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a b s t r a c t 

In this work, two novel formulations for embedded feature selection are presented. A 

second-order cone programming approach for Support Vector Machines is extended by 

adding a second regularizer to encourage feature elimination. The one- and the zero- 

norm penalties are used in combination with the Tikhonov regularization under a ro- 

bust setting designed to correctly classify instances, up to a predefined error rate, even 

for the worst data distribution. The use of the zero norm leads to a nonconvex formula- 

tion, which is solved by using Difference of Convex (DC) functions, extending DC program- 

ming to second-order cones. Experiments on high-dimensional microarray datasets were 

performed, and the best performance was obtained with our approaches compared with 

well-known feature selection methods for Support Vector Machines. 
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1. Introduction 

Support Vector Machines (SVMs) [38] is one of the best-known machine learning tools for classification. This method

has proved to be very effective in terms of predictive performance thanks to its ability to decrease the model’s complex-

ity [38] . Due to its popularity, a plethora of different SVM extensions has been presented in the literature. In particular,

the maximum margin approach proposed by Saketha Nath and Bhattacharyya [32] uses second-order cone programming

(SOCP) formulation (see [2] for details) to provide a robust setting for specified false positive and false negative error rates.

This robust framework has demonstrated its superior performance in several domains, such as binary [23] and multi-class

classification [22] . 

SVM classifiers have the disadvantage of not being able to perform embedded feature selection, i.e. to exclude irrelevant

variables from the hyperplane automatically in the classifier construction [16,25] . Feature selection can be very helpful when

facing high-dimensional datasets since it reduces the risk of overfitting and mitigates the “curse of dimensionality”, the

mathematical issue that arises in high-dimensional settings when the amount of available data is not sufficient to obtain

statistically sound results [15,25] . When the number of variables increases, the concepts of distance and proximity become

ill defined. This issue is of major relevance in prediction tasks in which the number of features is much larger than the

number of observations, a problem known as p � N [18] . Under this setting, highly regularized methods are usually the

best strategies to overcome overfitting and high variance. Such tasks have become of increasing importance in domains like

bioinformatics and genomics. 
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Several methods have been proposed in the literature to perform feature selection with SVMs [16] . In particular, penalty

functions, such as the Least Absolute Shrinkage and Selection Operator (LASSO) or concave approximations of the zero norm,

have been adapted to penalize the use of variables in the SVM classifier [6,28] . In this work, we have extended the ideas

of double-regularized SVM classifiers to the robust SOCP setting proposed by Saketha Nath and Bhattacharyya, resulting in

two novel formulations for simultaneous SVM classification and feature selection. The Difference of Convex (DC) functions

Algorithm (DCA) is adapted for SOCP to find optimal solutions for our proposals. DCA was proposed by Pham Dinh Tao

and Souad in [10] , and has been studied extensively by Le Thi Hoai An, Pham Dinh Tao, and their collaborators, see e.g.

[11,12,36,37] . 

This paper is structured as follows: in Section 2 , previous work on SVM classification and feature selection is discussed,

including all formulations that are relevant for this study. The proposed double-regularized SOCP formulations for simultane-

ous feature selection and classification, and the DC framework are described in Section 3 . In Section 4 , experimental results

using high-dimensional datasets are given. Finally, the main conclusions of this work are provided in Section 5 , where future

developments are also proposed. 

2. Literature review 

In this section, the standard soft-margin SVM formulation is presented, including also its robust version based on SOCP.

Subsequently, the feature selection methods that are relevant for this work are introduced. These methods are the best

known feature selection approaches: Fisher Score RFE-SVM, � 1 -SVM, and � 0 -SVM; and some double-regularized extensions

of the latter two methods that are relevant for our work: the � 2 - � 1 -SVM and the � 2 - � 0 -SVM methods. Finally, we present

a feature selection method for the robust SOCP implementation for SVM: the � 1 -SOCP approach. 

2.1. Soft-margin SVM 

The soft-margin SVM model [8] constructs a hyperplane of the form w 

� x + b = 0 , by solving the following problem: 

min w ,b, ξ
1 

2 

‖ 

w ‖ 

2 
2 + C 

m ∑ 

i =1 

ξi 

s.t. y i (w 

� x i + b) ≥ 1 − ξi , i = 1 , . . . , m, 

ξi ≥ 0 , i = 1 , . . . , m, 

(1) 

where ‖ · ‖ 2 denotes the Euclidean norm, x i ∈ � 

n are the training samples and y i ∈ {−1 , 1 } their respective labels; C > 0 is a

parameter that balances the trade-off between complexity reduction (minimization of the Euclidean norm) and model fit;

and ξ denotes the vector of slack variables related to each training object. 

2.2. Robust SVM via SOCP 

The SOCP formulation proposed by Saketha Nath and Bhattacharyya [32] provides a robust scheme for classification that

has proved to be very effective in terms of predictive performance [5,23] . Let X l ( l = 1 , 2 ) be random variables that generate

the samples of classes, with means and covariance matrices given by ( μl , S l ). The main idea is to construct a robust classifier

with which the probability of correct classification for each class l would be higher than ηl ∈ (0, 1). The following chance-

constraint problem is formulated: 

min 

w ,b 

1 

2 

‖ w ‖ 

2 
2 

s.t. Pr { w 

� X 1 + b ≥ 0 } ≥ η1 , 

Pr { w 

� X 2 + b ≤ 0 } ≥ η2 , (2) 

Let X l be represented by its mean and covariance ( μl , S l ) for l = 1 , 2 . The robust framework replaces the chance con-

straints by deterministic ones in order to classify each class l correctly (at least a class recall of ηl ) even for the worst

case for data distribution given ( μl , S l ). Using the multivariate Chebyshev inequality [20, Lemma 1] , this worst distribution

approach leads to the following quadratic SOCP problem (see [32] for the detailed derivation): 

min 

w ,b 

1 

2 

‖ w ‖ 

2 
2 

s.t. w 

� μ1 + b ≥ 1 + κ1 

√ 

w 

� S 1 w , 

−(w 

� μ2 + b) ≥ 1 + κ2 

√ 

w 

� S 2 w , (3) 

where κl = 

√ 

ηl 
1 −ηl 

, for l = 1 , 2 . This problem can be formulated as a linear SOCP by introducing a new variable z and a

second-order cone (SOC) constraint ‖ w ‖ 2 ≤ z . The solutions for both models are the same, but linear SOCP formulations are

required by some solvers, such as the one used in this work. These linear SOCP formulations can be solved efficiently by

interior point methods [2,4] . 
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Remark 2.1. In practice, the mean and the covariance matrix are not usually available, and therefore, its respective empirical

estimations are used instead. 

2.3. Fisher Score for SVM 

The Fisher Score is a statistical metric that can be used to rank variables according to their degree of dependency with

the label vector [13] . This ranking is used further to select the top-ranked features to use in an SVM classifier. The Fisher

Score follows: 

F ( j) = 

∣∣∣∣
μ+ 

j 
− μ−

j 

(σ+ 
j 
) 2 + (σ−

j 
) 2 

∣∣∣∣, (4)

where μ+ 
j 

and μ−
j 

are the average values for variable j when taking only the positive and negative samples into account,

respectively; while σ+ 
j 

and σ−
j 

are their respective standard deviations. 

2.4. Recursive Feature Elimination SVM 

The RFE-SVM algorithm is a backward elimination strategy designed to remove those variables that contribute less to an

SVM classifier [17] . In particular, the margin of the classifier is computed as the Euclidean norm of the weight vector w ,

and then, the same measure is computed excluding one variable at a time. The feature whose removal leads to the largest

margin is removed. 

The RFE-SVM algorithm can be very time-consuming in high-dimensional datasets. Therefore, the authors suggested re-

moving 50% of the attributes at each iteration of the algorithm to speed up the process [17] . Despite the higher complexity,

RFE-SVM takes both the correlations between variables and their interaction with the classifier into account, being poten-

tially more effective than filter methods like the Fisher Score. 

2.5. The � 1 -SVM method 

The soft-margin SVM method was extended to perform automatic feature selection by Bradley and Mangasarian [6] . In

this work, the authors replaced the Euclidean norm as regularizer by the LASSO penalty, which corresponds to the sum of

the absolute values of the weight vector, as follows: 

min w ,b, ξ ‖ 

w ‖ 1 + C 
m ∑ 

i =1 

ξi 

s.t. y i (w 

� x i + b) ≥ 1 − ξi , i = 1 , . . . , m, 

ξi ≥ 0 , i = 1 , . . . , m, 

(5)

where the expression ‖ w ‖ 1 = 

∑ n 
i =1 | x i | leads to a non-smooth optimization problem. In order to solve this issue, auxiliary

decision variables t were introduced, with t ≥ 0 and −t ≤ w ≤ t . 

This strategy has been widely applied due to its computational efficiency and positive predictive performance. Extensions

have been made to deal with several data characteristics, such as multiclass and multilabel tasks [7] , grouped variables (for

example, nominal attributes with multiple categories expressed through a set of dummy variables) [27] , or functional data

[26] . The algorithm has also been adapted for finding more effective and intuitive ways to select variables based on the

amount of penalization, avoiding greedy strategies such as forward selection or backward elimination (see e.g. [27] ). 

2.6. The � 0 -SVM method 

In the same work by Bradley and Mangasarian [6] , the authors suggest a stronger approach to encouraging feature selec-

tion: the � 0 -“norm” or the cardinality of the non-zero elements of the weight vector w . Notice that the � 0 penalty is not a

norm because the triangle inequality does not hold [6] . Moreover, this penalty function is discontinuous, and therefore the

authors proposed the following approximation: 

‖ w ‖ 0 ≈
n ∑ 

j=1 

(1 − exp (−α| w j | )) , α > 0 , (6)

where the issue of having the absolute values of the weight vector can be tackled again by the inclusion of the new variables

t , leading to the following smooth nonconvex optimization problem: 

min 

t , w ,b, ξ

n ∑ 

j=1 

(1 − exp (−αt j )) + Ce � ξ

s.t. y i (x 

� 
i w + b) ≥ 1 − ξi , i = 1 , . . . , m, 

ξ ≥ 0 , 
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−t ≤ w ≤ t . (7) 

The authors refer to the previous problem as the FSV (Feature Selection ConcaVe) method, which was solved via the

Successive Linearization Algorithm (SLA). The parameter α was set to 5 [6] . Alternatively, other approximations for the � 0 
penalty have been proposed in the SVM literature [30,40] . For instance, Weston et al. [40] proposed an approximation for

this function using the logarithmic function, as follows: 

‖ w ‖ 0 ≈
n ∑ 

j=1 

ln (ε + | w j | ) , 0 < ε � 1 . (8)

2.7. Double-regularized SVM approaches 

The previously described regularizers � 2 , � 1 , and � 0 norms can be combined in the SVM formulation in order to balance

the different objectives adequately. Neumann et al. [28] proposed the � 2 - � 1 -SVM and � 2 - � 0 -SVM formulations combining

the Euclidean norm with the LASSO penalty and the zero-“norm”, respectively. The � 2 - � 1 -SVM formulation follows: 

min 

t , w ,b, ξ

1 

2 

‖ w ‖ 

2 
2 + C 1 

n ∑ 

j=1 

t j + C 2 e 
� ξ

s.t. y i (x 

� 
i w + b) ≥ 1 − ξi , i = 1 , . . . , m, 

ξ ≥ 0 , 

−t ≤ w ≤ t . (9) 

Notice that the previous formulation requires two positive hyperparameters, C 1 and C 2 , in order to balance the three

objectives presented in the formulation. The � 2 - � 0 -SVM formulation has the following form: 

min 

t , w ,b, ξ

1 

2 

‖ w ‖ 

2 
2 + C 1 

n ∑ 

j=1 

(1 − exp (−αt j )) + C 2 e 
� ξ

s.t. y i (x 

� 
i w + b) ≥ 1 − ξi , i = 1 , . . . , m, 

ξ ≥ 0 , 

−t ≤ w ≤ t . (10) 

This formulation was solved with the DC algorithm (see [28] ), which will be described in Section 3.1 . 

2.8. � 1 -SOCP 

Bhattacharyya [5] extended the idea of using the LASSO penalty, instead of the Euclidean norm, on the maximum-margin

SOCP formulation proposed by Saketha Nath and Bhattacharyya [32] , as follows: 

min 

w ,b 
|| w || 1 

s.t. w 

� μ1 + b ≥ 1 + κ1 ‖ S 1 / 2 
1 

w ‖ 2 , 

−w 

� μ2 − b ≥ 1 + κ2 ‖ S 1 / 2 
2 

w ‖ 2 , (11) 

where S l = S 1 / 2 
l 

S 1 / 2 
l 

for l = 1 , 2 . Formulation (11) can be cast into a linear SOCP problem by introducing a new variable t , as

follows: 

min 

w , t ,b 

n ∑ 

j=1 

t j 

s.t. w 

� μ1 + b ≥ 1 + k 1 ‖ S 1 / 2 
1 

w ‖ 2 , 

−w 

� μ2 − b ≥ 1 + k 2 ‖ S 1 / 2 
2 

w ‖ 2 , 

−t ≤ w ≤ t . (12) 

3. Novel robust SVM approaches for feature selection 

In this section, we present two novel maximum-margin approaches for binary classification and feature selection. The

main idea is to balance two regularizers in the objective function of a SOCP problem: the l 2 norm for complexity reduction

and structural risk minimization, and the l 1 and l 0 norms for feature elimination. The latter two regularizers are used in

combination with the l 2 norm in two different formulations. The use of the l 0 norm leads to a nonconvex SOCP formulation

which we propose solving via DC programming. 

This section is organized as follows: a brief review of DC programming and DC algorithm (DCA) is provided first. Then,

our SOCP models for feature selection and simultaneous SVM classification are presented. 
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3.1. Review of DC programming and DCA 

The DC algorithm is a very useful mathematical programming tool used to solve nonconvex optimization problems. Let

us denote by 	0 (� 

n ) := { f : � 

n → � ∪ { + ∞} : f is a lower-semicontinuous, proper and convex function}, and let us consider

the following optimization problem: 

min 

x ∈� n 
{ f (x ) = g(x ) − h (x ) } ( P dc )

where g, h ∈ 	0 ( � 

n ). This type of problem is known as a DC program, and its objective function f is called a DC function. 

Note that a DC problem with the convex constraint x ∈ 
 can be rewritten in the form ( P dc ) by adding the indicator

function δ
 of 
 into g , that is, 

min 

x ∈ 

{ f (x ) = g(x ) − h (x ) } = min 

x ∈� n 
{ g(x ) + δ
(x ) − h (x ) } . 

where δ
 is defined by δ
(x ) = 0 if x ∈ 
, and + ∞ otherwise. 

Since the functions that appear in problem ( P dc ) can be nonsmooth, the concept of subdifferential is used [31] . The

subdifferential of a function ϕ ∈ 	0 ( � 

n ) at x 0 ∈ dom( ϕ), denoted by ∂ϕ( x 0 ), is defined as 

∂ϕ(x 0 ) := { y ∈ � 

n : ϕ(x ) ≥ ϕ(x 0 ) + 〈 y, x − x 0 〉 , ∀ x ∈ � 

n } , (13)

where 〈 · , · 〉 denotes the scalar product. 

The subdifferential ∂ϕ( x 0 ) generalizes the concept of derivative in the sense that ϕ is differentiable at x 0 if and only if

∂ϕ(x 0 ) = {∇ϕ(x 0 ) } . 
One issue of DC programming is the lack of global optimality conditions. Local optimality conditions are therefore useful

in DC programming. The necessary local optimality condition for DC programming ( P dc ) is given by 

∅ � = ∂h (x ∗) ⊂ ∂g(x ∗) . (14)

Any point x ∗ ∈ dom( f ) such that ∂h ( x ∗) ∩ ∂g ( x ∗) � = ∅ is called a critical point of ( P dc ). The condition (14) is also sufficient (for

local optimality) for many important classes of DC programs, for instance, for DC polyhedral programs, or when function f

is locally convex at x ∗ [35,36] . 

Philosophy of DCA: DCA is based on local optimality conditions and duality in DC programming. The main idea of DCA

is simple: each iteration k of DCA approximates the function h by its affine minorization defined by 

h k (x ) = h (x k ) + 〈 y k , x − x k 〉 , y k ∈ ∂h (x k ) , 

and then it solves the resulting minimization problem 

min 

x ∈� n 
{ g(x ) − h k (x ) } = min 

x ∈� n 
{ g(x ) − 〈 y k , x 〉} − h (x k ) + 

〈
y k , x k 

〉
. 

The generic DCA scheme is described in Algorithm 1 : 

Algorithm 1 Generic DCA scheme. 

Initialization: Let x 0 ∈ � 

n be an initial point. Set k = 0 . 

Repeat 

1. Choose some y k ∈ ∂h (x k ) . 

2. Compute 

x k +1 ∈ arg min 

x ∈� n 
{ g(x ) − 〈 y k , x 〉} . ( P k )

3. k = k + 1 

Until convergence of x k 

Note that (P k ) is a convex optimization problem and hence, it is assumed to be easier to solve than the original problem.

Convergence properties of DCA and its theoretical basis can be found in [11,12,36] . For instance, it is worth mentioning

that 

(i) DCA is a descent method without line search but with global convergence (i.e. it converges to a critical point from

any starting point). 

(ii) If g(x k +1 ) − h (x k +1 ) = g(x k ) − h (x k ) , then x k is a critical point of g − h . In such a case, DCA terminates at the k -th

iteration. 

(iii) If the optimal value of problem ( P dc ) is finite and the infinite sequence { x k } is bounded, then every limit point of { x k }
is a critical point of g − h . 
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3.2. Double-regularized SOCP formulations for feature selection 

Let us consider the following chance-constrained programming problem: 

min 

w ,b 

1 

2 

‖ w ‖ 

2 
2 + Cρ(w ) 

s.t. Pr { w 

� X 1 + b ≥ 0 } ≥ η1 , 

Pr { w 

� X 2 + b ≤ 0 } ≥ η2 , (15) 

where C > 0 denotes a weight parameter and ρ a function, which can be ρ(w ) = ‖ w ‖ 1 ( � 1 -regularized function) or

ρ(w ) = ‖ w ‖ 0 ( � 0 -regularized function). The procedure described in Saketha Nath and Bhattacharyya [32] presented in

Section 2.2 leads to the following deterministic problem: 

min 

w ,b 

1 

2 

‖ w ‖ 

2 
2 + Cρ(w ) 

s.t. w 

� μ1 + b ≥ 1 + k 1 ‖ S 1 / 2 
1 

w ‖ 2 , 

−w 

� μ2 − b ≥ 1 + k 2 ‖ S 1 / 2 
2 

w ‖ 2 . (16) 

3.2.1. � 2 - � 1 -SOCP formulation 

Let us consider ρ(w ) = ‖ w ‖ 1 . Thus, formulation (16) reduces to 

min 

w ,b 

1 

2 

‖ w ‖ 

2 
2 + C‖ w ‖ 1 

s.t. w 

� μ1 + b ≥ 1 + k 1 ‖ S 1 / 2 
1 

w ‖ 2 , 

−w 

� μ2 − b ≥ 1 + k 2 ‖ S 1 / 2 
2 

w ‖ 2 , (17) 

which is equivalent to the following problem 

min 

w ,b, t 

1 

2 

‖ w ‖ 

2 
2 + C 

n ∑ 

j=1 

t j 

s.t. w 

� μ1 + b ≥ 1 + k 1 ‖ S 1 / 2 
1 

w ‖ 2 , 

−w 

� μ2 − b ≥ 1 + k 2 ‖ S 1 / 2 
2 

w ‖ 2 , 

−t ≤ w ≤ t . (18) 

This problem is an instance of convex quadratic SOCP problem, which contains two SOC constraints and 2 n linear inequality

ones. 

We note that Problem (18) can be written as a linear SOCP by introducing a new variable z , with an objective function

z + C 
∑ n 

j=1 t j , and an additional SOC constraint ‖ (z − 1 , 
√ 

2 w ) ‖ 2 ≤ z + 1 , (see [2] for more details). Thus, it can be solved

efficiently by a standard SOCP solver such as SeDuMi [34] . 

3.2.2. � 2 - � 0 -SOCP formulation 

Let us consider ρ(w ) = ‖ w ‖ 0 . By using the approximation (6) and introducing a new variable t , the formulation (16) is

reduced to the following problem: 

min 

t , w ,b 

1 

2 

‖ w ‖ 

2 
2 + C 

n ∑ 

j=1 

(1 − exp (−αt j )) 

s.t. w 

� μ1 + b ≥ 1 + k 1 ‖ S 1 / 2 
1 

w ‖ 2 , 

−w 

� μ2 − b ≥ 1 + k 2 ‖ S 1 / 2 
2 

w ‖ 2 , 

−t ≤ w ≤ t . (19) 

This formulation has a nonconvex objective function, two SOC constraints and 2 n lineal inequality ones. Let us denote by

u = (t , w , b) ∈ � 

2 n +1 and 


 = { u ∈ � 

2 n +1 : w 

� μ1 + b ≥ 1 + k 1 ‖ S 1 / 2 
1 

w ‖ 2 , −w 

� μ2 − b ≥ 1 + k 2 ‖ S 1 / 2 
2 

w ‖ 2 , 

−t ≤ w ≤ t } . 
Then, the problem (19) can be rewritten as 
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min 

t , w ,b 

1 

2 

‖ w ‖ 

2 
2 + C 

n ∑ 

j=1 

(1 − exp (−αt j )) + δ
(u ) . (20)

Let us define 

g(u ) = 

1 

2 

‖ w ‖ 

2 
2 + δ
(u ) , h (u ) = C 

n ∑ 

i =1 

( exp (−αt i ) − 1) . 

Given that the set 
 is convex, the functions g and h are also convex. Thus, Formulation (19) has the form of Problem ( P dc ).

Hence, we can use the DCA scheme ( Algorithm 1 ) for solving this formulation. 

3.3. DCA for solving the � 2 - � 0 -SOCP formulation 

Note that h is a differentiable function. Then, ∇h (u ) = (v , 0 , 0) with 

v i = −Cα exp (−αt i ) , i = 1 , . . . , n. (21)

In consequence, (P k ) takes the following form: 

min t , w ,b 
1 
2 
‖ w ‖ 

2 
2 − 〈 v k , t 〉 

s.t. w 

� μ1 + b ≥ 1 + k 1 ‖ S 1 / 2 
1 

w ‖ 2 , 

−w 

� μ2 − b ≥ 1 + k 2 ‖ S 1 / 2 
2 

w ‖ 2 , 

−t ≤ w ≤ t . 

(22)

This problem is an instance of quadratic SOCP problem. 

Summarizing, the DCA scheme for solving (19) can be described as follows: 

Algorithm 2 DCA scheme applied to (19) . 

Initialization: Let ε > 0 be a tolerance sufficiently small and (t 0 , w 

0 , b 0 ) ∈ � 

2 n +1 a initial point. Set k = 0 . 

Repeat 

1. Compute v k via (21). 

2. Solve the quadratic SOCP problem (22)to obtain u 

k +1 = (t k +1 , w 

k +1 , b k +1 ) . 

3. k = k + 1 

Until ‖ u 

k + 1 − u 

k ‖ < ε. 

Taking into account [12, Lemma 3.6, Theorem 3.7] , and the fact that the objective function of problem (20) is bounded

from below, we obtain the following theorem: 

Theorem 3.1. 

(i) Algorithm 2 generates a sequence { u 

k = (t k , w 

k , b k ) } contained in 
 such that the sequence { g(u 

k ) − h (u 

k ) } is monotone

decreasing. 

(ii) If the sequence { u 

k } is bounded, then each limit point u ∗ satisfies the necessary local optimality condition (14) . 

We note that the Theorem above only guarantees the local optimality condition, and therefore, multiple starting points

in the feasible set should be taken into account to attain a global optimum. 

4. Results and discussion 

The proposed robust feature selection methods � 2 - � 1 -SOCP and � 2 - � 0 -SOCP were applied to the following high-

dimensional microarray datasets: 

• Alon’s colon cancer data (ALON) [3] : This dataset contains 2,0 0 0 features (genes) that describe 62 sample tissues. 
• Alizadeh’s lymphoma data (ALIZADEH) [1] : This dataset contains the expression of 96 samples described by 4,026 vari-

ables. 
• Gravier’s breast cancer data (GRAVIER) [14] : This dataset contains the gene expression of 168 samples described by 2,905

features. 
• Pomeroy’s central nervous system embryonal tumor data (POMEROY) [29] : This dataset contains 7,128 features and 60

samples. 
• Shipp’s lymphoma data (SHIPP) [33] : This dataset contains the expression of 77 samples described by 7,129 variables. 
• West’s breast cancer data (WEST) [39] : This dataset contains the gene expression of 49 samples described by 7,129
features. 
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Table 1 

Average AUC over all su bsets of selected attributes. All datasets. 

ALON ALIZADEH GRAVIER POMEROY SHIPP WEST 

Fisher + SVM 86.1 93 71.8 62.7 92 71.9 

RFE-SVM 87 93.3 67.5 59.8 91 68.6 

� 1 -SVM 88.2 92.5 73.3 71.2 97.1 67.1 

� 2 - � 1 -SVM 88 93.9 72.7 63.8 96.8 75.6 

� 2 - � 0 -SVM 88.2 95.3 73.9 72.7 96.1 79 

� 1 -SOCP 86.9 92.9 78.3 57.9 96.9 81.6 

� 2 - � 1 -SOCP 86.9 96 77.8 67.7 97.4 89.8 

� 2 - � 0 -SOCP 92.3 96.2 78.0 73.8 98.5 89.4 

Table 2 

Maximum AUC for the best subset of selected attributes, and its respective cardinality. All datasets. 

ALON ALIZADEH GRAVIER POMEROY SHIPP WEST 

AUC n ∗ AUC n ∗ AUC n ∗ AUC n ∗ AUC n ∗ AUC n ∗

Fisher + SVM 86.9 20 95.6 10 0 0 75.7 10 0 0 72 50 96.5 10 0 0 89.8 20 

RFE-SVM 89.4 20 94.8 250 74 10 0 0 65.9 50 93 20 77.4 20 

� 1 -SVM 89.4 10 0 0 92.6 10 0 0 74.4 10 0 0 72.2 10 0 0 97.4 50 67.4 10 0 0 

� 2 - � 1 -SVM 88.2 50 94.1 250 74.8 100 66.1 100 96.6 50 75.3 250 

� 2 - � 0 -SVM 88.2 100 95.6 50 76.2 50 74.7 500 97.4 20 83.7 250 

� 1 -SOCP 86.9 20 92.6 20 78.3 50 58.8 20 97.4 20 81.6 20 

� 2 - � 1 -SOCP 86.9 20 97.1 100 79.7 50 69.6 50 97.4 20 89.8 20 

� 2 - � 0 -SOCP 93.0 20 98.5 100 79.6 50 75.8 500 100 500 91.8 100 

Table 3 

Holm’s post-hoc test for pairwise comparisons. 

Method Mean Rank Mean AUC p value α/ (k − i ) Action 

Analysis for � 2 - � 1 -SOCP 

� 2 - � 0 -SVM 2.58 85.97 - - - 

� 2 - � 1 -SOCP 2.67 86.75 0.95 0.05 not reject 

Fisher + SVM 3.83 86.08 0.32 0.025 not reject 

� 1 -SVM 4.25 82.23 0.18 0.0167 not reject 

� 1 -SOCP 4.67 82.60 0.09 0.0125 not reject 

� 2 - � 1 -SVM 4.92 82.52 0.06 0.01 not reject 

RFE-SVM 5.08 82.42 0.045 0.0083 not reject 

Analysis for � 2 - � 0 -SOCP 

� 2 - � 0 -SOCP 1.00 89.78 - - - 

� 2 - � 0 -SVM 3.00 85.97 0.108 0.05 not reject 

Fisher + SVM 4.17 86.08 0.011 0.025 reject 

� 1 -SVM 4.67 82.23 0.003 0.0167 reject 

� 1 -SOCP 4.84 82.60 0.002 0.0125 reject 

� 2 - � 1 -SVM 5.08 82.52 0.001 0.01 reject 

RFE-SVM 5.25 82.42 0.0 0 07 0.0083 reject 

 

 

 

 

 

 

 

 

 

 

 

 

 

The model selection step was performed for all methods using a nested cross-validation (CV) strategy (also referred to

as repeated double CV, see e.g. [19,22] ): training and test subsets are obtained using leave-one-out cross-validation (LOOCV)

for the outer loop, and the training subset is further split into training and validation subsets in order to use 10-fold CV to

find the right hyperparameter setting (inner loop). 

The following values were explored for the various hyperparameters: C 1 , C 2 , C ∈ { 2 −7 , 2 −6 , . . . , 2 6 , 2 7 } for the methods

soft-margin SVM (Formulation (1) , base classifier for the approaches Fisher+SVM and RFE-SVM), � 1 -SVM, � 2 - � 1 -SVM, � 2 - � 0 -

SVM, and the proposed � 2 - � 1 -SOCP and � 2 - � 0 -SOCP methods; and parameters η1 , η2 ∈ {0.2, 0.4, 0.6, 0.8} for the robust

methods � 1 -SOCP, � 2 - � 1 -SOCP, and � 2 - � 0 -SOCP, as suggested in [5,24] . The Area Under the Curve (AUC) was used as the

performance metric for model selection. After this step, a ranking was constructed for all feature selection methods, studying

the performance for various subsets of selected attributes of cardinality n = { 20 , 50 , 100 , 250 , 500 , 1000 } . For the embedded

methods (all approaches except the Fisher Score and RFE-SVM), the ranking was constructed based on the absolute values

of the weight vector. 

We used the SeDuMi solver (see [34] ) for solving the convex SOCP problems appearing in formulations � 1 -SOCP, � 2 - � 1 -

SOCP and � 2 - � 0 -SOCP. 

To report a summary of all results, the average and maximum performance across all subsets of cardinality n were

computed. Tables 1 and 2 present the average and maximum AUC, respectively, for all feature selection methods and data
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Fig. 1. Performance for an increasing number of features. All datasets. 
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Fig. 2. Sensitivity analysis for the proposed approaches. Influence of parameter C . All datasets. 

 

 

 

 

 

 

 

 

sets. For the latter table, the cardinality of the subset of selected variables that leads to the highest AUC ( n ∗) is also reported.

The lowest n ∗ is presented in case of ties in the highest AUC. For both tables, the highest AUC is highlighted in bold type. 

The following results are visualized on Tables 1 and 2 : 

• Our proposals � 2 - � 1 -SOCP and � 2 - � 0 -SOCP achieved the best average performance in five of six datasets ( Table 1 ), and

the highest AUC for all six datasets ( Table 2 ). These results confirm the methodological virtues of the methods, where the

robustness conferred by the SOCP strategy provides stability and effectiveness, and the double regularization approach

finds the best compromise between feature elimination, complexity reduction, and model fit. 
• A comparison between double-regularized approaches favors the combination of the � 2 norm with the � 0 regularizer

over the � 1 norm: The methods � 2 - � 0 -SOCP and � 2 - � 0 -SVM achieve better performance in terms of both average and

maximum performance compared with � 2 - � 1 -SVM and � 2 - � 1 -SVM, respectively. This fact confirms our assumptions in

the sense that the � “norm” is designed exclusively for feature selection, and therefore makes a better combination with
0 
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the Tikhonov regularization than the LASSO penalty, which provides a good balance between complexity reduction and

sparsity, and provides good results as a single regularizer. 
• The maximum performance is usually achieved with 100 attributes or less (see Table 2 ), demonstrating the importance

of feature selection in order to achieve best performance in high-dimensional tasks. 

Next, we used the Holm’s test [9] to analyze the overall performance statistically. For each feature selection technique,

Table 3 presents the average rank based on the maximum AUC reported on Table 2 , and the p value for the pairwise test

that compares it with the one with the best overall performance. The � 2 - � 1 -SOCP and � 2 - � 0 -SOCP methods are studied

separately. 

It can be concluded from Table 3 that the proposed � 2 - � 0 -SOCP achieves the best overall performance with an average

rank of 1, statistically outperforming all alternative methods but � 2 - � 0 -SVM. The � 2 - � 1 -SOCP method, however, is not able

to outperform the alternative approaches, achieving a slightly below average ranking compared to � 2 - � 0 -SVM. 

Next, a detailed feature selection performance analysis is presented in Fig. 1 , in which the AUC is reported for all the

subsets of n variables studied and, all the datasets. Only the methods Fisher Score with SVM, RFE-SVM, � 1 -SOCP, and � 2 - � 0 -

SOCP are presented for visualization purposes. The importance of these four methods rests on the following reasons: Fisher

Score and RFE-SVM are the best-known benchmark approaches for feature selection with SVM; � 1 -SOCP is the most natural

benchmark from the literature given the nature of our work; and finally, � 2 - � 0 -SOCP represents our main proposal. 

In Fig. 1 , it can be observed that our proposed � 2 - � 0 -SOCP achieves consistently higher AUC than the other benchmark

methods. The Fisher Score and RFE-SVM methods have rather unstable behavior, showing a very large gap between the

minimum and the maximum AUC for the different values for n . Finally, although it can be noticed that the gain in terms of

performance of using feature selection versus using all variables is not always large, noteworthy gains can be observed in

the POMEROY and WEST datasets. 

Finally, a sensitivity analysis was performed to analyze the influence of parameter C on the final solution of the pro-

posed approaches � 2 - � 1 -SOCP and � 2 - � 0 -SOCP in terms of both AUC and feature selection. Feature selection performance is

assessed by defining a threshold of 0.0 0 0 0 0 0 01 for the absolute values of the weights, and then the percentage of weights

that are above this threshold is computed as a measure of parsimony. This analysis is illustrated in Fig. 2 . 

As expected, a larger penalization given by high values of C leads to aggressive feature selection (see Fig. 2 (b) and

Fig. 2 (d) for � 2 - � 1 -SOCP and � 2 - � 0 -SOCP, respectively), but it has a rather minor impact on performance (see Fig. 2 (a) and

Fig. 2 (c) for � 2 - � 1 -SOCP and � 2 - � 0 -SOCP, respectively). Although the AUC remains relatively stable for most datasets, the

optimal performance is usually achieved when less than 10% of variables has weights above the threshold, demonstrating

the importance of feature selection in high-dimensional settings, such as microarray analysis. 

5. Conclusions and future developments 

In this work, a robust framework for binary classification and embedded feature selection was developed. Maximum mar-

gin classifiers were constructed via second-order cone programming, while the inclusion of a second regularizer based on

the LASSO and the zero-norm penalty functions conferred sparsity to the final solution. The use of a concave approximation

for the zero-norm regularization leads to a nonconvex SOCP problem, which is solved via a variation of the DC algorithm. A

comparison with other SVM-based feature selection approaches using high-dimensional datasets showed the advantages of

the proposed methods: 

• The proposed � 2 - � 0 -SOCP method showed superior performance in terms of both average and maximum performance

among various subsets of features, being able to outperform most alternative methods statistically. The proposed � 2 - � 1 -

SOCP method also reached a very good predictive performance. 
• The robust framework has the ability to generalize better by assuming a pessimistic data distribution, while the double-

regularized feature selection approach allows an adequate balance between sparsity, model fit, and generalization. 
• Our extends the work of Neumann et al. [28] on double-regularized feature selection and SVM classification to SOCP,

proposing a robust approach that has proven to be as effective in high-dimensional datasets [5,24] . 

In our experiments, we observed slightly better performance of the proposed � 2 - � 0 -SOCP over the � 2 - � 1 -SOCP method,

meaning that the Tikhonov regularization seems to work better in company with the zero norm than the 1-norm. Despite

the fact that the inclusion of a zero norm approximation increases complexity due to nonconvexity, it is worth making

the extra computational effort in order to achieve the best predictive performance. The same phenomenon is observed

for standard SVM. A reason that explains this result is that the � 0 focuses merely on feature elimination, and requires an

additional regularizer to minimize the structural risk, while the LASSO penalty is a good compromise between complexity

reduction and sparsity by itself, and can be used as the sole regularizer without the need of the Euclidean norm. 

There are several opportunities for future developments. First, there are several alternatives to zero norm approxima-

tions that can be used as alternatives for Equation (6) . For instance, SOCP models can be derived from the l 0 -SVM method

proposed by Weston et al. [40] , or the � 0 approximations discussed in Rinaldi et al. [30] . A second line for future research

encompasses the development of optimization approaches to solve nonconvex SOCP formulations, which can be used as

an alternative to DC programming. Finally, our proposal can be extended to other machine learning tasks that face high-

dimensional problems, such as multiclass classification or regression. In this context, wrapper methods have been devel-
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oped for maximum margin SOCP formulations for multiclass learning with positive results [21] , motivating the deployment

of embedded methods that may be more accurate and more efficient computationally. 
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