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• A novel distance metric is proposed for dealing with high-dimensionality.
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a b s t r a c t

In this work, the Synthetic Minority Over-sampling Technique (SMOTE) approach is adapted for high-
dimensional binary settings. A novel distancemetric is proposed for the computation of the neighborhood
for each minority sample, which takes into account only a subset of the available attributes that are
relevant for the task. Three variants for the distance metric are explored: Euclidean, Manhattan, and
Chebyshev distances, and four different ranking strategies: Fisher Score, Mutual Information, Eigenvector
Centrality, and Correlation Score. Our proposal was compared with various oversampling techniques
on low- and high-dimensional datasets with the presence of class-imbalance, including a case study
on Natural Language Processing (NLP). The proposed oversampling strategy showed superior results on
average when compared with SMOTE and other variants, demonstrating the importance of selecting the
right attributes when defining the neighborhood in SMOTE-based oversampling methods.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Binary classification can be challengingwhen confronting class-
imbalanced datasets. When the class distribution is too skewed,
machine learning methods tend to generate classifiers that favor
the majority class, assigning the most frequent label to most test
samples. Although this fact usually leads to high overall accuracy,
itmay cause poor decision-making since theminority class is likely
to have higher misclassification costs compared to the majority
class in most applications [1–3]. Some common tasks that face
this issue are churn prediction [4], text categorization [5], and
bioinformatics [6–8], among others.

Data resampling has proved to be very effective for dealing
with class-imbalance [2,9]. In particular, SMOTE oversampling is
arguably the most frequently used technique when few samples
are available [1,9,10]. In such cases, undersampling could lead to an
important loss of information. The success of SMOTE oversampling
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and its variants can be explained by their simplicity, computational
efficiency, and superior performance [2,10,11].

In simple terms, SMOTE generates new samples from the mi-
nority class artificially by interpolating pre-existing ones. These
pre-existing instances are chosen by defining a neighborhood,
identifying the k nearest neighbors for each minority sample [12].
In high-dimensional settings, however, the various samples are
almost uniformly distant from each other, negatively affecting the
proper definition of neighborhood [7].

In this work, we study the effect of high-dimensionality on
SMOTE oversampling by formalizing a novel distancemetric based
on only the relevant attributes for the problem. The identification
of relevant variables is done via feature ranking methods, such
as the Fisher Score (FS), Mutual Information (MI), Eigenvector
Centrality (EC), and the Correlation Score (CFS). Furthermore, we
explore the influence of distancemetrics that are more suitable for
high-dimensional problems than the Euclidean norm, such as the
Manhattan and Chebyshev distances.

This paper has the following structure: Section 2 introduces
the issue of class-imbalance, presenting SMOTE and other varia-
tions that are relevant for this study. Strategies for dealing with
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high-dimensionality under class-imbalance conditions are also
discussed in that section. The proposed oversampling approach is
presented in Section 3. Experimental results using high-
dimensional datasets are discussed in Section 4. Finally, this study
is summarized in Section 5, where its main conclusions are pro-
vided.

2. Literature review

In this section, the relevant models for this study are pre-
sented. First, SMOTE oversampling and some well-known exten-
sions are discussed. Subsequently, solutions for handling high-
dimensionality and class-imbalance jointly are detailed, present-
ing the feature ranking methods that are used in the proposed
SMOTE variation.

2.1. Imbalanced data classification and SMOTE

There are several approaches for dealing with the
class-imbalance problem. The issue can be tackled independently
from the classifier by balancing the training set artificially before
model construction. This strategy is known as data resampling.
Alternatively, classifiers can bemodified to handle class-imbalance
by biasing the model toward a better prediction of the minority
class (cost-sensitive learning) or by training them with only one of
the classes (one-class learning) [2,10,11]. These strategies are not
reviewed in this work because they fall outside the scope of our
proposal.

Data resampling can be done by either downsizing themajority
class through discarding instances, an approach known as under-
sampling, or by adding new samples to the minority class, which
is known as oversampling. The first strategy is particularly useful in
large datasets inwhich the loss of information causedbydiscarding
samples is marginal [2,10]. In this work, however, we focus on
small-sized, high-dimensional datasets, such as microarray data,
and therefore only oversampling methods are discussed.

Oversampling can be performed by simply replicating the exist-
ing elements of theminority class on the training set. This strategy,
however, is known to be prone to overfitting [10,13]. To avoid
this risk, the new samples can be created artificially by respecting
the distribution of the minority class. One such approach is the
Synthetic Minority Over-sampling Technique (SMOTE) [12], which
has two main steps: First, a neighborhood is defined for each
element of the minority class, identifying the k nearest neighbors.
Usually, k is set to 5, and the distance metric used is the Euclidean
norm. Next, N < k elements of the neighborhood are randomly
selected andused to construct new samples via interpolation [12].1
Given a sample xi from the minority class, and N randomly chosen
samples from its neighborhood xpi , with p = 1, . . . ,N , a new
synthetic sample x∗pi is obtained with the following expression:

x∗pi := xi + u
(
xpi − xi

)
, (1)

where u is a randomly generated number between 0 and 1. This
method has the advantages of being fast to compute and successful
at providing balanced and accurate classification performance.
Since SMOTE is independent of the classifier, it can be used with
any classification technique [10,13].

One issue that SMOTE suffers from is over-generalization. Since
the majority class is ignored by the method, synthetic points can
be created over themajority class, increasing class overlap [2,3,13].
For example, there could be a large distance betweenxpi andxi if the
distribution of theminority samples is very sparse, and x∗pi could be

1 The authors actually suggested multiples of 100 as values for N , but then they
divided N by hundred.

created in a zonewhere themajority class, rather than theminority
class, is dense [13,14].

To overcome the issue of over-generalization, some extensions
have been proposed. Borderline-SMOTE (SMOTE-B, [15]), for ex-
ample, aims at creating examples from the minority class that are
close to the borderline between the two classes. Later, Safe-level
SMOTE (SMOTE-SL, [16]) was proposed, which defines a ‘safe level’
for each minority sample, creating new instances closer to this
safe level by introducing weights in the computation of the new
samples. This technique, however, is prone to overfitting since the
synthetic examples are designed to be far from the classification
function. Another method that assigns weights to the samples is
the Adaptive Synthetic Sampling Approach (ADASYN, [17]). The
idea is to increase the chance of being oversampled for examples
that are hard to learn, following the reasoning behind well-known
adaptive ensemble methods such as Adaboost [18].

SMOTE oversampling is still a fruitful field of research, and
recent developments include MWMOTE [19], a two-step weighted
approach that extends Borderline-SMOTE and ADASYN by using
the information of the majority instances that lie close to the
borderline; A-SUWO [13], a clustering-based algorithm designed
to identify groups ofminority samples that are not overlappedwith
clusters from the majority class; or CURE-SMOTE [20], that also
uses clustering on theminority class but with the goal of denoising
and removing outliers before oversampling.

All the SMOTE variants discussed in this section aim at im-
proving predictive performance by enhancing separability. Some
of these strategies remove noise in the minority class [20], while
others take the majority class into account to reduce the issue of
over-generalization [13,19]. The inclusion of the majority class in
the oversampling process clearly provides additional information
that helps create better synthetic samples, but it also requires
describing the majority class, which can be very time-consuming,
especially in large datasets.

The current state of the art tends to ignore the fact that SMOTE,
to the best of our knowledge, defines the neighborhood using all
the variables and weighting them equally. This assumption has
been questioned in k-NN classification since it usually leads to poor
prediction performance in high-dimensional settings with high
levels of noise and redundancy [21]. Our proposal presents a simple
and efficient strategy for defining this neighborhood based only on
an adequate subset of variables, without significantly increasing
the complexity of the SMOTE approach.

2.2. Dealing with high-dimensionality under class-imbalance

The class-imbalance problem is often accompanied by the issue
of high-dimensionality. Therefore, the identification of the relevant
variables becomes a key task for reducing class-overlap [10]. In this
context, both resampling and cost-sensitive strategies have been
used togetherwith feature selectionmethods in high-dimensional,
class-imbalanced settings [5,22–24]. Alternatively, the effect of
high-dimensionality can be mitigated via feature extraction and
manifold learning. For example, Principal Component Analysis
(PCA) was used in Martin-Felez and Mollineda [25]. Feature ex-
traction, however, is beyond the scope of this study.

The taxonomy for feature selection methods follows the same
logic as the strategies for dealing with class-imbalance. Feature
selection can be performed independently of the classification
approach, filtering out irrelevant information before applying it
(filter methods). Alternatively, it can be performed together with
the process of classifier construction (wrapper/embedded methods).

The following filter methods for finding a subset of relevant
variables as an input for our distance metric are used in our pro-
posal: Fisher Score, Mutual Information, Eigenvector Centrality,
and Correlation Score. The Fisher Score [26] computes the absolute
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difference between the means of the two classes, normalized with
a joint standard deviation, as follows:

FS(j) =
|µj1 − µj2|

σ 2
j1 + σ 2

j2
, (2)

whereµjl is themean value for the jth attribute and class l, l = 1, 2,
while σjl is its respective standard deviation.

Another suitable measure for assessing relevance is Mutual
Information, which computes the amount of information about one
attribute that can be gained by observing another one, as follows:

MI(j) =
∑
y∈y

∑
x∈xj

p(x, y) log
(

p(x, y)
p(x)p(y)

)
, (3)

where x and y are the various levels of attribute xj and the target
vector y, respectively; while p(x) and p(y) are their marginal prob-
ability distributions, with p(x, y) being their joint distribution. As
can be noted, this approach assumes that the covariates are nom-
inal variables, unlike Fisher Score. Mutual Information, however,
can be used with numerical variables after binning them [27].

Both the Fisher Score and Mutual Information approaches as-
sess the dependency between the covariates and the label vector.
However, there are other filter approaches whose goal is to reduce
the redundancy between variables. The Correlation Score [28], for
example, computes the Pearson correlation ρj,j′ for each pair of
attributes j and j′, and subsequently computes the lowest absolute
correlation, as follows:

CFS(j) = min
j′
|ρj,j′ |. (4)

Additionally, metrics can be combined to assess relevancy and
redundancy together. Eigenvector Centrality [29] combines the
Fisher Score, the Mutual Information, and the covariates’ stan-
dard deviation to construct an adjacency matrix A, and feature
importance is assessed by computing the eigenvector related to the
largest eigenvalue of A. The edges of A can be seen as the influence
of two attributes that are used together for classification based on
the metrics mentioned previously.

There are several filter strategies that can be used directly on
class-imbalance problems. Feature Assessment by Sliding Thresh-
olds (FAST) [30], for example, filters out irrelevant variables by
computing the area under the curve (AUC) of each attribute, re-
moving thosewith values close to 0.5. Density Based Feature Selec-
tion (DBFS) [31] follows a similar idea, although it uses Information
Gain as the contribution measure instead of AUC. Alternatively,
filter methods have been developed to assess redundancy among
the variables, and used for dealing with the class-imbalance issue.

There are also some studies on model-based feature selec-
tion under class-imbalance conditions [32]. Villar et al. [33], for
example, proposed a genetic algorithm that constructs a fuzzy
rule-based classification system and selects the relevant attributes
simultaneously. This is done via backward elimination using AUC
as the contribution measure. Maldonado et al. [34] also proposed
a backward elimination approach which is designed for class-
imbalanced classification with Support Vector Machines [35]. For
this method, balanced accuracy was used to assess the feature
importance: The attribute whose removal leads to the largest im-
provement in this measure is eliminated in an iterative fashion.

Finally, the SMOTE oversampling approach has been used on
high-dimensional settings. In Deepa and Punithavalli [36], the
authors propose E-SMOTE, using genetic algorithms for feature
selection and SMOTE oversampling for data resampling on the re-
sulting subset of relevant variables. Qazi and Raza [37] explore the
influence of two feature selection approaches (a genetic algorithm
based on redundancy and information gain), and two resampling

techniques (random undersampling and SMOTE) on a network in-
trusion detection dataset. Finally, Blagus and Lusa [7] acknowledge
the issue of using SMOTE on high-dimensional settings, not being
able to mitigate the bias toward the majority class. The authors
compared two techniques for correcting the class-imbalance is-
sue (adjusted classification threshold and SMOTE) using various
classifiers and on low- and high-dimensional settings. They con-
cluded that SMOTE achieves either similar or worse performance
compared to no class-imbalance correction on high-dimensional
datasets with few samples. None of the previously mentioned
studies propose an algorithmic solution for SMOTE oversampling
when dealing with high-dimensional datasets, which is the main
contribution of this study.

3. Proposed SMOTE for high-dimensional datasets

The SMOTE algorithm computes the distance between training
points from the minority class to define a neighborhood, from
which examples are selected for the creation of new synthetic
points. These distances are usually computed by using the Eu-
clidean distance. Two important issues can be identified for this
step when facing high-dimensional datasets: First, the Euclidean
distance is not a suitable norm on high-dimensional settings be-
cause the concept of proximity is ill-defined, with all points being
approximately equidistant from each other [38]. Furthermore, the
Euclidean distance assumes that all attributes are equally impor-
tant for the definition of a neighborhood in the SMOTE algorithm,
but high-dimensional datasets usually have a high percentage of
redundant and/or irrelevant variables that introduce noise in the
algorithm.

The advantage of our approach over performing feature selec-
tion and SMOTE oversampling is that our strategy can be used
with wrapper/embedded feature selection methods, which could
improve predictive performance. We are postponing the decision
of performing feature selection after the resampling process be-
cause the right number of attributes for the SMOTE oversampling
may not be the same number as that for the classifier. Notice
that SMOTE is based on k-NN, which is not able to weight at-
tributes differently. Classifiers that can perform feature selection
and classification simultaneously may bemore effective than filter
strategies with this step. Strictly speaking, our method does not
perform feature selection since all classifiers used in this study
consider all the variables, and the output of the proposal is an
oversampled minority class that also includes all the variables.

In this work, we approach these two issues by redefining the
concept of distance within the SMOTE algorithm. Two directions
are explored: First, a new metric based on the Minkowski dis-
tance [39] is presented, which allows the use of alternatives to
the Euclidean distance that aremore suitable for high-dimensional
datasets, such as the Chebyshev and the Manhattan distance. Sec-
ondly, this new metric redefines the original Minkowski distance
by considering only a subset of the available attributes in the com-
putation of the distance. This subset is proposed to be constructed
via feature ranking strategies, and four filter methods described in
the previous section are explored: Fisher Score, Mutual Informa-
tion, Correlation Score, and Eigenvector Centrality.

Let us consider training samples xi ∈ ℜn, i = 1, . . . ,m, their
respective labels yi ∈ {−1,+1}, and a set T that contains all the
samples from theminority class. Following the notation presented
in Song et al. [40], let S be the full set of attributes, and S†

⊆ S be a
subset of potentially relevant variables of cardinality r . The inputs
for the proposed algorithm follow:

• SMOTE Parameters: Similar to the SMOTE algorithm, our ap-
proach computes the k nearest neighbors for each minority
sample, and selects N < k of these neighbors to construct the
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synthetic samples. The values for k andN need to be defined a
priori. In this work, we use k = 5 andN ∈ {2, 4}, as suggested
in Chawla et al. [12]. The N parameter is interpreted as the
amount of oversampling; N = 2 and N = 4 correspond to
200% and 400% oversampling, respectively. Additionally, the
interpolation step for the construction of synthetic samples
considers a randomnumber u that should be between0 and1.
• Redefined Distance Metric: Our proposal requires the selec-

tion of a subset of r variables of S , using a feature ranking
strategy FR. We also extend the SMOTE algorithm by using
the Minkowski distance instead of the traditional Euclidean
distance, exploring q ∈ {1, 2,∞} (Manhattan, Euclidean, and
Chebyshev distances, respectively). The proposed distance
between two samples from theminority class i and i′ follows:

dS†,q(xi, xi′ ) = ∥xi − xi′∥q,S† =

⎛⎝∑
j∈S†

|xi,j − xi′,j|q

⎞⎠1/q

, (5)

for q ≥ 1. The proof that the proposed distance metric
satisfies the various properties required for being a distance
measure is presented in Appendix A. The values for r and q,
and the feature ranking strategy FR that leads to S† need to
be defined a priori.
• Feature Ranking Methods: The feature ranking methods used

to determine the subset of relevant variables S† were formal-
ized in Section 2.2: Fisher Score (cf. Eq. (2)), Mutual Informa-
tion (cf. Eq. (3)), Eigenvector Centrality, and Correlation Score
(cf. Eq. (4)).

We refer to our proposal as the SMOTE-Subset of Features
(SMOTE-SF) method. The proposed algorithm follows:

Algorithm 1 SMOTE-SF for high-dimensional datasets.
Input: The full set of attributes S; Minority class sample set T ;
Amount of oversampling N; Number of nearest neighbors k; Num-
ber of selected attributes r , value of q for the distance.
Output:A relevant set of attributesS†; Oversampledminority class
sample set T †

1. T †
← T .

2. for j ∈ S
3. FR(j) ← Score each attribute according to its relevance

using FR.
4. end for
5. S†

← Take the r largest values of FR(j).
6. for i ∈ T
7. for i′ ∈ T , i ̸= i′

8. dS†,q(xi, xi′ )←

(∑
j∈S†
|xi,j − xi′,j|q

)1/q

.

9. end for
10. T K← argminT K

∑
i′∈T K

dS†,q(xi, xi′ ), T K ⊆ T \{i}, |T K|=

k.
11. for n← 1 to N
12. xni ← Select a random sample from T K.
13. x∗ni ← xi + u · (xni − xi).
14. T †

← (T †, x∗ni ).
15. T K← T K \ {xni }.
16. end for
17. end for

The first five steps represent the initialization of the algorithm:
The new set of minority samples T † is first defined as T , the

Table 1
Imbalance Ratio (IR), Number of attributes, number of samples, and percentage of
samples in each class for all ten datasets.
Dataset IR #attributes #samples %class(min.,maj.)

Low-dimensional datasets

Ecoli 8.6 7 336 (10.4,89.6)
Abalone 9.7 8 4177 (9.4,90.6)
CarEval 11.9 6 1728 (7.8,92.2)
Solar 19.4 10 1389 (4.9,95.1)
Yeast 28.1 8 1484 (3.4,96.6)

High-dimensional datasets

Burczynski 3.88 22,283 127 (20.4,79.6)
Lung 4.85 12,533 181 (17.1,82.9)
Glioma 6.14 4434 50 (14.0,86.0)
SRBCT 6.55 2308 83 (13.3,86.7)
Lung2 9.15 3312 203 (9.8,90.2)
Bullinger 11.25 17,404 98 (8.2,91.8)
CAR 14.8 9182 174 (6.3,93.7)

original minority samples (Step 1); and the subset of selected
attributes S† is defined as the r variables with the highest ranking
according to FR.

Steps 6 to 17 correspond to the main loop for the development
of synthetic examples: For each object of the minority class i, the
distances between i and all the other elements from this class are
computed using Eq. (5) (steps 7 to 9). Then, the k objects that are
closest to i are identified (set T K, step 10). Finally, N objects from
T K are randomly selected and used for creating new samples for
the minority class, including them in T † (steps 11 to 16). For this
step, our method is similar to SMOTE oversampling.

4. Experimental evaluation

The proposed SMOTE-SF algorithmwas applied in twelve class-
imbalanced datasets to assess its performance compared to well-
known oversampling strategies described in Section 2.1. Addition-
ally, our proposal was applied to a Natural Language Processing
(NLP) project that consists of three large, sparse datasets based on
TripAdvisor comments. This data was collected by us for analyzing
the factors that influence positive and negative reviews for Chilean
Restaurants. The results are presented at the end of this section.

Our proposal is compared with the traditional SMOTE [12],
Borderline SMOTE (SMOTE-B) [15], and Safe Level SMOTE (SMOTE-
SL) [16] using various classification techniques, namely k-nearest
neighbors (k-NN), logistic regression (LR), Naïve Bayes (NB), and
linear Support Vector Machines (SVM). A detailed description of
these methods can be found in [21]. These classifiers were chosen
since they have been used widely in previous studies on data
resampling for dealing with the class-imbalance problem [21]. In
contrast to machine learning methods, such as neural networks or
random forest, the selected techniques have few free parameters
to calibrate, simplifying the model selection task [12,37].

4.1. Experimental setting and datasets

Of the twelve benchmark datasets studied in this work (exclud-
ing the NLP datasets), five are low-dimensional applications from
the UCI data repository [41], while the rest are high-dimensional
microarray datasets. Additionally, four datasets are binary classifi-
cation problems, while the remaining eight are adapted multiclass
classification tasks, in which the majority class was constructed
by grouping all the labels except the minority class, as described
in [42]. The relevant information is presented in Table 1 for each
dataset:

It can be observed in Table 1 that the datasets studied are very
diverse in terms of imbalance ratio (from3.88 to 28.1), and number
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of attributes (from 6 to 22283). For the multiclass datasets, the fol-
lowing groups of labelswere created. The use ofmulticlass datasets
is justified by the fact that there are few binary classification
datasets available that are class-imbalanced andhigh-dimensional,
and that identifying a particular type of cancer over others can be
a compelling challenge for the use of microarray data [32]. Notice
that the performance of other label combinations was not assessed
for this study.

• Abalone: This dataset studies 29 types of abalone, and type 7
was used as the minority class while all other abalone types
were used as the majority class.
• CarEval: The Car Evaluation dataset considers four levels of

acceptability of various used cars, of which class 3 (good) and
class 4 (very good) were studied together as minority class.
• Solar: The Solar Flare dataset studies different types of solar

flares on a given day. For this studywe focus onM-class flares
(moderate flares), of which two classes were constructed by
studying the occurrence of zero M-class flares in 24 h versus
one or more in the same time period.
• Yeast: This dataset studies the protein localization problem,

and class ME2 (membrane protein with cleaved signal) was
studied as the minority class.
• Glioma: For this microarray dataset, the label ‘cancer oligo-

dendrogliomas’ was used as the minority class.
• SRBCT: For this microarray dataset, the label ‘Burkitt lym-

phoma’ was used as the minority class.
• Lung2: For this microarray dataset, the label ‘small-cell lung

carcinomas’ was used as the minority class.
• CAR: For thismicroarray dataset, the label ‘kidney cancer’was

used as the minority class.
• Burczynski: For the Burczynski dataset, the label ‘ulcerative

colitis’ was used as the minority class.

The low-dimensional datasets were used for benchmarking
cost-sensitive SVM formulations in [43], while the microarray
datasets were studied in [34,44] to compare feature selection
algorithms.

The methodological procedure follows: 10-fold and leave-one-
out cross validation were conducted for the low and
high-dimensional datasets, respectively, using AUC (Area Under
the Curve) as the performance metric. This metric has been used
widely in class-imbalance classification [24,30,32]. Alternatively,
suitable metrics for class-imbalance classification are the F mea-
sure, g-mean, or balanced accuracy [2,34].

While logistic regression andNaïve Bayes donot require param-
eter setting in their formulations, the values for k and C have to be
defined for k nearest neighbors and SVMs, respectively. We used
k = 5 and C = 1 for these methods, since they are suggested
in the literature as good default values for these methods [21,45].
For all oversampling methods, the number of neighbors was set to
k = 5, as suggested in the original paper by Chawla et al. [12]. We
selected N = 2 and N = 4 objects from these five neighbors (200%
and 400% oversampling, respectively). For the proposed method,
the following values for r (the subset of selected attributes) were
studied: r ∈ {1, 3, 5, n} and r ∈ {20, 50, 100, 250, 500, 1000} for
the low- and high-dimensional datasets, respectively.

The datasets included in this study have no missing values.
Our method shares the same characteristics with SMOTE on this
issue. Therefore, data imputation is recommended for computing
the distances between observations properly in the presence of
missing examples.

4.2. Comparison among methods and running times

Next, a comparison between the best configuration of
SMOTE-SF and the alternative oversampling techniques (SMOTE,

Table 2
Predictive performance summary (AUC×100) for the various oversampling meth-
ods. Low-dimensional datasets.
Method NO-RS RUS SMOTE SMOTE-B SMOTE-SL SMOTE-SF

Ecoli

k-NN 79.25 89.34 87.92 85.68 87.08 88.42
LOGIT 70.42 85.26 87.75 87.42 88.42 90.75
NB 88.01 89.17 89.01 88.09 88.42 91.26
SVM 50 87.34 89.42 87.17 89.42 90.92

Abalone

k-NN 56.94 77.38 70.52 71.10 70.76 72.32
LOGIT 50.29 77.91 77.27 78.29 78.86 77.48
NB 76.83 77.15 77.11 77.30 76.93 77.92
SVM 50 75.38 76.31 77.98 78.65 77.08

CarEval

k-NN 50 88.68 94.53 88.91 78.32 49.06
LOGIT 95.63 97.70 98.37 98.72 96.18 98.78
NB 66.12 80.43 76.67 81.58 73.94 79.68
SVM 90.69 95.33 99.18 99.18 98.12 99.18
Solar

k-NN 51.96 65.76 60.69 63.97 62.39 68.59
LOGIT 53.46 70.06 64.57 69.02 66.51 66.39
NB 68.85 70.40 72.21 72.65 70.51 73.62
SVM 50 72.52 61.22 69.27 64.58 66.42

Yeast

k-NN 55.48 82.00 74.10 79.05 73.62 77.75
LOGIT 57.72 78.20 77.05 81.24 81.31 78.08
NB 67.48 79.84 79.97 79.45 76.88 80.94
SVM 50 82.82 71.56 81.25 80.90 72.49

SMOTE-B, and SMOTE-SL) is presented in Tables 2 and 3 for the
low- andhigh-dimensional datasets, respectively. For each dataset,
the best performance in terms of AUC×100 is highlighted in bold
type. For our proposal, the best configuration is reported. The AUC
values reported in Tables 2 and 3 are averages of ten and n runs,
respectively (ten-fold and LOO cross-validation, respectively).

It can be observed in Tables 2 and 3 that the largest AUC is usu-
ally achieved with the proposed SMOTE-SF, although nomethod is
able to outperform all the others. The proposed method achieves
the best AUC in eight of the twelve datasets (Ecoli, CarEval, Solar,
Lung, SRBCT, Lung2, Bullinger, and CAR). These positive results can
be explained by the fact that the metric used to define the neigh-
borhood is more suitable than the Euclidean norm, especially in
high-dimensional settings, confirming the virtues of our proposal.
SMOTE-SL performed best on the Abalone and Yeast datasets; and
SMOTE-B achieved the best result for the Glioma dataset. For these
datasets, we infer that the use of the majority class for preventing
over-generalization explains this result.

For the CarEval dataset (see Table 2), our proposal performs
significantly worse than the rest when k-NN is used. This classi-
fication technique, however, is not able to achieve good enough
performance with any of the oversampling techniques, showing
that it is not a suitable classifier for this particular dataset. But our
proposal achieves the best AUC for this dataset when SVM is used.

It can be noticed that an AUC of 1 can be achieved on some
datasets. Some microarray datasets seem to be linearly separable
when a regularized classifier such as SVM is used. Since linear SVM
with C = 1 is used, there is a low risk of overfitting.

These differences were studied further with the Friedman and
Holm tests, which have been used frequently for multiple compar-
isons between classificationmethods since their usewas suggested
by Demšar for this purpose in [46]. These approaches compute the
average rank for eachmethod on all datasets given their predictive
performance, assessing the differences between methods statisti-
cally [46]. First, the Friedman test computes an F statistic under
the null hypothesis that all ranks are equal. The Iman–Davenport
correction is applied to the Friedman test, as suggested in [46].
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Table 3
Predictive performance summary (AUC×100) for the various oversampling meth-
ods. High-dimensional datasets.

NO-RS RUS SMOTE SMOTE-B SMOTE-SL SMOTE-SF

Burczynski

k-NN 74.83 66.57 66.34 73.76 67.82 67.82
LOGIT 49.87 55.64 55.31 57.73 49.05 72.73
NB 69.61 76.64 60.55 65.33 66.32 64.39
SVM 78.85 81.85 78.85 78.85 78.85 78.85

Lung

k-NN 100 86.81 97.92 95.83 97.22 98.61
LOGIT 95.83 82.58 91.98 82.89 94.07 99.31
NB 95.45 100 86.36 77.27 86.36 86.36
SVM 100 100 100 100 100 100
Glioma

k-NN 95.45 86.20 98.47 99.31 98.77 99.08
LOGIT 84.52 82.32 98.47 91.98 91.47 99.69
NB 77.27 94.84 50 86.36 72.73 50
SVM 90.91 94.53 90.91 100 90.91 90.91

SRBCT

k-NN 92.86 82.56 93.02 93.02 94.19 94.19
LOGIT 57.48 57.64 57.48 56.31 69.27 79.90
NB 77.41 78.90 50 78.57 78.57 50
SVM 75.08 80.07 75.08 75.08 75.08 75.08

Lung2

k-NN 100 99.18 99.73 99.73 99.73 100
LOGIT 90.59 98.36 96.41 99.45 95.59 99.73
NB 99.73 99.73 50 99.73 99.73 50
SVM 100 99.18 100 100 100 100
Bullinger

k-NN 76.25 47.64 79.44 78.19 82.78 82.78
LOGIT 70.69 80.97 72.36 68.47 65.00 85.42
NB 81.25 81.25 81.25 81.25 81.25 81.25
SVM 93.75 86.67 93.75 93.75 93.75 93.75
CAR

k-NN 82.26 90.32 99.67 96.44 99.67 100
LOGIT 76.43 83.71 76.26 81.10 80.38 91.49
NB 96.44 96.39 93.55 96.44 96.77 95.16
SVM 98.39 100 98.39 98.39 98.39 98.39

Table 4
Holm’s post-hoc test for pairwise comparisons. Various oversampling methods.
Method Ranking AUC×100 p value α/(j− 1) Action

Mean Std. Mean Std.

SMOTE-SF 2.67 1.49 82.54 17.5 – – not reject
SMOTE-B 3.10 1.90 83.80 12.1 0.25 0.0500 not reject
RUS 3.22 1.14 83.19 15.3 0.14 0.0250 not reject
SMOTE-SL 3.48 1.31 83.03 12.1 0.03 0.0167 not reject
SMOTE 3.94 1.44 80.77 12.6 0.0009 0.0125 reject
NO-RS 4.59 1.23 76.26 14.9 0.0001 0.0100 reject

Next, the Holm post-hoc test is used for pairwise comparisons,
assessing the differences between the method with the highest
rank and the remaining ones [46].

The result for the Friedman test with Iman–Davenport cor-
rection is F = 8.42, with a p value below 0.001, rejecting the
null hypothesis of equal ranks. The results for the Holm’s test are
presented in Table 4 for the various oversampling methods. For
each method, this table reports the mean rank, the mean AUC,
the p value for the Holm’s test, the significance threshold, and the
conclusion for the pairwise test. A method is outperformed by the
one with the best ranking if the p value is below the significance
threshold (Action = reject), with a significance level of α = 5%,
and j = 1, . . . , 5 being the overall ranking for a given method.

It can be seen in Table 4 that our proposal has the best overall
rank, with an average of 2.67. SMOTE-SF is able to outperform
SMOTE statistically, although SMOTE-B, SMOTE-SL, and random

Table 5
Running times, in seconds, for all datasets and SMOTE variants. The followingmeth-
ods are presented (from left to right): the proposed SMOTE-SF using Fisher Score,
Mutual Information, Eigenvector Centrality, and the Correlation Score; standard
SMOTE, Borderline-SMOTE, and Safe-level SMOTE.
Dataset S.-SF (FS) S.-SF (MI) S.-SF (EC) S.-SF (CFS) S. S.-B S.-SL

Ecoli <0’’.01 0’’.03 <0’’.01 <0’’.01 <0’’.01 0’’.14 0’’.16
Abalone 0’’.03 0’’.09 0’’.06 0’’.02 0’’.20 4’’.38 5’’.00
CarEval 0’’.02 0’’.02 0’’.05 0’’.06 0’’.19 1’’.64 1’’.25
Solar 0’’.02 0’’.05 0’’.09 0’’.06 0’’.06 1’’.84 0’’.73
Yeast <0’’.01 0’’.03 0’’.02 <0’’.01 <0’’.01 0’’.55 0’’.69
Burczynski 2’’.91 6’’.67 105’’.77 30’’.03 2’’.98 3’’.97 4’’.39
Lung 1’’.75 4’’.70 21’’.77 9’’.63 2’’.25 4’’.39 4’’.45
Glioma 0’’.58 1’’.00 4’’.47 1’’.64 0’’.03 0’’.13 0’’.14
SRBCT 0’’.34 0’’.56 1’’.42 0’’.55 0’’.19 0’’.64 0’’.16
Lung2 0’’.42 1’’.30 3’’.16 1’’.41 0’’.41 1’’.28 1’’.50
Bullinger 2’’.02 4’’.45 36’’.52 16’’.23 0’’.30 6’’.84 6’’.94
CAR 1’’.13 3’’.06 12’’.42 5’’.23 0’’.23 2’’.36 2’’.30

undersampling are not significantly worse than the proposed ap-
proach. It can be concluded that this proposal is an excellent alter-
native for low- and high-dimensional datasetswith the presence of
irrelevant attributes, allowing a better definition of a neighborhood
for each minority sample before the construction of synthetic
objects.

Finally, Table 5 provides a comparison for each SMOTE variation
in terms of running times. The analysis was performed on an HP
Envy dv6with 16 GB RAM, 750 GB SSD, a i7-2620M processor with
2.70 GHz, and usingMicrosoftWindows 8.1 Operating System (64-
bits). The best performance in termsof running times is highlighted
in bold type.

In Table 5, it can be seen that our approach using Fisher Score
(second column) is almost as fast as SMOTE oversampling, and
clearly faster than the SMOTE-B and SMOTE-SL on the datasets that
have the largest dimensionality. The use of Eigenvector Centrality
(fourth column), however, leads to the longest running times.
Fisher Score and Mutual Information are therefore recommended,
given the positive results in terms of performance and computa-
tional complexity.

4.3. Detailed SMOTE-SF performance

In this section, the proposed SMOTE-SF is further analyzed in
terms of its performancewhen varying the different rankingmeth-
ods (the Fisher Score, Mutual Information, the Correlation Score,
and Eigenvector Centrality) and distance metrics (Chebyshev or
q = ∞, Manhattan or q = 1, and Euclidean or q = 2). The Holm’s
test discussed in the previous section is applied to SMOTE-SF to
determine whether or not the differences in terms of performance
are significant.

The results for the Friedman tests with Iman–Davenport cor-
rection are F = 2.58 and F = 1.17 for the ranking methods
and distance metrics, respectively, with p values of 0.06 and 0.56.
Therefore, the hypothesis of equal ranks cannot be rejected. The
results for the Holm’s test are reported in Tables 6 and 7 for the
various ranking methods and distance metrics, respectively. The
detailed results for each dataset are presented in Appendix B:
Tables B.1 and B.2 report the performance for the various rank-
ing methods on low- and high-dimensional datasets, respectively,
while Tables B.3 and B.4 present the predictive performance for the
various distance metrics on low- and high-dimensional datasets,
respectively.

It can be observed clearly in Tables 6 and 7 that, in both cases,
the differences in terms of mean rank and performance are very
small, and no strategy is able to outperform the others statisti-
cally. It can be concluded that neither the ranking method used
to assess relevance nor the variation of the Minkowski distance
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Table 6
Holm’s post-hoc test for pairwise comparisons. Various ranking methods related to
SMOTE-SF.
Method Ranking AUC×100 p value α/(j− 1) Action

Mean Std. Mean Std.

MI 2.35 1.09 80.97 15.9 – – not reject
CFS 2.37 1.04 80.83 15.8 0.93 0.05 not reject
FS 2.60 1.02 80.67 15.8 0.19 0.025 not reject
EC 2.68 1.02 80.70 15.9 0.08 0.0167 not reject

Table 7
Holm’s post-hoc test for pairwise comparisons. Various distance metric related to
SMOTE-SF.
Method Ranking AUC×100 p value α/(j− 1) Action

Mean Std. Mean Std.

p = 2 1.98 0.60 81.06 15.8 – – not reject
p = 1 1.99 0.58 81.01 15.7 0.91 0.05 not reject
p = ∞ 2.03 0.58 81.05 15.7 0.75 0.025 not reject

have a strong influence on the final performance. Therefore, the
good results obtained by SMOTE-SF can be explained largely by the
construction of a subset of attributes when defining a neighbor-
hood for the minority instances. Finally, regarding the influence of
parameter r (the subset of selected attributes used with the novel
metric), we observed that our method performed best with ap-
proximately 50% of the attributes for the low-dimensional datasets
r = 5, and 100 to 250 attributes for the microarray datasets.

4.4. Experiments on large NLP datasets

To demonstrate evaluating large, sparse datasets, we present a
Natural Language Processing (NLP) project based on a TripAdvi-
sor collection. TripAdvisor is a travel website that provides rich
travel-related information in reviews detailing travelers’ experi-
ences with hotels, restaurants, and tourist spots. In particular, we
explored perceptions of Chilean restaurants collected from the
period between January 3, 2009 andDecember 31, 2014. It contains
37,801 comments made on 757 Chilean restaurants.

Each entry consists of structured data, such as the restaurant
and user ID, and the user’s evaluation of the restaurant based on
a [1–5] point rating; and unstructured data: the title and the body
of the comment. The dataset was cast into a binary classification
problem, in which we used the rating as the target variable by
defining a negative comment as y = +1 when rating ≤ 2, and
a positive/neutral comment y = −1 when rating ≥ 2. This leads
to an IR of 8.04, or, equivalently, to 11.06% of negative comments.

Data preprocessing plays a very important role in our study. The
techniques used in the preprocessing stage were: Extraction, Stop
Words Elimination (articles, prepositions, and pro-nouns, etc. that
do not providemeaning for the documents), Word Singularization,
and Verb Stemming and Lemmatization.

After the preprocessing stage, the apriori algorithm was used
for n-gram construction [47]. Similar to the traditional apriori
approach [48], this strategy identifies the terms that are frequent
in the dataset. Next, sequences of words of length n, called n-
grams, are generated by combining terms that are frequent using
a forward approach, until no further items can be combined. This
algorithm uses two input parameters: the maximum length of the
n-grams (MaxNGramSize), and a lower bound on the number of
occurrences of a word (MinFrequency).

In our study, we exploredMinFrequency ∈ {200, 300, 500} and
MaxNGramSize= 5, leading to three sparse datasets with a total of
37,801 comments. The relevant metadata is presented in Table 8.

It can be observed in Table 8 that the three datasets are high-
dimensional, ranging from 2,939 to 19,081 columns (the n-grams).

Table 8
Metadata for the NLP datasets.
MinFreq. 1-gram 2-gram 3-gram 4-gram 5-gram Total Samples

200 656 5971 8678 3461 315 19,081 37,801
300 477 3236 3506 954 45 8218 37,801
500 316 1426 1034 163 – 2939 37,801

Table 9
Results for the NLP datasets.
MinFreq. NO-RS RUS SMOTE SMOTE-SF

200 80.06 79.88 79.91 80.50
300 77.76 79.76 80.50 81.37
500 77.49 81.35 82.27 82.71

By construction, a low MinFrequency parameter implies a large
number of n-grams since there are more combinations of terms
that are frequent when the minimum word appearance is 200
when compared to a cutoff of 500.We also observe a larger number
of 2-grams and 3-grams when comparing with the remaining n-
grams.

Next, a comparison between SMOTE-SF, SMOTE, no resampling,
and random undersampling is presented in Table 9. For SMOTE-
SF, we ran experiments for only the FS and MI methods since EC
and CFS are computationally too expensive for large datasets. Sim-
ilarly, SMOTE-B and SMOTE-SL were not used because they were
intractable in terms of running times. For eachNLPdataset, the best
performance in terms of AUC×100 is highlighted in bold type. We
used r ∈ {100, 250, 500, 1000, 5000, 10000} for MinFrequency=
200, and r ∈ {20, 50, 100, 250, 500, 1000} for MinFrequency =
{200, 300, 500}.

It can be observed in Table 9, that the largest AUC is achieved
with the proposed SMOTE-SF for the three datasets. We conclude
that our proposal is suitable even for large datasets in terms of
number of samples, in contrast to SMOTE variations that analyze
the majority class, and achieving best predictive results when
compared to SMOTE and random undersamping.

5. Conclusion

In this work, a novel extension for the SMOTE oversampling
approach is presented for dealing with the class-imbalance prob-
lem in binary classification. SMOTE generates synthetic examples
from the minority class by first identifying the k nearest neighbors
within this class, and then interpolating the reference sample with
a randomly selected object from its neighborhood. The reasoning
behind the proposal is that the definition of this neighborhood
should be done with only a subset of the available attributes to
avoid the curse of dimensionality. The use of filter methods is pro-
posed for this task. A redefined Minkowski distance is presented
and formalized as a distance metric with the corresponding proof.

Experiments on benchmark datasets demonstrated the virtues
of the proposed SMOTE-SF method, which achieved the best over-
all performance, outperforming SMOTE oversampling statistically.
The most important gains are observed in high-dimensional set-
tings, such as the microarray datasets used in this study. These
positive results were confirmed on large NLP datasets, in which
SMOTE-SF achieved the best performance over SMOTE, no re-
sampling, and random undersampling. This result confirms that
oversampling can be useful even in cases when the sample size of
the minority class is relatively large.

Four ranking methods for feature selection (the Fisher Score,
Mutual Information, the Correlation Score, and Eigenvector Cen-
trality) and three variations of theMinkowski distance (Chebyshev,
Manhattan, and Euclidean) were studied empirically, yielding the
conclusion that no significant differences in terms of performance
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are observed for all these variations in performance. Therefore,
the benefit in terms of performance can be associated with the
use of a subset of relevant attributes in the construction of the
neighborhood rather thanwith a particular ranking strategy, or the
use of a distance measure different from the Euclidean distance.

Regarding computational complexity, SMOTE-SF is similar to
SMOTE with two differences: it requires an additional feature
ranking step prior to the definition of the neighborhood, and it uses
fewer attributes for the computation of the distances. Fortunately,
the feature ranking step can be performed in a very efficient way
usingmeasures such as the Fisher Score orMutual Information. For
the second difference, important savings can be achieved in terms
of training times for large datasets when fewer computations are
required to obtain the distances between two minority samples,
compensating for the computational effort of the additional feature
ranking step. Our experiments on time complexity demonstrate
that our method is as efficient as SMOTE, and faster than SMOTE-
B and SMOTE-SL. The SMOTE-B and SMOTE-SL models become
intractable for large datasets, such as the NLP data used in this
study.

This approach represents an initial effort toward finding a better
definition of the neighborhood in SMOTE oversampling, which
has been developed only for the original version of the approach.
Therefore, it has the limitations of SMOTE when compared with
recent variants: the majority class is ignored in the construction of
synthetic samples, and thus there is a risk of over-generalization.

There are various opportunities for future research. The pro-
posed strategy can be applied to other SMOTE variations that deal
with the issue of over-generalization, such as SMOTE-B or SMOTE-
SL. Additionally, other distancemetrics can be explored, such as the
Gower distance [49]. This measure is suitable for mixed data types,
such as numerical and categorical variables. Another possible re-
search opportunity is linking the feature ranking step with the
classification method, using the latter to assess the contribution of
each attribute in the classification task. Methods such as logistic
regression or decision trees are able to derive a feature ranking
automatically, and embedded feature selectionmethods have been
developed for methods such as SVM which are not able to assess
feature relevance naturally. One example is the Recursive Feature
Elimination SVM (RFE-SVM) [50]. Finally, the proposed framework
can be useful in business Analytics and other domains in which
the class-imbalance problem is fairly common. Applications in
business Analytics with such a condition are credit scoring, fraud
detection, and churn prediction, among others [4,51,52].
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Appendix A. Proof for the proposed distance metric

In this section, we present the proof that the redefined
Minkowski distance proposed in Eq. (5) corresponds to a metric.
First, let us recall the proposed norm for two samples xi and xi′ ,
with i ̸= i′, q ≥ 1, and set S† fixed:

dS†,q(xi, xi′ ) =

⎛⎝∑
j∈S†

|xi,j − xi′,j|q

⎞⎠1/q

.

The proof for the redefined Minkowski distance follows:

Table B.1
Predictive performance (AUC×100) for the various feature rankingmethods related
to SMOTE-SF. Low-dimensional datasets.

200% Oversampling 400% Oversampling

k-NN LR NB SVM k-NN LR NB SVM

Ecoli

FS 87.1 87.9 90.1 89.6 87.8 90.8 89.9 89.4
MI 85.8 88.1 89.8 89.3 87.9 90.6 90.7 90.9
EC 86.6 87.8 89.0 89.3 86.3 90.6 90.3 89.4
CFS 86.9 88.1 90.9 89.4 88.4 90.8 91.3 90.1

Abalone

FS 67.6 68.4 76.9 50.0 70.8 77.3 77.1 77.0
MI 69.4 68.1 76.9 50.0 72.3 77.4 77.1 77.1
EC 69.0 68.0 76.9 50.0 71.0 77.5 77.1 76.9
CFS 69.4 68.0 77.9 50.0 71.9 77.1 77.9 76.7

CarEval

FS 49.0 98.5 75.2 98.9 48.4 98.8 77.0 98.8
MI 49.1 98.4 74.6 99.2 48.4 98.8 77.0 98.9
EC 48.6 98.5 77.1 99.1 47.4 98.5 79.7 99.0
CFS 48.4 98.5 75.3 99.1 47.6 98.7 76.2 98.9

Solar

FS 65.1 63.6 70.6 61.3 66.0 63.6 71.4 64.2
MI 63.6 63.7 71.5 61.3 64.6 66.1 72.4 66.4
EC 62.6 63.9 71.3 61.3 68.6 64.7 72.9 66.1
CFS 62.7 65.3 73.0 61.2 65.6 66.4 73.6 64.3

Yeast

FS 73.8 70.0 79.9 50.0 76.8 77.1 79.9 71.6
MI 76.7 70.0 78.0 50.0 76.8 78.1 80.7 71.4
EC 73.7 70.1 78.9 50.0 77.0 77.1 80.9 71.5
CFS 74.6 70.2 80.1 50.0 77.8 77.9 80.9 72.5

• In the case that xi = xi′ , it is clear that dS†,q(xi, xi) = 0 since⎛⎝∑
j∈S†

|xi,j − xi,j|q

⎞⎠1/q

= 0.

• Suppose that xi ̸= xi′ . Then, there is a dimension j ∈ S† that
xi,j ̸= xi′,j. Thus, |xi,j − xi′,j| > 0, and therefore dS†,q(xi, xi′ ) >
0.
• It is easy to see that the redefined Minkowski distance is

symmetrical since⎛⎝∑
j∈S†

|xi,j − xi′,j|q

⎞⎠1/q

=

⎛⎝∑
j∈S†

|xi′,j − xi,j|q

⎞⎠1/q

.

• Finally, it holds that dS†,q(xi, xi′ ) ≤ dS†,q(xi, xi′′ ) + dS†,q(xi′′ ,
xi′ ) for any sample xi, xi′ , xi′′ , by applying Minkowski’s In-
equality withw = xi − xi′′ and z = xi′′ − xi′ .

The detailed results for each benchmark dataset are presented
in this appendix. Tables B.1 and B.2 report the performance for the
various ranking methods on low- and high-dimensional datasets,
respectively, while Tables B.3 and B.4 present the predictive per-
formance for the various distance metrics on low- and high-
dimensional datasets, respectively. For each dataset and resam-
pling technique, the best performance in terms of AUC×100 is
highlighted in bold type.

Lemma 1 (Minkowski’s Inequality). For any w, z ∈ ℜn, and q ≥ 1,
one has that

∥w+ z∥q,S† ≤ ∥w∥q,S† + ∥z∥q,S† .

Proof.

∥w+ z∥qq,S†=

∑
j∈S†

|wj + zj| |wj + zj|q−1
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Table B.2
Predictive performance (AUC×100) for the various feature rankingmethods related
to SMOTE-SF. High-dimensional datasets.

200% Oversampling 400% Oversampling

k-NN LR NB SVM k-NN LR NB SVM

Burczynski

FS 67.8 64.5 63.0 78.8 65.3 64.4 63.0 78.8
MI 67.3 67.8 64.4 78.8 64.4 70.3 63.0 78.8
EC 66.3 67.4 63.9 78.8 64.4 72.7 59.1 78.8
CFS 65.8 69.7 63.0 78.8 64.9 61.6 63.0 78.8
Lung

FS 98.6 97.9 86.4 100 97.9 98.6 86.4 100
MI 98.6 99.3 86.4 100 97.9 97.2 86.4 100
EC 98.6 97.2 86.4 100 98.6 97.9 86.4 100
CFS 98.6 99.3 86.4 100 98.6 98.6 86.4 100
Glioma

FS 98.8 97.5 50.0 90.9 98.5 98.2 50.0 90.9
MI 98.8 97.9 50.0 90.9 98.2 99.7 50.0 90.9
EC 99.1 97.5 50.0 90.9 98.2 96.6 50.0 90.9
CFS 98.8 96.9 50.0 90.9 97.9 98.8 50.0 90.9

SRBCT

FS 94.2 79.9 50.0 75.1 93.0 75.2 50.0 75.1
MI 94.2 78.7 50.0 75.1 93.0 78.7 50.0 75.1
EC 94.2 75.2 50.0 75.1 94.2 74.1 50.0 75.1
CFS 94.2 76.4 50.0 75.1 93.0 74.1 50.0 75.1

Lung2

FS 100 99.7 50.0 100 99.7 99.5 50.0 100
MI 99.7 99.2 50.0 100 99.7 99.5 50.0 100
EC 99.7 99.7 50.0 100 99.7 99.2 50.0 100
CFS 99.7 99.7 50.0 100 99.7 99.5 50.0 100
Bullinger

FS 82.8 80.3 81.3 93.8 79.4 83.2 81.3 93.8
MI 82.8 84.3 81.3 93.8 80.0 85.4 81.3 93.8
EC 82.2 79.7 81.3 93.8 78.9 84.9 81.3 93.8
CFS 82.8 81.4 81.3 93.8 81.1 84.3 81.3 93.8
CAR

FS 99.7 85.9 95.2 98.4 99.7 91.5 95.2 98.4
MI 100 88.9 95.2 98.4 99.7 87.7 95.2 98.4
EC 100 87.3 95.2 98.4 100 86.9 95.2 98.4
CFS 99.3 88.8 95.2 98.4 99.7 86.6 95.2 98.4

≤

∑
j∈S†

|wj| |wj + zj|q−1 +
∑
j∈S†

|zj| |wj + zj|q−1

≤ ∥w∥q,S†

⎛⎝∑
j∈S†

|wj + zj|(q−1)q
′

⎞⎠1/q′

+ ∥z∥q,S†

⎛⎝∑
j∈S†

|wj + zj|(q−1)q
′

⎞⎠1/q′

= (∥w∥q,S† + ∥z∥q,S† )∥w+ z∥q−1q,S† ,

where the first inequality follows from triangle inequality, and the
second one from Hölder’s Inequality. The desired inequality holds
thanks to the last relation. □

Lemma 2 (Hölder’s Inequality, [53]). For any w, z ∈ ℜn, and q ≥ 1,
one has that

∑
j∈S† |wjzj| ≤ ∥w∥q,S†∥z∥q′,S† , where 1

q +
1
q′ = 1.

Appendix B. Performance summary in terms of AUC

It is quite evident fromTables B.1 and B.2 that there is no feature
rankingmethod that outperformothers in terms of AUC, since each
method achieves the best performance at least a few times, and the
differences are usually very small. Similarly, the same conclusion
can be drawn for p, the Minkowski distance parameter, as can be
observed in Tables B.3 and B.4.

Table B.3
Predictive performance (AUC×100) for the various distance metric parameters
related to SMOTE-SF. Low-dimensional datasets.

200% Oversampling 400% Oversampling

k-NN LR NB SVM k-NN LR NB SVM

Ecoli

k-NN LR NB SVM k-NN LR NB SVM
p = ∞ 87.1 88.1 90.9 89.3 87.4 90.6 91.3 90.9
p = 1 85.9 87.8 90.1 89.6 88.4 90.8 90.7 89.8
p = 2 86.9 88.1 89.8 89.4 87.9 90.6 91.1 90.1

Abalone

p = ∞ 69.1 68.1 77.6 50.0 71.9 77.5 77.9 76.7
p = 1 69.0 68.1 77.8 50.0 72.3 77.4 77.9 77.1
p = 2 69.4 68.4 77.9 50.0 71.3 77.3 77.8 76.9

CarEval

p = ∞ 49.0 98.5 75.3 98.7 48.4 98.8 79.0 98.9
p = 1 49.1 98.5 76.8 99.1 48.4 98.8 79.4 99.0
p = 2 49.0 98.5 77.1 99.2 48.3 98.7 79.7 99.0
Solar

p = ∞ 63.9 63.9 73.0 61.3 68.6 65.7 73.3 66.1
p = 1 65.1 62.9 72.2 61.3 65.8 66.4 73.6 66.1
p = 2 63.6 65.3 70.9 61.2 67.4 66.1 73.5 66.4

Yeast

p = ∞ 74.6 70.0 79.9 50.0 77.8 78.0 80.3 71.5
p = 1 76.7 70.2 79.0 50.0 76.1 78.1 80.7 71.6
p = 2 73.1 70.0 80.1 50.0 77.0 77.9 80.9 72.5

Table B.4
Predictive performance (AUC×100) for the various distance metric parameters
related to SMOTE-SF. High-dimensional datasets.

200% Oversampling 400% Oversampling

k-NN LR NB SVM k-NN LR NB SVM

Burczynski

p = ∞ 81.3 81.3 63.0 63.0 93.8 93.8 78.8 78.8
p = 1 81.3 81.3 64.4 63.0 93.8 93.8 78.8 78.8
p = 2 81.3 81.3 64.4 63.0 93.8 93.8 78.8 78.8

Lung

p = ∞ 98.6 99.3 86.4 100 98.6 97.9 86.4 100
p = 1 98.6 99.3 86.4 100 97.9 98.6 86.4 100
p = 2 98.6 97.9 86.4 100 98.6 98.6 86.4 100
Glioma

p = ∞ 99.1 97.9 50.0 90.9 98.2 98.8 50.0 90.9
p = 1 99.1 97.5 50.0 90.9 97.9 97.9 50.0 90.9
p = 2 98.8 97.5 50.0 90.9 98.5 99.7 50.0 90.9

SRBCT

p = ∞ 94.2 79.9 50.0 75.1 94.2 78.7 50.0 75.1
p = 1 94.2 76.4 50.0 75.1 91.9 76.4 50.0 75.1
p = 2 94.2 75.2 50.0 75.1 93.0 76.4 50.0 75.1

Lung2

p = ∞ 100 99.7 50.0 100 99.7 98.6 50.0 100
p = 1 99.7 99.7 50.0 100 99.7 99.5 50.0 100
p = 2 99.7 99.7 50.0 100 99.7 99.5 50.0 100
Bullinger

p = ∞ 82.2 80.0 66.3 64.9 84.3 83.2 67.8 70.3
p = 1 82.8 81.1 67.3 64.9 81.4 82.6 67.4 70.3
p = 2 82.8 79.4 67.8 65.3 83.8 85.4 69.7 72.7

CAR

p = ∞ 100 86.5 95.2 98.4 100 87.3 95.2 98.4
p = 1 100 88.9 95.2 98.4 99.7 91.5 95.2 98.4
p = 2 100 87.3 95.2 98.4 99.7 86.6 95.2 98.4
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