finite Element Method, others based
on stochastic expansions, etc. There are also methods that
directly try to compute (1) in an approximate manner, e.g.,
the first order reliability method (FORM), and the second
order reliability method (SORM), which are two of the most
popular ones for reliability assessment in RBDO. In the
case of a single limit state function, the main idea behind
FORM is to approximate the safe region Ω(x) by a half
space, for which the probability can be easily calculated
in the case of a multivariate normal distribution. The half
space considered is defined by the tangent plane to the
limit state surface ∂Ω(x) at the point that is closest to the
origin, which is called most likely failure point and also most
probable point (MPP). In the case of SORM, the safe region
is approximated in a similar manner by considering a second
order approximation of the limit state surface. SORM is then
more expensive than FORM, since in addition to the MPP,
it requires information about the curvatures of the limit
state surface at the MPP. When several limit state functions
have to be considered, multi-point versions of FORM and
SORM consist to find the MPP and the corresponding
approximation of each limit state surface. Then, for the
reliability estimation, FORM and SORM rely on accurate
approximate expressions that provide the probability of
intersections of multiple half spaces. These expressions are
easy to compute, so that the most expensive task in FORM
and SORM procedures is the determination of all the MPPs.

According to Rackwitz (2001), FORM and SORM are
well established methodologies that provide the failure
probability with an acceptable error in view of the large
uncertainty in selecting the appropriate stochastic model
and its parameters. However, it is known that optimization
strategies based in FORM or SORM can still fail to find
the optimal design. On the one hand, the optimization
strategy used to find the MPP can fail, e.g., in the case
of convergence to local minima. On the other hand, even

if the MPP is correctly located, the estimations of the
failure probability can be inaccurate, which occurs when
the approximate regions badly represent the real ones. It
is know that important sampling can be used to improve
the accuracy of results (Rackwitz 2001). However, in the
case of symmetric safe regions, FORM underestimates the
failure probability, since it ignores completely the half
space corresponding to the point that is symmetric to
the MPP found (Liu et al. 2016a). In some cases, the
sensitivities of the failure probability are badly estimated.
For instance, Liu et al. (2016a) mention the case of a
perturbation of the design variables that keeps the MPP
and the tangent plane unchanged. In this case, FORM
would erroneously report zero sensitivities. To improve the
accuracy of the estimations, Liu et al. (2016b) introduced
segmental multi-point linearization method (SML), that
instead of considering a single plane as is done in FORM
(or a single smooth surface in the case of SORM) fits the
limit state surface segmentally with multiple linear pieces.
A rather simple version of the SML, that consists of fitting
the limit state surface with an orthogonal box, was used by
Liu et al. (2016a) to solve some RBDO problems related to
truss topology optimization. The SML has similarities with
multi-point FORM, since in both methods the MPP has to
be found and a tangent plane at it is used to locally represent
the limit state surface.

Let β(x) = Φ−1(P{Ω(x)}) the reliability index
of the design x, where Φ−1 stands for the inverse
of the standard normal cumulative distribution function.
There are two main approaches used in RBDO. In the
reliability index approach (RIA), the probability constraint
is equivalently formulated as β(x) ≥ Φ−1(1 − Pf ), which,
according to Tu et al. (2001), is the most popular version
of the probability constraint. The performance measure
approach (PMA) considers instead a constraint on the
probabilistic performance measure, which is computed by
an inverse reliability analysis; details can be found in
Tu et al. (2001). Both approaches (RIA and PMA) combined
with FORM or SORM lead to a double loop iterative
procedure, i.e., that one used to find the MPP involved in
the reliability assessment is nested into the main iteration
of an optimization algorithm. There are, however, many
approaches that simplify or totally break the inner loop;
we refer the reader to Section 2.2 of Schuëller and Jensen
(2008) and Section 1 of Liu et al. (2016a) where detailed
lists of references can be found.

In gradient-based optimization algorithms, the sensitivi-
ties of the probability constraint function have to be com-
puted. This is done in the case of a single limit state function
g by computing the following surface integral:

∂

∂xi

P{Ω(x)} = −
∫

∂Ω(x)

fξ

‖∇ξg‖
∂g

∂xi

dS . (2)
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In the case of several limit state functions defined by a
vector function g, the expressions can be found in Uryas’ev
(1994). When the reliability P{Ω(x)} is computed by
approximating the safe region, such as in FORM and
SORM, the integral in (2) is performed on the approximate
limit state surface; e.g., the tangent plane at the MPP when
FORM is used.

In this paper, we propose a new gradient-based approach
to find an approximate solution to (P ). The method is of
the RIA type, since it involves the direct computation of
the failure probability. There are two main ideas behind the
proposed method: i) a polytope-like region depending on a
vector s of shape variables is used to approximate the safe
region in the random space and ii) the vector s of shape
variables is considered independent of the project variables,
and included into the optimization problem.

To fix ideas, let Ω(x) be the two-dimensional safe
region represented in gray in Fig. 1. The polytope-like
approximation of the safe region has a boundary defined by
a set of vertices ξ i , each one located on a fixed ray starting
from the origin. Hence, we have defined a parametric
polytope-like region where the shape parameters are the
values si that represent the distance from the origin to the
vertices ξ i . The figure illustrates the case where the points
ξ i are optimally located, i.e., they are on the safe region
boundary. However, we emphasize that the shape variables
si are independent of the project variables, so that the
vertices ξ i are generally inside the safe region, and their
optimal location must be found in the optimization process
by the optimization algorithm.

There are some immediate advantages of this approach.
If the number of shape variables is large enough, then

ξi

si

Fig. 1 Approximation of the safe region. Gray: safe region Ω(x),
piecewise linear solid line: boundary of the approximate region
Ω̃(ξ1(s), . . . , ξ k(s)) defined by a set of vertices ξ i located on a fixed
ray and at a distance si from the origin

this approach can obtain a better approximation for the
safe region than FORM or SORM. The accuracy of the
approximation can then be controlled by the user by setting
the number of shape variables, enabling the possibility
of improving the solution by performing subsequent
optimization processes, i.e., a strategy of design based on
different optimization stages. Another advantage is that the
approximate safe region does not depend on the location
of the MPP, so that the proposed method leads naturally to
a single loop optimization process. The inclusion of s into
the optimization problem simplifies the sensitivity analysis,
since the shape of the approximate shape region will not
depend anymore on the design variable x. Hence, the
numerical evaluation of expressions such like (2) will not
be necessary. However, these advantages can be exploited
only if the failure probability, as well as its sensitivities with
respect to the vector shape variables s, can be computed
easily. We will show that suitable expressions for the failure
probability and its sensitivities can be found by viewing
the approximate safe region in the space of the generalized
spherical coordinates.

The paper layout is as follows. Section 2 describes the
proposed procedure of optimization based on a polytope-
like approximation of the safe region. Section 3 describes in
detail the polytope-like regions used here, which are based
on a representation of these regions in the space of the
generalized spherical coordinates. The sensitivity analysis is
also given in this section. Section 4 presents an application
of the proposed method to the topology optimization of
truss structures. The simple model of minimizing the total
volume of material subject to a probability constraint
on the compliance is considered. The numerical results
obtained show that the proposed formulation is effective
to find a suitable topology. Finally, Section 5 presents the
conclusions.

2 Polytope-like approximation of the safe
region

The main idea behind the method proposed to find
an approximate optimal solution to Problem (P ), is to
approximate the safe region Ω(x) by a parametric polytope-
like region Ω̃(ξ1(s), . . . , ξ k(s)), where ξ1(s), . . . , ξ k(s) are
control points of the region that depend on the vector of
shape variables s ∈ R

�. To fix ideas, let Ω(x) be the
two-dimensional safe region shown by Fig. 1. A possible
approximation Ω̃(ξ1(s), . . . , ξ k(s)) of the safe region could
be the polytope shown in the figure, where the control
points are the vertices of the polytope, with each one located
on a particular ray forming a fixed predefined angle θi

with respect to the horizontal line. The vector variable s
contains in this example the distances si between the control
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points and the origin. Note that as more control points are
considered, more accurate the approximate region will be.
Accuracy could also be improved by considering polytope-
like geometries with smooth curved faces instead of flat
faces.

The parametric region Ω̃(ξ1(s), . . . , ξ k(s)) should ide-
ally be able to represent exactly the safe region Ω(x).
More precisely, assume that Ω̃(ξ1(s), . . . , ξ k(s)) satisfies
the following assumptions:

i) If g(x, ξ i (s)) ≤ 0 for i = 1, . . . , k, then Ω̃(ξ1(s), . . . ,
ξ k(s)) ⊂ Ω(x).

ii) For all x satisfying h(x) ≤ 0, there is s ∈ R
�,

such that g(x, ξ i (s)) ≤ 0, for i = 1, . . . , k, and
Ω̃(ξ1(s), . . . , ξ k(s)) ≡ Ω(x).

Then, the next theorem shows that we can find an
optimal solution to Problem (P ) by considering a different
optimization problem that considers instead a probability
constraint on the parametric region Ω̃(ξ1(s), . . . , ξ k(s)):

Theorem 1 Suppose that Ω̃(ξ1(s), . . . , ξ k(s)) is a para-
metric region that satisfies assumptions i) and ii) above.
Then, the optimal solution (x∗, s∗) to the following problem:

provides an optimal solution x∗ for Problem (P ).

Proof Note that if x∗ is an optimal solution of Problem (P ),
then by assumption ii), there is s∗ such that (x∗, s∗) is
feasible for Problem (PA). Moreover, if (x∗, s∗) is an
optimal solution to Problem (PA), then by assumption i) x∗
is feasible for Problem (P ). Both of them are then equivalent
in terms of the design variable x.

Note that both assumptions i) and ii) are quite strong
and hard to satisfy in a practical application. For instance,
Fig. 1 shows the case that both assumptions are violated: the
inclusion Ω̃(ξ1(s), . . . , ξ k(s)) ⊂ Ω(x) of assumption i) is
not true, and it is impossible to choose s in order to obtain
Ω̃(ξ1(s), . . . , ξ k(s)) ≡ Ω(x) as assumption ii) demands.
However, both of them can be satisfied in an approximate
sense by considering a large number of control points.

The following comments may be useful to understand
why problem (PA) leads to an optimal solution to
problem (P ). Note that the project variable x and the shape
variable s are independent variables of problem (PA). The
objective function f (x) and the safe region Ω(x) (gray
region in Fig. 1) depend on the project variable x. Then,

by changing the variable x the optimization algorithm
changes the value of the objective function and the shape
of the safe region simultaneously. The polytope-like region
Ω̃(ξ1(s), . . . , ξ k(s)) depends only on the shape variable s.
Then by changing s the optimization algorithm changes
the shape of the polytope. However, the optimization
algorithm must respect the constraints g(x, ξ i (s)) ≤ 0,
which basically means that the vertices ξ i (s) of the polytope
must be inside the safe region. Roughly speaking, at each
feasible design (x, s), the polytope Ω̃(ξ1(s), . . . , ξ k(s))
is contained by the safe region Ω(x). Suppose that the
optimization algorithm starts at a feasible design (x, s), i.e.,
the polytope is contained by the safe region (maybe strictly
contained), and the probability P{Ω̃(ξ1(s), . . . , ξ k(s))} is
above the specified lower bound. In the optimization
process, the optimization algorithm will try to change the
project variable x in order to reduce the value of the
objective function f (x), i.e., to obtain cheaper designs.
However, cheaper designs are more likely to fail, i.e.,
the cheaper the design, the smaller the safe region Ω(x).
Therefore, in the optimization process, cheaper designs
will be found for which the size of the safe region Ω(x)
is progressively reduced. Since the size of the polytope
Ω̃(ξ1(s), . . . , ξ k(s)) cannot be arbitrarily reduced (due to
the probability constraint), the boundary ∂Ω(x) of the safe
region will eventually come into contact with the boundary
of a polytope of minimum possible size. In that situation,
the optimization process must end, since the optimization
algorithm cannot find a cheaper feasible design without
producing a violation of the probability constraint. Note
that only the final polytope approximates the safe region
(polytopes of intermediate iterations may not approximate
the corresponding safe regions); hence, the approximation
of the safe region is built throughout the optimization
process for the optimal design only. This is a different
approach from other classical methods such like FORM
and SORM, where the approximate region is built for each
evaluation of the probability constraint.

Note that Problem (PA) looks quite suitable for finding
an approximate optimal solution. First, it has a set of
deterministic constraints g(x, ξ i (s)) ≤ 0, that are not
challenging from the point of view of the function
evaluation and sensitivity analysis (all the tools developed
for deterministic problems should be appropriate), and only
one probabilistic constraint that does not depend on the
design variable x. The probabilistic constraint depends
only on the shape variables s, and this dependency is
quite direct. In the following sections, we will show some
appropriate numerical techniques for the evaluation of the
probability constraint, as well as its functional derivatives.
Second, since the shape variables s of the polytope
Ω̃(ξ1(s), . . . , ξ k(s)) are added to the optimization problem,
then the optimization process will find simultaneously the
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optimal solution and the approximate safe region, without
implying nested iterations such like e.g. in FORM-based
RDBO, where the approximation of the safe region implies
itself an iterative process to find the MPP. Third, differently
from other techniques such like FORM-based methods, the
one proposed has the advantage of allowing the user to
control the accuracy of the probability estimation. The user
could in principle obtain solutions with arbitrary accuracy
by increasing the number of control points. Of course, as
more control points are used, more time-consuming will
be the optimization process. Anyway, the proposed method
allows the possibility of reaching a suitable design by
considering different levels of accuracy in different stages.

To illustrate the ideas mentioned above, we consider the
following problem:

min
x

f (x) = x ,

s.t. P{Ω(x)} ≥ 1 − Pf ,

x ≥ 0 ,

where Ω(x) = {|ξ | ≤ x} and ξ is a univariate normal
random variable of zero mean and unitary variance. Note
that, for x > 0, Ω(x) = [−x, x], hence P{Ω(x)} = Φ(x)−
Φ(−x) = 1−2Φ(−x). Then, the probability constraint can
be rewritten as x ≥ −Φ−1(Pf /2). The optimal solution is
then x∗ = −Φ−1(Pf /2) provided 0 < Pf ≤ 1.

Since the random space is one-dimensional, the natural
approximation of the safe region is an interval given by two
control points: Ω̃(ξ1(s), ξ2(s)) = [ξ1(s), ξ2(s)], where the
control points are given by ξ1(s) = −s1, ξ2(s) = s2, i.e.,
the first control point is in the ray (−∞, 0] at a distance s1

from the origin, and the second one is in the ray [0, ∞) at a
distance s2, being s1 and s2 the two positive shape variables
of the parametric interval. The approximate version (PA) of
the example is then given by

min
x,s

f (x) = x ,

s.t. s1 ≤ x ,

s2 ≤ x ,

P{[−s1, s2]} ≥ 1 − Pf ,

x ≥ 0 .

Note that the approximate version has two additional
variables and two additional constraints. We emphasize
that the additional variables s1 and s2 are independent of
x, which means that the probability constraint no longer
depends on x, and that the safe region Ω(x) and the interval
Ω̃(ξ1(s), ξ2(s)) are not related in principle. However, each
feasible triplet (x, s1, s2) satisfies s1 ≤ x and s2 ≤ x,
which gives Ω̃(ξ1(s), ξ2(s)) ⊂ Ω(x), and assumption i) of
Theorem 1 holds. By taking s1 = s2 = x, we see that
assumption ii) holds also. Then, by Theorem 1 we have that

the approximate version must provide the exact solution. In
fact, P{[−s1, s2]} = Φ(s2) − Φ(−s1) = 1 − Φ(−s1) −
Φ(−s2), and since si ≤ x, then Φ(−si) ≥ Φ(−x).
Therefore, the first three constraints of the approximate
problem imply x ≥ −Φ−1(Pf /2). The optimal solution
is then given by the feasible triplet (x∗, x∗, x∗) with x∗ =
−Φ−1(Pf /2).

We end this section by showing several toy exam-
ples that will be useful to understand how the proposed
method works in more realistic situations. In particular, we
will discuss the effect that the non-satisfaction of assump-
tions i) and ii) has on the approximate optimal designs.
The toy examples are related to the optimization of truss
structures, and we will proceed to discuss the results
obtained without giving details about the problems con-
sidered, such as the computation of performance functions
and probability constraint. Details about the computation
of the probability constraint and its derivatives are given
in Section 3, and details about the design of truss struc-
tures are given in Section 4. All the toy examples are solved
using the quasi-Newton, interior-point algorithm FAIPA
(Herskovits et al. 2005) provided with first order sensitivi-
ties of the performance functions.

The first example is depicted in Fig. 2. The design
variables of the example are the cross-section areas of
the bars, which are considered deterministic, the objective
function is the total volume of the structure and the limit
state function is g(x, ξ) = c(x, ξ) − c0, where c(x, ξ)

is the compliance of the structure and c0 = 1 Nm. The
deterministic constraint is x ≥ 0, and the failure probability
Pf = 1.35×10−3 which corresponds to the reliability index
β = 3. The approximate safe region is defined following

F1
F2

Fig. 2 First toy example. The bars have lengths
√

2 m and 1 m, and
they are composed by a linear elastic material with Young’s modulus
E = 1 Pa. The forces F1 and F2 are of 1 N of magnitude. The random
loading is ξ1F1 + 0.1ξ2F2, where the pair (ξ1, ξ2) is a multivariate
normal random variable with zero mean and identity covariance matrix
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Fig. 3 First toy example: safe
regions and their approximate
counterparts in the final design
when considering 8 and 16
control points. The figures show
some contour levels of the
compliance function. The thick
contour line corresponds to the
level c0
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the idea of Fig. 1, considering rays that divide the plane in
equal angles.

When we solved Problem (PA) considering 8 control
points, we obtained an optimized structure of 12.75 m3

of material, while when considering 16 control points the
total amount of material is 12.21 m3. Figure 3 shows the
safe region Ω(x) for the final design and its corresponding
approximate Ω̃(ξ1(s), . . . , ξ k(s)). Note in the figure that
the safe regions are convex in this example, a consequence
of the fact that the compliance is a convex function with
respect to the load values. Therefore, the approximate region
is entirely inside the real safe region, which means that
assumption i) is satisfied, and the failure probability is
overestimated. The optimized designs have then a reliability
index higher than the target one: β = 3.091 when using
8 control points, and β = 3.025 when using 16 control

points (the final values of the reliability index are computed
by considering approximate regions with a high number
of control points, following the same evaluation techniques
presented in Section 3). Since assumption ii) is not satisfied,
the solutions obtained are not exact. However, by increasing
the number of control points a lighter structure is obtained
with a reliability index closer to the target value. Figure 3
shows also the advantage of considering rays forming equal
angles. The line segments of the piecewise boundary of
the approximate region are smaller in the regions of the
boundary closer to the origin. Hence, a better fitting of the
failure surface is obtained in a neighborhood of the MPP.

The second example is the same of Fig. 2, but in this
case the random load is F1 + 0.1ξ1F2, and the inclined bar
has a cross-section area that is now considered random of
value x1 + Aξ2, with A = 0.1 m2. The pair (ξ1, ξ2) is a

Fig. 4 Second toy example: safe
regions and their approximate
counterparts in the final design
when considering 8 and 16
control points. The figures show
some contour levels of the
compliance function. The thick
contour line corresponds to the
level c0, and the thin red line
indicates the maximum possible
value for the shape variables si

-5 0 5

1

-6

-4

-2

0

2

4

2

-5 0 5

1

-6

-4

-2

0

2

4

2



A newmethod for reliability analysis and reliability-based design optimization 1661

F1
F2

Fig. 5 Third toy example. The bars have lengths
√

2 m, 1 m and and√
2 m, and are composed by a linear elastic material with Young’s

modulus E = 1 Pa. The forces F1 and F2 are of 1 N of magnitude. The
random loading is F1 + 0.1ξ1F2, and the inclined bar on the left has a
cross-section area that is x1 + Aξ2, with A = 0.1 m2. The pair (ξ1, ξ2)

is a multivariate normal random variable with zero mean and identity
covariance matrix

multivariate normal random variable with zero mean and
identity covariance matrix. In this example, two limit state
functions are considered; one related to the compliance:
g1(x, ξ) = c(x, ξ) − c0 with c0 = 1 Nm, and the other
one related to the cross-section area of the inclined bar:
g2(x, ξ) = −x1−Aξ2. In this example, the safe region Ω(x)
is still convex, since the compliance is a convex function
with respect to the load values and the cross-section areas.
However, in this case, the safe region is unbounded. In
order to obtain convergence to a solution, we have set a
finite upper bound on the variables si , i.e., each variable

si is sought in the interval [0, s0] with s0 = 5. Note that
this upper bound is an additional source of error in the
computation of the failure probability. However, it prevents
the control points to go through a region of quite low
probability, so that the error introduced is actually rather
small. When using 8 control points, we obtained a structure
of 3.669 m3 with β = 3.022, while when using 16 control
points, we obtained a structure of 3.649 m3 with β = 3.004.
The safe regions of the optimized designs are shown in
Fig. 4.

As a third toy example we consider the truss of Fig. 5,
which is the same of the second example but with an
additional inclined bar with deterministic cross-section area
on the right. Two limit state functions are considered;
one related to the vertical displacement of the free node:
g1(x, ξ) = u0 − u1(x, ξ) where u(x, ξ) is the vertical
displacement and u0 = − 0.4 m, and the other one related
to the cross-section area of the inclined bar on the left:
g2(x, ξ) = −x1 − Aξ2. In this example, the safe region is
nonconvex and unbounded. As in the second example, each
variable si is sought in the interval [0, s0] with s0 = 5.
When using 8 control points, we obtained an optimized
structure of 3.363 m3 of material with β = 2.973, while
when using 16 control points the total amount of material
is 3.366 m3 and β = 2.999. Figure 6 shows the safe region
Ω(x) for the final design and its corresponding approximate
Ω̃(ξ1(s), . . . , ξ k(s)). Since in this example the safe region is
nonconvex, the assumption i) is not satisfied, and the failure
probability can be underestimated. That is the reason why
the solution with 16 control points is heavier and safer than
the solution with 8 control points.

505-

1

-5

-4

-3

-2

-1

0

1

2

3

4

5

2

505-

1

-5

-4

-3

-2

-1

0

1

2

3

4

5

2

Fig. 6 Third toy example: safe regions and their approximate counter-
parts in the final design when considering 8 and 16 control points. The
figures show some contour levels of the vertical displacement which

are drawn only in the region satisfying g2(x, ξ) ≤ 0. The thick con-
tour line corresponds to the level u0, and the thin red line indicates the
maximum possible value for the shape variables si
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F1
F2

F3

F4
F5

F6

Fig. 7 Fourth toy example. The bars are composed by a linear elastic
material with Young’s modulus E = 1 Pa. The forces F1–F6 are all of
1 N of magnitude. Let f0 = F1 +F2, f1 = F3 +F4, f2 = F5 +F6, f3 =
F5 −F6. Then, the random loading is f0 + 0.1ξ1f1 + 0.1ξ2f2 + 0.1ξ3f3,
where (ξ1, ξ2, ξ2) is a multivariate normal random variable of zero
mean and identity covariance matrix

The fourth example consists of a three-dimensional truss
submitted to the random loads detailed in Fig. 7. For the
geometry of this example see (Canelas et al. 2017). The
bar areas are considered deterministic, while the loading
is random. The limit state function is the compliance

g(x, ξ) = c(x, ξ) − c0 with c0 = 2.168 Nm, which
corresponds to the compliance of the design of unitary
cross-sectional areas when submitted to the mean load.
In this case, a safe region in a three-dimensional random
space has to be approximated. Such as in the previous
examples, the control points are located on fixed rays, each
one corresponding to a point of a regular grid defined on
the space of the angular variables of the usual spherical
coordinates. The safe regions found for two different
meshes are depicted in Fig. 8. When using the mesh of 4×8
faces for the failure region a truss of 53.32 m3 is obtained,
with a reliability β = 3.397. When the mesh has 8 × 16
faces the volume obtained is 49.57 m3 and the reliability is
β = 3.091.

3 Evaluation of the probability constraint

In the previous section, it was shown that the strategy of
Fig. 1 can be used successfully to solve some examples in
a two-dimensional random space. In this section, we show
how to extend the idea of Fig. 1 to higher-dimensional
random spaces, and how to compute the failure probability
and its derivatives with reasonable accuracy. We will assume
that the polytope-like region Ω̃(ξ1(s), . . . , ξ k(s)) is star-
shaped with respect to the origin. Note that the safe region is
not generally star-shaped, for instance when it is composed
by a set of unconnected domains. If the safe region is not
star-shaped, then the polytope can approximate only the set
of points of the safe region that are “visible” from the origin.
Hence, the probability of failure will be overestimated in the
case of safe regions that are not star-shaped (see Fig. 9).

Fig. 8 Fourth toy example: safe regions of the final design when considering 4 × 8 and 8 × 16 faces. The color indicates the distance from the
origin to the approximate limit state surface
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Fig. 9 Approximation of a safe region that is not star-shaped.
The safe region Ω(x) is represented in gray and is composed of
three unconnected components. The best star-shaped approximation
is bounded by the thick black solid line. Note that only part of
the connected region containing the origin is considered in the
approximation (the points that are “visible” from the origin). Hence,
the failure probability is overestimated

The main idea proposed here is to view the safe region
in the space of generalized spherical coordinates. In an
n-dimensional space, these coordinates are defined by

ξ1 = r cos(θ1) ,

ξ2 = r sin(θ1) cos(θ2) ,

ξ3 = r sin(θ1) sin(θ2) cos(θ3) ,

...

ξn−1 = r sin(θ1) . . . sin(θn−2) cos(θn−1),

ξn = r sin(θ1) . . . sin(θn−2) sin(θn−1).

Let θ = (θ1, . . . , θn−1), and Θ = [0, π ]× · · ·× [0, π ]×
[0, 2π ]. Since the polytope is assumed star-shaped, then it
is the following set in the space of the generalized spherical
coordinates:

Ω̃ ′(ξ1(s), . . . , ξ k(s))={(r, θ) : θ ∈ Θ , and r ∈ [0, R(s, θ)]} , (3)

where R(s, θ) is the distance from the origin to the boundary
∂Ω̃(ξ1(s), . . . , ξ k(s)) of the polytope in the direction given
by θ .

For instance, the two-dimensional safe region of Fig. 1 is
shown in the space of the generalized spherical coordinates
in Fig. 10. Note that the piecewise linear boundary of Fig. 1
means a piecewise nonlinear boundary of Ω̃ ′(ξ1(s), . . . ,
ξ k(s)). Of course, one could consider a piecewise linear
boundary for Ω̃ ′(ξ1(s), . . . , ξ k(s)), and in this case, the
original domain Ω̃(ξ1(s), . . . , ξ k(s)) would be a polytope-
like region limited by smooth curved faces.

r

si

i

Fig. 10 Safe region Ω̃ ′(ξ1(s), . . . , ξ k(s)) in the space of the
generalized spherical coordinates

Let Pf (s) be the failure probability given by Pf (s) = 1−
P{Ω̃(ξ1(s), . . . , ξ k(s))}. It can be computed by integrating
the density function corresponding to the probability
distribution in the unsafe region R

n \ Ω̃(ξ1(s), . . . , ξ k(s)).
The change of variables of the generalized spherical
coordinates and the Fubini theorem provide:

Pf (s) =
∫ +∞

R(s,θ)

∫
Θ

J (r, θ)fn(r, θ) dθ dr , (4)

where J (r, θ) is the Jacobian determinant of the transforma-
tion and fn(r, θ) is the probability density function. In the
case of a multivariate normal random variable of zero mean
and identity covariant matrix, we have

J (r, θ) = rn−1S(θ),

S(θ) = sinn−2(θ1) sinn−3(θ2) . . . sin(θn−2),

fn(r, θ) = (2π)−n/2 exp(−r2/2).

Hence, (4) becomes

Pf (s) =
∫

Θ

S(θ)Fn(s, θ) dθ , (5)

where the function Fn(s, θ) is given by

Fn(s, θ) =
∫ +∞

R(s,θ)

(2π)−n/2rn−1 exp(−r2/2) dr . (6)

We observe that closed expressions in terms of known
functions can be found for Fn(s, θ). They are given by the
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expressions obtained for n = 1; 2, and a recurrence relation
which can be found through integration by parts:

n = 1 : F1(s, θ) = 1 − Φ(R(s, θ)) ,

n = 2 : F2(s, θ) = (2π)−1 exp
(
−R(s, θ)2/2

)
,

n > 2 : Fn(s, θ) = (2π)−(n−2)/2R(θ)n−2F2(s, θ)

+(n − 2)(2π)−1Fn−2(s, θ).

We are now in the position to explain the advantages of
using generalized spherical coordinates. In the first place,
they allow the expression (5) for the failure probability.
The domain of integration Θ is a rectangular box that
can be divided into a regular mesh of squares (cubes
and hyper-cubes in higher-dimensional spaces) which is
quite convenient for numerical quadrature. The second
advantage is that the regular mesh used defines the rays
in the original probability space where the vertices of the
polytope are located. In fact, the polytope-like region used
to approximate the safe region is first defined in the space
of generalized spherical coordinates.

Many schemes of integration can be used to compute (5).
Consider for instance the two-dimensional example of
Fig. 10 defined by a grid of k intervals. In this case S(θ) =
1, and the trapezoidal rule applied to (5) provides:

Pf (s) ≈
k∑

i=1

θi
2 − θi

1

2

[
S(θi

1)Fn(s, θ i
1) + S(θi

2)Fn(s, θ i
2)

]
,

(7)

where θi
1 and θi

2 are the limits of the i-th interval. The
previous result is in fact exact for the probability of the
approximate safe region if it is defined by a piecewise
linear boundary in the space of the generalized spherical
coordinates. If other interpolation schemes are used, then
more elaborated schemes of integration can be used, e.g.,
the Gauss quadrature. For instance, in the toy examples of
Section 2, the approximate safe regions of Figs. 3, 4, 5,
and 6 were assumed limited by linear faces, so that, R(s, θ)

was piecewise nonlinear such as in Fig. 10. The procedure
used for obtaining the accurate results presented was to
divide each interval [θ i

1, θ
i
2] into three subintervals before

the application of the trapezoidal rule.
If the random space has dimension n > 2, then the above

ideas can be extended easily. Since Θ has a rather simple
geometry, we can divide it in squares, cubes, hyper-cubes,
etc., interpolating the nodal values of R(s, θ) and using a
simple scheme of integration to obtain a sum such as (7).

The sensitivities of the failure probability can be
computed quite easily as well. Consider for instance the
failure probability given by (7). Then, we have

∂Pf

∂sj
(s)≈

k∑
i=1

θi
2−θi

1

2

[
S(θi

1)
∂Fn

∂sj
(s, θ i

1)+S(θi
2)

∂Fn

∂sj
(s, θ i

2)

]
.

(8)

Note that the partial derivatives are zero when the
angles θi

1 and θi
2 are not the angle θj corresponding to

the j -th node. For the angle θj , since R(s, θj ) = sj , by
differentiating (6) we obtain

∂Fn

∂sj
(s, θj ) = −(2π)−n/2sn−1

j exp(−s2
j /2). (9)

Derivatives of higher order can be easily obtained by
differentiating (8) and (9).

Although the formulation presented is general, we note
that a regular mesh for Θ = [0, π ] × · · · × [0, π ] × [0, 2π ]
leads to a large number of control points in the case of
high-dimensional random spaces. For instance, a mesh of
d × d × · · · × d × 2d intervals define approximately
2(d + 1)n−1 control points. By taking d = 4, we obtain
10, 250, 6250, and 156250 control points for n = 2, 4,
6, 8, respectively. Hence, an accurate representation of the
safe region is possible only in the case of low-dimensional
random spaces.

The dimension n of the random space can also affect the
accuracy of the failure probability computed. To see this, we
considered a safe region with the shape of a ball of radius
r = 3 centered at the point ξ = (1, 0, . . . , 0). The ball
was approximated by a polytope with vertices located on
the spherical failure surface. For the polytope we considered
regular meshes with d = 4, 6, 8, 10 and 12. To compute
the failure probability each of the d × d × · · · × d × 2d

hyper-cubes of the mesh was divided into 3 × 3 × · · · × 3
elements, and the integration of the failure probability in the
elements was obtained by Gaussian quadrature with only
one integration point. Table 1 provides the results obtained
for the polytopes considered and also by using FORM. The
probability computed by using FORM is actually the same
independently of the dimension of the space considered,
since it corresponds to the probability of the half space
ξ1 ≤ −2, i.e., the value Φ(−2) = 2.275 × 10−2. Table 1
shows that the polytope method tends to overestimate the
failure probability (the polytope is contained by the safe
region), and shows that a value d ≈ 2n is required to keep
the error of the reliability index below 10 % (highlighted
figures in the table). FORM instead tends to underestimate



A newmethod for reliability analysis and reliability-based design optimization 1665

Table 1 Values of P̄f /Pf and β̄/β, i.e., computed values over reference ones

Mesh n = 1 n = 2 n = 3 n = 4 n = 5

d = 4 1.000, 1.000 1.219, 0.944 1.458, 0.852 1.642, 0.718 1.748, 0.508

d = 6 1.000, 1.000 1.090, 0.976 1.182, 0.936 1.255, 0.877 1.306, 0.781

d = 8 1.000, 1.000 1.049, 0.987 1.097, 0.965 1.136, 0.932 1.164, 0.878

d = 10 1.000, 1.000 1.030, 0.992 1.060, 0.978 1.084, 0.957 1.102, 0.923

d = 12 1.000, 1.000 1.021, 0.994 1.041, 0.985 1.057, 0.971 1.069, 0.948

FORM 0.999, 1.000 0.520, 1.171 0.296, 1.402 0.183, 1.732 0.122, 2.240

Notations: P̄f : failure probability computed with the polytope or with FORM, Pf : reference value, β̄: reliability index computed, β: reference
value, n: dimension of the random space. Reference values are numerically computed by using a polytope with d = 50. The highlighted figures
indicate the smaller value d for which the error of β is less than 10 %

the failure probability, and for the ball considered the error
can be quite significant even for the dimension n = 2.

4 Topology optimization of truss structures

Trusses are two or three-dimensional mechanical struc-
tures that consist of an ensemble of L nodes joint by m

bars, which are made of a linear elastic, isotropic and
homogeneous material. Trusses are designed to support
one or more external loadings, each one consisting of
one or more forces applied to the nodes of the struc-
ture, see e.g. (Achtziger 1997; Bendsøe 1995). In the
so-called ground structure approach (Dorn et al. 1964),
nodal positions are fixed in the reference configuration,
and the optimal truss structure is found by considering
only bar volumes as design variables. When a mesh full
of nodes and bars is considered, which is referred to as
the ground structure, a suitable geometry can be found as
a strict subset, hence simulating the effect of geometric
variables. The high number of nodes and potential bars
made these problems typically large scale. The large size
of the typical problems requires that the solution be found
by using specific algorithms applied to special reformu-
lations of the compliance optimization model, see e.g.
(Makrodimopoulos et al. 2009). Suitable practical designs
are usually found, since a large number of potential bar
volumes vanishes at the optimum.

Let us consider first the deterministic model related to the
topology optimization of trusses. A largely employed model
consists of minimizing the total volume of material subject
to a constraint on the compliance:

where x is the vector of cross-sectional areas of the bars, �i

the length of the i-th bar, and the compliance c(x) is given
by

c(x) =
{
f�u If there exists u such that K(x)u = f ,
+∞ otherwise,

where K(x) denotes the stiffness matrix corresponding to
the design x. It is known that c : R

m → R ∪ {+∞}
is a proper lower semi-continuous convex function, and
hence measurable when considering the Borel σ -algebra
of R

n, see Alvarez and Carrasco (2005) for details. We
note that other mechanical constraints, such as global and
local buckling, natural frequency constraints, etc., should be
considered to obtain practical solutions. However, these can
be considered in a later stage of the design process after a
suitable topology has been found.

It is well known that optimal structures obtained by
this model are unstable from the mechanical point of view, and
great effort has been made in order to obtain formulations
having robust optimal trusses, see e.g. Achtziger et al. (1992),
Ben-Tal and Nemirovski (1997), Alvarez and Carrasco
(2005). More precisely, the optimal truss is not able to support
the external loading when it is affected by a small perturba-
tion, or it can support it but presenting a high compliance. In
the approach named robust topology optimization of trusses,
the idea is to take into account in some way these small per-
turbations in order to obtain an optimization model, such
that the optimal solution be less sensitive to them. For
example, there are deterministic models that consider the
worst-case of compliances (Ben-Tal and Nemirovski 1997)
or other performance measures (Canelas et al. 2017), when
external loads belong to an ellipsoid. The stochastic mod-
eling of the perturbations is also a frequent approach (see
Alvarez and Carrasco (2005) where the expected compli-
ance is minimized in the case of stochastic loading). In
the same line, Guest and Igusa (2008) studied the case in
which uncertainties are considered in loads and also in nodal
positions.



1666 A. Canelas et al.

RBDO can be used as an alternative approach to obtain
a robust design. Despite RBDO leads to more intensive
computational models, it has the advantage of considering
quantitatively an important measure of performance in
engineering applications: the failure probability. The RBDO
version of Problem (PD) replaces the design variable x and
some other problem data by random variables. For instance,
consider that x, and f are replaced by x̃ and f̃, which are
random variables given by x̃ = x + Aξx, and f̃ = f + Bξ f,
where ξ = (ξx, ξ f) is a multivariate normal random variable
of zero mean and identity covariance matrix and A,B are
given matrices. Then, the RBDO version of Problem (PD)
is defined in terms of the design variable x by

where

Ω(x) = {ξ ∈ R
m : c(x, ξ) ≤ c0 and x + Aξx ≥ 0}, (10)

and

c(x, ξ)=
{
(f+Bξf)

�u If there exists u such thatK(x+Aξx)u= f+Bξf,+∞ otherwise.

In simple words, Problem (PS) attempts to minimize the
expected volume of the truss structure keeping the failure
probability below the value Pf . As pointed out by Liu et al.
(2016a), Problem (PS) can be reformulated as a convex
one. In fact, since the compliance is a convex function
of the bar cross-section areas and the loading (Alvarez
and Carrasco 2005), then c(x, ξ) is convex on the variable
(x, ξ). This property and the logconcavity property of the
multivariate normal probability density function fξ imply
that P{Ω(x)} be logconcave; see (Prékopa 1995, Theorem
10.2.1). Therefore, a convex problem is obtained if the
probability constraint is reformulated as log(1 − Pf ) −
log (P{Ω(x)}) ≤ 0.

Unfortunately, in the approximate version of (PS)
obtained following the proposed method, the probability
constraint loses the convexity property. This is due to the
fact that the domain Ω̃(ξ1(s), . . . , ξ k(s)) of Fig. 1 can be
nonconvex, so that it cannot be described by a set of convex
constraints even in the case that a convex safe region is
found at the solution. The following approximate version
of (PS) is considered here:

Only the loadings are modeled as random variables.
The small value ε > 0 is considered to obtain a
smooth compliance, which is necessary since no special
reformulation of the problem will be used. The constraint
function Pf (s) provides the failure probability as detailed in
Section 3. To represent the approximate limit state surface,
we consider a mesh of d ×· · ·×d ×2d intervals for Θ , with
d = 4 or d = 8. To compute the failure probability each
of the d × d × · · · × d × 2d hyper-cubes of the mesh was
divided into 3 × 3 × · · · × 3 elements, and the integration
of the failure probability in the elements was obtained by
Gaussian quadrature with only one integration point. The
examples are solved by using the interior-point algorithm
fmincon of MATLAB, which has the possibility of using
second order sensitivity information. Although the Hessian
matrix of the problem is full and difficult to compute, it
was noticed that it provides for a significant reduction of the
time spent by fmincon thanks to a considerable reduction
of the number of iterations required to satisfy the stopping
criteria. In fact, by using the profile tools of MATLAB,
we notice that most of the time of solution is spent in the
factorization of the internal linear systems of fmincon; the
computation of the performance functions (including the
failure probability) and their first and second derivatives
is a relatively inexpensive task. In all the examples, the
default tolerance values for the stopping criteria of fmincon
were considered. The value ε = 0.001 m2 was used as
a lower bound of the cross-sectional area. The examples
were solved in a PC with an Intel core i7-6700 CPU. To
improve the visibility of the optimized solutions, only the
bars with a cross-sectional area higher than 1 % of the
largest cross-sectional area of the solution are drawn in the
pictures.

Example 1 (Crane arm) The geometry, loadings and failure
probability of this example are taken from Liu et al. (2016a)
(see Fig. 11). The target failure probability of this example
corresponds to a reliability index β = 2. Two different

F1 F2

h

h h 2h

Fig. 11 Example 1: Crane arm. The bars join the nodes on a grid inside
the rectangle of height h = 1 m, and are composed by a linear elastic
material with Young’s modulus E = 100 Pa. The forces F1 and F2 are
of 1 N of magnitude. The random loading is 7F1+3ξ1F1+7F2+3ξ2F2
with (ξ1, ξ2) a multivariate normal random variable with zero mean
and identity covariance matrix
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Fig. 12 Example 1a: Crane arm. Result obtained for the mesh of 13×4
nodes, d = 8

meshes are considered: the case a) with 13 × 4 nodes with
level 6 nodal connectivity, see Liu et al. (2016a), which
corresponds to 629 non-overlapping bars; and the case b)
with 17 × 5 nodes and full connectivity, corresponding
to 2196 non-overlapping bars. The solutions obtained are
shown by Figs. 12 and 13.

Example 2 (Short bridge) The geometry and loadings of
this example are taken from Makrodimopoulos et al. (2009).
We reduced the height in reason of the solutions presented
in that paper (see Fig. 14). The target failure probability of
this example corresponds to a reliability index β = 3. Two
different meshes are considered: the case a) with 13 × 7
nodes, which corresponds to 2542 non-overlapping bars;
and the case b) with 17 × 9 nodes, corresponding to 7180
non-overlapping bars. The solutions obtained are shown by
Figs. 15 and 16.

Example 3 (3D Beam) In this case, the clamped beam of
Fig. 17 is considered. The beam is submitted to bending
in vertical and horizontal directions, and also torsion. The
target failure probability of this example corresponds to a
reliability index β = 3. A mesh of 3 × 3 × 9 nodes and full
connectivity, which corresponds to 2660 non-overlapping
bars is considered. The solution obtained is shown by
Fig. 18.

Table 2 presents the results obtained. All the examples
were solved successfully, i.e., the optimization algorithm
was able to find designs with the optimality measures
required by the stopping criteria. The number of iterations

Fig. 13 Example 1b: Crane arm. Result obtained for the mesh of 17×5
nodes, d = 8

F1 F2 F3

h

0.5h 0.5h h

Fig. 14 Example 2: Short bridge. The bars join the nodes on a grid
inside the rectangle of height h = 0.5 m, and are composed by a linear
elastic material with Young’s modulus E = 1 Pa. The forces F1–F3
are of 1 N of magnitude. The random loading is ξ1F1 + ξ2F2 + ξ3F3
with (ξ1, ξ2, ξ3) a multivariate normal random variable with zero mean
and identity covariance matrix

was similar in all the examples, with a maximum of
41. Despite the fact that the optimization model is not
convex, convergence difficulties were not observed when
considering the examples presented or other similar ones.
The table shows the reliability index β of the optimized
structures, which were computed by using the same
techniques of Section 3, considering a fine mesh for the
exact limit state surface. The table shows that a mesh
of d × · · · × d × 2d intervals with d = 4 provides
structures with a reasonable reliability index. When using
d = 8 excellent results were obtained, with a deviation of
less than 2 % in the target reliability index. Note that the
optimized structures of Example 2b) are slightly heavier
than the corresponding ones of Example 2a). The reason
of that strange fact is that the minimum cross-sectional
area ε implies that certain volume of material cannot be
redistributed. This volume is of only 1.05 m3 in Example
2a), but it rises to 3.06 m3 in Example 2b).

4.1 Comparison with FORM

In this section, we present a comparison of the proposed
technique with FORM, one of the most popular methods

Fig. 15 Example 2a: Short bridge. Result obtained for the mesh of
13 × 7 nodes, d = 8
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Fig. 16 Example 2b: Short bridge. Result obtained for the mesh of
17 × 9 nodes, d = 8

used in reliability analysis. We use FORM to define the
following approximate version of (PS):

where Ω̂(ξ∗(x)) is the half space {ξ : (ξ∗(x)− ξ) · ξ∗(x) ≥
0} and ξ∗(x) is the MPP defined as the point in the original
failure surface with maximum probability density. For a
multivariate normal random variable with zero mean and
identity covariance matrix, ξ∗(x) is the point in the original
failure surface with minimum norm. The small value ε > 0
has the same role as in (PSA).

Let us consider the topology optimization problem with
a random load f = F1ξ1 + . . . + Fkξk , i.e., f = Fξ where
the matrix F has columns Fi . In this problem, there is a
closed formula for the MPP: ξ∗(x) = (c0/μ(x))1/2v(x),
where c0 is the lower bound on the compliance, μ(x) is the
maximum eigenvalue of M(x) = F�K(x)−1F, and v(x) is
the unit eigenvector associated to μ(x), see Appendix. The
closed formula shows that the MPP is never unique: ξ∗(x)
and −ξ∗(x) are both MPPs. In addition, if the maximum
eigenvalue μ(x) is multiple, then the MPP will not be unique

F1

F2
F3

F4

h
4h

Fig. 17 Example 3: 3D beam. The bars join the nodes on a grid inside
the prism which has a square cross-section of height h = 1 m, and
are composed by a linear elastic material with Young’s modulus E =
100 Pa. The forces F1–F4 are of 1 N of magnitude. The random loading
is ξ1F1 +0.3ξ2F2 +ξ3F3 +0.3ξ4F4, with (ξ1, ξ2, ξ3, ξ4) a multivariate
normal random variable of zero mean and identity covariance matrix

Fig. 18 Example 3: 3D beam. Result obtained for d = 8

even locally, a fact that may affect the order of convergence
of the optimization algorithms used to find the MPP. In
addition, the closed formula shows that the MPP could not
depend continuously on the project variable x, since we may
have an abrupt jump of the eigenvector at a point where the
two maximal eigenvalues equal each other. In this particular
problem, we may use the closed formula instead of the usual
optimization approach to find the MPP, with the advantage
that the closed formula is fast, accurate and highly reliable
for low-dimensional random spaces.

In view of the two possibilities for finding the MPP, we
will consider the short bridge and the 3D beam examples
of Figs. 14 and 17 (in both examples the random force is
f = Fξ ), and solve several instances of them. In the case
of the short bridge four meshes are considered: a) 5 × 3, b)
9 × 5, c) 13 × 7 and d) 17 × 9 nodes. Four cases are also
considered for the 3D beam: a) 3 × 3 × 3, b) 3 × 3 × 5,
c) 3 × 3 × 7 and d) 3 × 3 × 9 nodes. Full connectivity is
considered in all cases. The three methods used to solve the
examples are the following:

Proposed method As described in the previous section, it
consists of solving (PSA) for a Polytope approximation with
d = 8. The problem was solved using the interior-point
algorithm fmincon of MATLAB provided with second order
sensitivity information. The default tolerance values for the
stopping criteria of fmincon were considered.

FORM1 It consists of solving (PF ) using the interior-point
algorithm fmincon of MATLAB provided with first order
sensitivity information (this is the usual approach when
using FORM). The MPP is found by using the closed
formula. The default tolerance values for the stopping
criteria of fmincon were considered, except for the variable
StepTolerance which was set equal to 10−4 (the default
value is 10−6) to avoid the large number of iterations,
without significant improvement of the solution that was
observed when using the default value.

FORM2 The same of FORM1, but in this case, the MPP is
found by using fmincon instead of the closed formula, i.e.
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Table 2 Results obtained

Example elem d var con vol (m3) β iter time (s)

Crane arm a) 629 4 638 10 295.63 2.039 33 6.1

Crane arm a) 629 8 646 18 291.32 2.008 28 4.9

Crane arm b) 2196 4 2205 10 290.58 2.042 32 131.1

Crane arm b) 2196 8 2213 18 286.01 2.009 32 135.5

Short bridge a) 2542 4 2587 46 53.59 3.244 37 193.1

Short bridge a) 2542 8 2695 154 48.36 3.054 36 194.8

Short bridge b) 7180 4 7225 46 53.97 3.245 41 4132.2

Short bridge b) 7180 8 7333 154 48.80 3.055 40 4369.1

3D beam 2660 4 2885 226 158.82 3.431 40 301.5

3D beam 2660 8 4037 1378 128.26 3.032 32 743.9

Notations: elem: number of potential elements, d: value used in the mesh of d×· · ·×d×2d intervals for Θ , var: number of optimization variables,
con: number of constraints, vol: volume of the optimized structure, β: reliability index of the optimized structure, iter: number of iterations, time:
time spent in the solution

in this case we have a nested iteration. The optimization
problem of the inner iteration involves a quadratic objective
with a quadratic constraint (see Appendix), and second
order sensitivity information was used to reduce the number
of iterations. The variable StepTolerance was set equal to
10−7 in the inner iteration to improve the accuracy in the
determination of the MPP. For the outer iteration, we used
the same tolerance values used in FORM1.

Note that FORM1 and FORM2 are used to solve
the same problem (PF ). The only difference in these
approaches is the procedure used to find the MPP. Then,
if both algorithms are successful, they should find the
same solution. The proposed approach is based on a fairly
different approximation of the safe region, which can lead
to a substantially different solution as we will show below.

Tables 3 and 4 present the results obtained. Table 3 shows
that FORM1 and FORM2 tend to obtain lighter structures.
However, the reliability indices of the optimized structures

are much lower than the target β = 3 of these examples. The
proposed approach with d = 8 instead provides structures
with a reliability index quite close to the target one. As
noted in previous sections, the proposed approach tends
to overestimate the failure probability, which leads to a
final reliability index slightly higher than the target one.
Table 4 shows the number of iterations and the time required
by the three approaches to find the solution. FORM2
generally required fewer iterations and less time than
FORM1. However, in some examples solved with FORM2
the algorithm fmincon reported that it was not able to reach
the default tolerance in the constraint violation (examples
indicated by the highlighted figures in the table). FORM1
was in all cases able to find a solution satisfying the default
tolerances, which shows that the convergence difficulties
experienced by FORM2 were probably due to an inaccurate
determination of the MPP. The proposed approach solved
all the examples satisfying the default tolerances of fmincon,

Table 3 Results obtained with the proposed method, FORM1, and FORM2: volume and reliability index

m(lovmeleelpmaxE 3)

Short bridge a) 74 56.23, 40.18, 40.42 3.048, 2.161, 2.152

Short bridge b) 632 49.25, 35.94, 43.54 3.046, 2.125, 2.125

Short bridge c) 2542 48.36, 41.75, 41.82 3.054, 2.124, 2.119

Short bridge d) 7180 48.80, 38.88, 39.35 3.055, 2.115, 2.117

3D beam a) 302 153.5, 122.9, 122.7 3.032, 2.029, 2.078

3D beam b) 832 131.5, 108.1, 108.1 3.032, 2.178, 2.174

3D beam c) 1618 129.2, 109.1, 109.1 3.032, 2.100, 2.149

3D beam d) 2660 128.3, 104.9, 104.9 3.032, 2.173, 2.167



Notations: elem: number of potential elements, vol: volume of the optimized structure, β: reliability index of the optimized structure. The
highlighted figures indicate the results where fmincon reported convergence difficulties



1670 A. Canelas et al.

Table 4 Results obtained with the proposed method, FORM1, and FORM2

)s(emitretimeleelpmaxE

Short bridge a) 74 36, 84, 42 2.2, 1.2, 10.9

Short bridge b) 632 34, 81, 56 8.5, 16.4, 16.4

Short bridge c) 2542 36, 108, 45 194.8, 1580.9, 88.0

Short bridge d) 7180 40, 189, 71 4132.2, 41771.9, 2432.9

3D beam a) 302 25, 144, 56 17.6, 10.0, 10.0

3D beam b) 832 28, 123, 124 105.0, 24.4, 32.0

3D beam c) 1618 29, 208, 216 263.1, 335.6, 244.5

3D beam d) 2660 32, 209, 153 743.9, 1989.5, 508.2

Notations: elem: number of potential elements, iter: number of iterations, time: time spent in the solution. The highlighted figures indicate the
results where fmincon reported convergence difficulties

requiring calculation times comparable to those required by
FORM2.

In conclusion, the proposed approach leads to optimized
structures with a reliability index quite close to the target
one in a reasonable calculation time. Therefore, it can be
considered as an adequate alternative to FORM for the
solution of this type of topology optimization problems.
Two features of the proposed approach can be seen
as additional advantages: it tends to provide structures
with a reliability index higher than the target one (the
solution obtained is therefore feasible with respect to the
original probability constraint), and it does not require the
determination of the MPP, i.e., situations with multiple
MPPs will not be particularly difficult.

5 Conclusions

In this paper, we have introduced a new method for reliabil-
ity analysis and reliability-based design optimization, which
is based on a polytope-like description of the safe region.
The shape of the polytope depends on the position of a set
of control points which in their turn depend on a set of shape
variables. In the space of the angular variables of the gen-
eralized spherical coordinates, the polytope is defined by a
regular mesh, which is used to compute approximately the
failure probability and its sensitivities with respect to the
shape variables.

The method is appropriate for problems where the safe
region is star-shaped with respect to the origin. An accurate
representation of the failure surface requires a number
of control points that increases exponentially with the
dimension of the random space. Therefore, the method
proposed is appropriate only for low-dimensional random
spaces. If this is the case, then the method proposed can
be used instead of the first and second order reliability
ones, when they fail to provide the failure probability with
sufficient accuracy.

We have presented an application of the method proposed
to the topology optimization problem of truss structures.
For this problem, the method allows the computation of
the second derivatives of the probability constraint. Several
medium-scale optimization examples were successfully
solved.
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Appendix: Closed formula for theMPP

Since the random load is f = Fξ , and x ≥ ε, then c(x, ξ) =
ξ�F�K(x)−1Fξ . By calling M(x) = F�K(x)−1F, we have
that the MPP can be found as the solution ξ∗ to

min
ξ

ξ�ξ ,

s.t. ξ�M(x)ξ ≥ c0 .

Note that the inequality constraint must be active at the
solution (the MPP is in the failure surface), since the
only possible interior solution is ξ∗ = 0 which does not
satisfy the constraint for a positive c0. Hence, let λ be
the nonnegative Lagrange multiplier of the constraint at
the solution. The first order optimality condition is ξ∗ −
λM(x)ξ∗ = 0. The value λ = 0 is not a possible solution
since it leads to ξ∗ = 0. Hence λ > 0. Let μ = λ−1. Then,
from the optimality condition we obtain M(x)ξ∗ = μξ∗.
Hence ξ∗ must be an eigenvector of M(x) of eigenvalue μ.
Let v be a unit eigenvector of eigenvalue μ, i.e. M(x)v = μv
with v�v = 1. Then ξ∗ = αv for certain value α. Since the
constraint is active ξ∗�M(x)ξ∗ = α2v�M(x)v = α2μ =
c0. Then α2 = c0/μ and ξ∗ = αv = (c0/μ)1/2v. Since the
objective function is ξ∗�

ξ∗ = α2 = c0/μ, then μ must be
the maximum eigenvalue of M(x).
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