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a b s t r a c t 

Twin Support Vector Regression is an effective machine learning strategy, which splits the predictive task 

into two small problems, gaining in both efficiency and predictive performance. In this paper, a novel 

extension for twin Support Vector Regression is presented. The proposal is based on robust optimization, 

conferring robustness to the predictive task by dealing effectively with uncertainty. The method is first 

developed as a linear one, and then, subsequently extended to a kernel-based formulation. Our approach 

accomplishes the best performance on benchmark datasets compared to alternative methods, such as 

linear regression, support vector regression, and twin support vector regression. This gain in performance 

demonstrates the virtues of robust optimization on reducing the risk of overfitting, and generalizing the 

training patterns well with reduced complexity. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Twin Support Vector Machine (SVM) is a powerful tool in pat-

ern analysis, given its appealing properties [20,30] . It splits the

VM problem into two smaller sub-problems, constructing two hy-

erplanes independently. This strategy allows efficient training in

erms of running times, thanks to the option of solving the two

roblems in parallel [26,41] . The twin SVM method has also proved

o be more effective in terms of predictive performance than the

raditional SVM formulation [20,26,41] . 

Originally developed by Jayadeva et al. [20] for binary classifica-

ion, twin SVM has been extended to regression by Peng [30] . The

ain idea is to construct two non-parallel hyperplanes in order to

efine an ε-insensitive tube around the data points, where errors

re discarded inside the tube and penalized outside of it. Several

ariants of twin SVR have also been proposed in the literature (see

5,10,21,29,31,36,37,39] ), resulting in a fruitful field of research. 

Recently, second-order cone programming (SOCP) has been

sed as a robust optimization scheme for SVM classification. The

easoning behind this approach is to classify all instances correctly

or specified class recalls, even for the worst possible class distri-

ution for given means and covariance matrices [34] . This frame-

ork was further extended to twin classification in [26] . 
∗ Corresponding author. 
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.1. Problem Statement and Contribution 

In artificial intelligence, robustness characterizes how effective

 predictive method is when being applied on new data. The per-

ormance of a robust algorithm does not deteriorate much when it

s constructed and tested with slightly different data samples, re-

ucing the risk of overfitting [26] . 

In our proposal, we provide robustness to Support Vector Re-

ression, seizing the virtues of the twin SVR formulation. We pro-

ose two twin chance-constrained problems to construct an ε-

nsensitive tube, for which the up-bound and down-bound func-

ions are obtained in a robust setting. This strategy corresponds

o replace the chance constraints of the two twin problems with

heir robust counterparts, assuming a worst-case setting for the

ata distribution. This strategy leads to two SOCP problems that

an be solved efficiently via interior point algorithms [1,2,28] . 

The proposed approach is developed first as a linear method,

nd then a kernel-based formulation is derived in order to confer

exibility to the approach. Our main contribution, therefore, is pre-

enting two novel formulations for addressing the regression task

ia robust optimization. This approach has not been previously re-

orted in the SVM literature, to the best of our knowledge. Our

esults confirm the virtues of the proposed robust approach, since

t achieved the best predictive performance compared with other

VR formulations. 

This paper is organized as follows: in Section 2 , the methods

-SVR and twin SVR are briefly introduced. Section 3 presents the

roposed robust regression method based on SVM. Experimental

https://doi.org/10.1016/j.knosys.2018.04.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2018.04.005&domain=pdf
mailto:julio.lopez@udp.cl
mailto:smaldonado@uandes.cl
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results on benchmark data sets are given in Section 4 . The main

findings obtained from our results and their implications are dis-

cussed in Section 5 . Finally, the main conclusions of this work are

summarized in Section 6 , in which future developments are also

addressed. 

2. Prior work on support vector regression and twin SVR 

Support Vector Machine is a well-known learning approach one,

which has been widely used in several application domains, such

as genomics [25] , marine sciences [8] , computer vision [45] , and

business analytics [27] . 

Among its virtues, SVM enables the construction of flexible

nonlinear models thanks to the use of Kernel functions. Addition-

ally, it reduces the risk of overfitting by applying the Structural

Risk Minimization (SRM) principle, improving predictive perfor-

mance [42] . Finally, it provides a flexible optimization problem that

can be adapted for dealing with complexities related to the nature

of the data, such as high dimensionality [25] , class-imbalance [40] ,

or the presence of noise [32,44] . Originally developed by V. Vapnik

for binary classification [42] , this approach has been extended to

various machine learning tasks, such as regression [14] , multiclass

classification [43] , and outlier detection [40] , among others. 

A brief overview of the SVR and twin SVR methods is given in

this section. Specifically, we describe the ε-SVR method [14] , and

its extension based on the concept of reduced convex hulls devel-

oped by Bi and Bennett [7] , the original TSVR method proposed by

Peng [30] , and the ε-TSVR method proposed by Shao et al. [36] .

Additionally, recent developments on twin SVR are discussed. 

2.1. ε-Support vector regression 

For training examples A = [ x 1 x 2 . . . x m 

] � ∈ � 

m ×n , the linear ε-

SVR approach [14] finds an optimal regression function of the form

f (x ) = w 

� x + b, which should be as close as possible to the cor-

responding responses y = (y 1 , y 2 , . . . , y m 

) ∈ � 

m , where the weights

w ∈ � 

n and the bias term b ∈ � are decision variables. The ε-

insensitive loss function is used to model the empirical risk, which

can be interpreted as a tube where only the samples that lie out-

side of it are (linearly) penalized. The structural risk is minimized

by including the Tikhonov regularization, with the goal of mak-

ing the regression function f ( x ) as flat as possible. The following

quadratic programming problem (QPP) is solved: 

min 

w ,b, ξ, ξ
∗

1 

2 

‖ w ‖ 

2 + Ce � ( ξ + ξ
∗
) 

s.t. y − (A w + be ) ≤ εe + ξ, ξ ≥ 0 , 

(A w + be ) − y ≤ εe + ξ
∗
, ξ

∗ ≥ 0 , 

(1)

where ξ, ξ∗ ∈ � 

m are slack variables that activate when objects are

outside the tube, C > 0 controls the trade-off between structural

and empirical risk, and e ∈ � 

m is a vector of ones. 

The ε-SVR method can be extended to kernel functions thanks

to the kernel trick. The dual problem of Formulation (1) can be

rewritten including of kernel functions as follows: 

min 

α, α∗

1 

2 

( α − α∗) � K(A , A 

� )( α − α∗) − y � ( α − α∗) + ε e � ( α + α∗)

s.t. e � ( α − α∗) = 0 , 

0 ≤ α, α∗ ≤ Ce , 

(2)

where K ( A, A 

� ) ∈ � 

m × m is the matrix of kernel functions of the

form k is = K (x i , x s ) , and α and α∗ are the dual variables related

with the constraints of Problem (1) . The Gaussian kernel, which

has the following expression for two samples x and x s ∈ � 

n , is
i 
sed in this work: 

(x i , x s ) = exp 

(
−|| x i − x s || 2 

2 σ 2 

)
, (3)

here the kernel width parameter σ > 0 controls the shape of the

ernel [35] . 

Alternatively, Bi and Bennett [7] developed a variation of the

-SVR method that has a different geometrical interpretation; in-

tead of using the ε-insensitive loss function, this formulation

ims to maximize the margin between two training patterns.

hese patterns D 

+ = { (x i , y i + ε) : i = 1 , . . . , m } and D 

− = { (x i , y i −
) : i = 1 , . . . , m } are constructed by shifting the target variable up

nd down by ε and adding it to the data points, resulting in the

ollowing data matrices: 

 1 = 

[
A 

� 

(y + εe ) � 

]
, A 2 = 

[
A 

� 

(y − εe ) � 

]
∈ � 

n +1 ×m . (4)

he ε-SVR formulation by Bi and Bennett [7] then maximizes the

argin between the closest points in the reduced convex hulls of

 

+ and D 

−, resulting in the following QPP: 

in 

u , v 

1 

2 

| | A 1 u − A 2 v | | 2 

s.t. e � u = 1 , e � v = 1 , 

0 ≤ u , v ≤ D e , 

(5)

here D > 0 is a parameter used to limit the influence of outliers

7] . The authors demonstrate that the dual formulation of (5) is

quivalent to the original ε-SVR method (cf. Formulation (1) ) under

ertain conditions for the parameters C , ε, and D [7] . 

.2. Twin support vector regression 

There are several extensions of ε-SVR that follow the original

dea of constructing two non-parallel hyperplanes instead of a sin-

le function, as suggested originally in [20] for binary classifica-

ion. The first twin SVR method was developed by Peng [30] . It

onstructs two regressors f 1 (x ) = w 

� 
1 

x + b 1 and f 2 (x ) = w 

� 
2 

x + b 2
hat define the down- and up-bounds for the ε-insensitive tube by

olving the following pair of QPPs: 

min 

 1 ,b 1 , ξ1 

1 

2 

‖ y − ε 1 e − (Aw 1 + b 1 e ) ‖ 

2 + c 1 e 
� ξ1 

s.t. y − (Aw 1 + b 1 e ) ≥ ε 1 e − ξ1 , ξ1 ≥ 0 , 

(6)

nd 

min 

 2 ,b 2 , ξ2 

1 

2 

‖ y + ε 2 e − (Aw 2 + b 2 e ) ‖ 

2 + c 2 e 
� ξ2 

s.t. (Aw 2 + b 2 e ) − y ≥ ε 2 e − ξ2 , ξ2 ≥ 0 , 

(7)

here ε 1 , ε 2 > 0 and c 1 , c 2 > 0 are the input parameters, while ξ1 ,

2 ∈ � 

m are the slack variables used to minimize the empirical risk.

The original TSVR approach has the disadvantage of not being

trongly convex, causing suboptimal solutions (local minima) [36] .

herefore, Shao et al. [36] included extra regularization terms for

he weight vectors related to both hyperplanes, in order to mini-

ize the structural risk properly. Specifically, the authors consider

he following pair of QPPs: 

min 

 1 ,b 1 , ξ1 

1 

2 

‖ y − (Aw 1 + b 1 e ) ‖ 

2 + 

ˆ c 1 
2 

(‖ w 1 ‖ 

2 + b 2 1 ) + c 1 e 
� ξ1 

s.t. y − (Aw 1 + b 1 e ) ≥ −ε 1 e − ξ1 , ξ1 ≥ 0 , 

(8)

nd 

min 

 2 ,b 2 , ξ2 

1 

2 

‖ y − (Aw 2 + b 2 e ) ‖ 

2 + 

ˆ c 2 
2 

(‖ w 2 ‖ 

2 + b 2 2 ) + c 2 e 
� ξ2 

s.t. (Aw 2 + b 2 e ) − y ≥ −ε 2 e − ξ2 , ξ2 ≥ 0 , 

(9)
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here c 1 , c 2 , ̂  c 1 , ̂  c 2 , ε 1 , ε 2 are positive parameters. 

The TSVR and ε-TSVR approaches were also adapted as ker-

el methods in [30] and [36] , respectively. The two twin re-

ression functions are defined as nonlinear surfaces of the form

f 1 (x ) = K(x � , A 

� ) w 1 + b 1 and f 2 (x ) = K(x � , A 

� ) w 2 + b 2 . The fol-

owing QPPs are solved by the TSVR method: 

min 

 1 ,b 1 , ξ1 

1 

2 

‖ y − ε 1 e − (K(A , A 

� ) w 1 + b 1 e ) ‖ 

2 + c 1 e 
� ξ1 

s.t. y − (K(A , A 

� ) w 1 + b 1 e ) ≥ ε 1 e − ξ1 , ξ1 ≥ 0 , 

(10) 

nd 

min 

 2 ,b 2 , ξ2 

1 

2 

‖ y + ε 2 e − (K(A , A 

� ) w 2 + b 2 e ) ‖ 

2 + c 2 e 
� ξ2 

s.t. (K(A , A 

� ) w 2 + b 2 e ) − y ≥ ε 2 e − ξ2 , ξ2 ≥ 0 . 

(11) 

For both linear and kernel-based twin SVR methods, the final

egressor is obtained by simply averaging the two twin functions:

f (x ) = 

1 
2 ( f 1 (x ) + f 2 (x )) . 

Several extensions of the TSVR method by Peng have been

roposed. Chen et al. [10] reformulated TSVR as a pair of un-

onstrained, strongly convex optimization problems by using a

moothing technique, solving them with the Newton-Armijo al-

orithm. An approach similar to ε-TSVR was proposed in [39] , in

hich a quadratic loss function is used, resulting in a strongly con-

ex formulation. 

Efficiency is another relevant topic when designing twin SVR

pproaches. Peng [29] proposed the Primal TSVR (PTSVR), which

asts the original QPPs into a series of equations by replacing the

inge loss by a quadratic loss function. Balasundaram and Meena

5] also solved TSVR in the primal space, converting the quadratic

roblems into unconstrained optimization ones, which can be

olved efficiently via gradient-based iterative methods. Singh et al.

37] extended TSVR by using rectangular kernels, allowing an effi-

ient matrix inversion operation and thus reducing computational

imes. Peng [31] proposed the twin parametric insensitive support

ector regression (TPISVR) approach, which introduces a parameter

to control the number of support vectors. 

An extension relevant for our work is the twin SVR approach

roposed by Khemchandaniet et al. [21] . The authors extended the

-SVR formulation by Bi and Bennett [7] to twin regression, lead-

ng to an alternative TSVR model that shows better predictive per-

ormance compared with the one proposed by Peng. In our work,

e also follow the strategy proposed by Bi and Bennett [7] of max-

mizing the margin between the two augmented sets; but our ro-

ust framework uses ellipsoids to represent the training patterns,

nstead of the reduced convex hulls. 

. Robust twin support vector regression 

In this section, a novel SVR method is presented. The main

dea is to extend the robust framework of Saketha Nath and Bhat-

acharyya [34] for binary classification to twin SVR. This framework

onstructs maximum margin predictors by proposing a chance-

onstrained optimization problem, which is subsequently cast into

n SOCP model by assuming a pessimistic data distribution. This

pproach was extended to twin SVM classification in [26] , provid-

ng a good starting point for this research. 

In order to adapt the robust twin SVM classification framework

roperly, we need to cast the SVR problem into a margin maxi-

ization one between two training patterns. In this context, the

VR method proposed by Bi and Bennett [7] provides a more suit-

ble approach than the traditional ε-SVR by Drucker et al. [14] . 

Our proposal is introduced into two steps. First, the linear ro-

ust twin SVR formulation is presented in Section 3.1 , in which the

eometrical interpretation and other properties are derived. The
ernel-based version of our proposal is subsequently described in

ection 3.2 . 

.1. Robust twin SVR - linear version 

Following the ideas of Bi and Bennett [7] , the proposed method

onstructs two nonparallel hyperplanes in such a way that each

ne of them is closest to one of the augmented sets, D 

+ = { (x i , y i +
) : i = 1 , . . . , m } or D 

− = { (x i , y i − ε) : i = 1 , . . . , m } , and as far as

ossible from the other. Instead of using reduced convex hulls,

hese sets are represented in our approach by the means and co-

ariance matrices of the respective training samples. 

Formally, let X 1 and X 2 be two random vectors that generate

he samples A 1 and A 2 of the augmented sets D 

+ and D 

−, respec-

ively (see Eq. (4)) . Each hyperplane f k ( x ) is constructed to agree,

n probabilistic terms, with the data from each augmented set at

east to rates ηk ∈ (0, 1), for k = 1 , 2 . In other words, the sam-

les generated by X 1 should be above the down bound of the

-insensitive tube f 2 (x ) = w 

� 
2 

x + b 2 , and the samples generated

y X 2 should be below the up bound of the ε-insensitive tube

f 1 (x ) = w 

� 
1 x + b 1 ; and these two conditions should not exceed er-

or rates of 1 − η2 and 1 − η1 , respectively. The following quadratic

hance-constrained programming problems are proposed: 

min 

 

∗
1 
,b 1 

1 

2 

∥∥A 

� 
1 w 

∗
1 + b 1 e 1 

∥∥2 + 

θ1 

2 

(‖ w 

∗
1 ‖ 

2 + b 2 1 ) 

s.t. Pr { w 

∗
1 
� X 2 + b 1 ≤ −1 } ≥ η2 , 

(12) 

nd 

min 

 

∗
2 
,b 2 

1 

2 

∥∥A 

� 
2 w 

∗
2 + b 2 e 2 

∥∥2 + 

θ2 

2 

(‖ w 

∗
2 ‖ 

2 + b 2 2 ) 

s.t. Pr { w 

∗
2 
� X 1 + b 2 ≥ 1 } ≥ η1 , 

(13) 

here (w 

∗
k 
, b k ) ∈ � 

n +1 × � are the two solutions that define the

win hyperplanes, e k are vectors of ones of appropriate dimen-

ions, and θ k > 0 are trade-off parameters, for k = 1 , 2 . In contrast

ith Peng [30] , our proposal includes the Tikhonov regularization,

s suggested in Shao et al. [36] for twin SVR. 

The proposed robust framework aims to predict these two pat-

erns D 

+ and D 

− accurately, even for the worst possible data dis-

ribution [26] . Therefore, the chance constraints in formulations

12) –(13) are replaced with their robust counterparts: 

inf 
X 1 ∼( μ1 , �1 ) 

Pr { w 

∗
2 
� X 1 + b 2 ≥ 1 } ≥ η1 , 

inf 
X 2 ∼( μ2 , �2 ) 

Pr { w 

∗
1 
� X 2 + b 1 ≤ −1 } ≥ η2 , 

here X k ∼ ( μk , �k ) refers to the family of distributions with com-

on mean μk ∈ � 

n +1 and covariance �k ∈ � 

n +1 ×n +1 , for k = 1 , 2 .

he empirical estimates for these first two moments of the distri-

ution are given by: 

1 = 

[
μx 

μy + ε 

]
, μ2 = 

[
μx 

μy − ε 

]
∈ � 

n +1 , (14)

here μx = 

1 
m 

A 

� e ∈ � 

n corresponds to the means of the variables,

nd μy = 

1 
m 

y � e ∈ � the mean for the output vector. The covariance

atrices are computed as follows: 

1 = �2 = � = 

[
�x �xy 

�� 
xy �y 

]
∈ � 

n +1 ×n +1 , (15)

ith 

x = 

1 

m 

A 

� (I − 1 

m 

ee � ) A ∈ � 

n ×n , �xy = 

1 

m 

A 

� (I − 1 

m 

ee � ) y ∈ � 

n ,

nd 

y = 

1 

y � (I − 1 

ee � ) y ∈ � . 

m m 
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In order to cast the proposed chance-constrained problem

( Eqs. (12) –(13) ) into a deterministic model, the multivariate Cheby-

shev inequality is used [22, Lemma 1] , resulting in the following

formulations: 

min 

w 

∗
1 
,b 1 

1 

2 

∥∥A 

� 
1 w 

∗
1 + b 1 e 1 

∥∥2 + 

θ1 

2 

(‖ w 

∗
1 ‖ 

2 + b 2 1 ) 

s.t. − w 

∗
1 
� μ2 − b 1 ≥ 1 + κ2 

√ 

w 

∗
1 
� �2 w 

∗
1 
, 

(16)

and 

min 

w 

∗
2 
,b 2 

1 

2 

∥∥A 

� 
2 w 

∗
2 + b 2 e 2 

∥∥2 + 

θ2 

2 

(‖ w 

∗
2 ‖ 

2 + b 2 2 ) 

s.t. w 

∗
2 
� μ1 + b 2 ≥ 1 + κ1 

√ 

w 

∗
2 
� �1 w 

∗
2 
, 

(17)

where κk = 

√ 

ηk 
1 −ηk 

for k = 1 , 2 . Formulations (16) –(17) are con-

vex optimization problems; more precisely, they are quadratic

ones with one second-order cone (SOC) constraint each. 1 General-

purpose solvers such as SeDuMi [38] can handle those problems

efficiently. This solver uses interior-point methods for SOCP [1,28] ,

which yields a worst-case complexity of O ( n 3 ). 

Let w 

∗
k 

= [ w 

� 
k 
, δk ] 

� . Using relations (14) –(15) , formulations (16) –

(17) can be rewritten equivalently as the following problems: 

min 

w 1 ,δ1 ,b 1 

1 

2 

‖ 

Aw 1 + δ1 (y + εe ) + b 1 e ‖ 

2 + 

θ1 

2 

(‖ w 1 ‖ 

2 + δ2 
1 + b 2 1 ) 

s.t. − w 

� 
1 μx − δ1 (μy − ε) − b 1 ≥ 1 + κ2 

√ 

w 

∗
1 
� �w 

∗
1 
, 

(18)

and 

min 

w 2 ,δ2 ,b 2 

1 

2 

‖ 

Aw 2 + δ2 (y − εe ) + b 2 e ‖ 

2 + 

θ2 

2 

(‖ w 2 ‖ 

2 + δ2 
2 + b 2 2 ) 

s.t. w 

� 
2 μx + δ2 (μy + ε) + b 2 ≥ 1 + κ1 

√ 

w 

∗
2 
� �w 

∗
2 
. 

(19)

We refer to these problems as the robust twin SVR method in

its linear version (RT-SVR l ). 

The following remark presents the decision rule for RT-SVR l : 

Remark 1. Formulations (18) –(19) provide two twin hyperplanes

of the form 

ˆ w 

� 
1 x + 

ˆ δ1 y + ̂

 b 1 = 0 and 

ˆ w 

� 
2 x + 

ˆ δ2 y + ̂

 b 2 = 0 . Assum-

ing that ˆ δk 
 = 0 for k = 1 , 2 ; these hyperplanes can be rescaled,

leading to two new functions f 1 (x ) = − 1 
δ1 

( ̂  w 

� 
1 

x + ̂

 b 1 ) and f 2 (x ) =
− 1 

δ2 
( ̂  w 

� 
2 

x + ̂

 b 2 ) . Then, the final regressor can be computed as the

average between these two new functions, that is, 

f (x ) = 

1 

2 

( ̄w 1 + w̄ 2 ) 
� x + 

1 

2 

( ̄b 1 + ̄b 2 ) , (20)

where w̄ k = − 1 
ˆ δk 

ˆ w k , b̄ k = − 1 
ˆ δk 

ˆ b k , for k = 1 , 2 . 

Next, the dual formulation of the RT-SVR l method is derived,

providing insights regarding its geometrical interpretation. First,

the following property is required in order to apply the duality

theory properly: 

Lemma 3.1. The Lagrange multipliers related to the RT-SVR l method

(problems (18) –(19) ) are always different from zero. 

The proof of Lemma 3.1 is presented in Appendix A. This result

allows the derivation of the dual formulation for RT-SVR l . 
1 An SOC constraint on a given variable x ∈ � n has the form ‖ D x + b ‖ ≤ c � x + d, 

where d ∈ � , c ∈ � n , b ∈ � m and D ∈ � m × n (see [1] for more details). 

a

m
 

roposition 3.2. The dual formulations for problems (18) –(19) are

iven by 

in 

z 1 , u 1 

1 

2 

(
z � 1 1 

)
(H 

� H + θ1 I) 
−1 

(
z 1 
1 

)
s.t. z 1 ∈ B ( μ2 , �

1 / 2 , κ2 ) , 

(21)

nd 

in 

z 2 , u 2 

1 

2 

(
z � 2 1 

)
(G 

� G + θ2 I) 
−1 

(
z 2 
1 

)
s.t. z 2 ∈ B ( μ1 , �

1 / 2 , κ1 ) , 

(22)

here H = [ A , (y + εe ) , e ] ; G = [ A , (y − εe ) , e ] ∈ � 

m ×n +2 ; and 

 ( μ, �1 / 2 , κ) = { z ∈ � 

n +1 : z = μ + κ�1 / 2 u , ‖ u ‖ ≤ 1 } , (23)

hich denotes an ellipsoid centered at μ whose shape is determined

y �1/2 , and sized by κ . 

The proof of Proposition 3.2 is presented in Appendix B. The

ual form for RT-SVR l can be rewritten compactly by applying the

chur complement [18] to the matrices (H 

� H + θ1 I) and (G 

� G +
2 I) : Since the symmetric matrix 

 

� H + θ1 I = 

(
A 1 A 

� 
1 + θ1 I A 1 e 

e � A 

� 
1 e � e + θ1 

)
s positive definite for each θ1 > 0, where A 1 is defined in (4) , The-

rem 7.7.6 in [18] implies that the matrix C s (θ1 ) = A 1 A 

� 
1 + θ1 I −

1 
m + θ1 

A 1 ee � A 

� 
1 is invertible, and that 

(H 

� H + θ1 I) 
−1 = 

(
I 0 

− 1 
m + θ1 

e � A 

� 
1 1 

)(
C s (θ1 ) 

−1 0 

0 

1 
m + θ1 

)
(

I − 1 
m + θ1 

A 1 e 

0 1 

)
. (24)

aking into account (24) , and the fact that μ1 = 

1 
m 

A 1 e , the objec-

ive function of Formulation (21) can be rewritten as 

1 

2 

((
z � 1 −

m 

m + θ1 

μ� 
1 

)
C s (θ1 ) 

−1 
(

z 1 − m 

m + θ1 

μ1 

)
+ 

1 

m + θ1 

)
. 

hus, the dual problem of the first twin formulation becomes: 

in 

z 1 , u 1 

1 

2 

∥∥∥C s (θ1 ) 
−1 / 2 

(
z 1 − m 

m + θ1 

μ1 

)∥∥∥2 

s.t. z 1 ∈ B ( μ2 , �
1 / 2 , κ2 ) . 

(25)

n a similar way, the dual form of the second twin problem can be

erived: 

in 

z 2 , u 2 

1 

2 

∥∥∥C s (θ2 ) 
−1 / 2 

(
z 2 − m 

m + θ2 

μ2 

)∥∥∥2 

s.t. z 2 ∈ B ( μ1 , �
1 / 2 , κ1 ) . 

(26)

If θ1 = θ2 = 0 , previous formulations result in models that

an easily be interpreted geometrically. The following proposition

tates this idea: 

roposition 3.3. If θ1 = θ2 = 0 is set, and if the symmetric matrices

 

� H, G 

� G are positive definite, then the formulations (21) –(22) can

e written equivalently as 

in 

z 1 , u 1 

1 

2 

∥∥�−1 / 2 (z 1 − μ1 ) 
∥∥2 

s.t. z 1 ∈ B ( μ2 , �
1 / 2 , κ2 ) , 

(27)

nd 

in 

z 2 , u 2 

1 

2 

∥∥�−1 / 2 (z 2 − μ2 ) 
∥∥2 

s.t. z 2 ∈ B ( μ1 , �
1 / 2 , κ1 ) . 

(28)
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Fig. 1. Geometric interpretation for RT-SVR l . 
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roof. Note that 

 s (0) = A 1 (I − 1 

m 

ee � ) A 

� 
1 = m �1 = m �. (29)

ince H 

� H is positive definite, C s (0) is invertible. Then, the propo-

ition follows by replacing Eq. (29) in formulations (25) –(26) . �

The above models can be interpreted as the problem of finding

 point z on the ellipsoid B ( μ2 , �
1/2 , κ2 ) (resp. B ( μ1 , �

1/2 , κ1 )),

ssociated with pattern D 

− (resp. D 

+ ), whose Mahalanobis dis-

ance is minimal to the respective centers μ1 (resp. μ2 ). In Fig. 1 ,

e illustrate the geometric interpretation for the proposed RT-SVR l 

or a given value of κk . The reader is referred to De Maesschalck

t al. [11] for further information regarding the Mahalanobis dis-

ance. 

.2. Robust twin SVR - kernel version 

In order to obtain a non-linear version for the proposed robust

win SVM model (RT-SVR k ), the weight vectors related to each twin

yperplane can be rewritten as w k = X s k + Mr k , where 

 = [ A 1 A 2 ] = 

[
A 

� A 

� 

(y + εe ) � (y − εe ) � 

]
∈ � 

n +1 ×2 m , (30)

 is a matrix whose columns are orthogonal to the training sam-

les, and s k , r k are vectors of combining coefficients with the ap-

ropriate dimensions. At optimality, the weights are simply w =
k 
 s k since the proposed constraints are independent of M [34] . Fol-

owing the reasoning behind the robust kernel models in [26,34] ,

his modification leads to models where the data points appear

nly in the form of inner products, allowing the use of kernel func-

ions. 

The inner products between the training patterns A 1 and A 2 are

iven by: 

 

� 
1 A 1 = AA 

� + (y + εe )(y � + εe � ) , 

 

� 
2 A 2 = AA 

� + (y − εe )(y � − εe � ) , 

 

� 
1 A 2 = (A 

� 
2 A 1 ) 

� = AA 

� + (y + εe )(y � − εe � ) . 

(31) 

For each pair of samples x i and x j , the ij th entry of the ma-

rix AA 

� corresponds to the inner product x � 
i 

x j , which can be re-

laced by K(x i , x j ) . Let us denote by K ∈ � 

m × m the kernel matrix

hose ij th entry is K(x i , x j ) . Then, each inner product A 

� 
k 

A k ′ be-

omes K kk ′ ∈ � 

m ×m , where 

 11 = K + (y + εe )(y + εe ) � , 

 22 = K + (y − εe )(y + εe ) � , 

 12 = K 

� 
21 = K + (y + εe )(y − εe ) � . 

(32) 

Following the steps from the robust framework presented in

26] , it holds that 

 

∗
k 
� μk = s � k g k , w 

∗
k 
� �k w 

∗
k = s � k 
k s k , k = 1 , 2 , (33)

nd 

 

� 
1 w 

∗
1 = [ K 11 K 12 ] s 1 = K 1 •s 1 , A 

� 
2 w 

∗
2 = [ K 21 K 22 ] s 2 = K 2 •s 2 , (34)

here s k is a vector of combining coefficients with the appropriate

imension, which replaces the weight vector as a decision variable

n the optimization process, and 

 k = 

1 

m k 

[
K 1k e 
K 2 k e 

]
, (35) 

k = 

1 

m k 

[
K 1k 

K 2 k 

](
I − 1 

m k 

ee � 
)[

K 

� 
1 k K 

� 
2 k 

]
, (36) 

or k = 1 , 2 . Using the relations (33) and (34) in the linear ro-

ust twin SVM model (Problems (16) and (17) ), we can derive the

ernel-based formulation for our proposal (RT-SVR k ), as follows: 

in 

s 1 ,b 1 

1 

2 

‖ 

K 1 •s 1 + b 1 e 1 ‖ 

2 + 

θ1 

2 

(‖ s 1 ‖ 

2 + b 2 1 ) 

s.t. − s 1 
� g 2 − b 1 ≥ 1 + κ2 

√ 

s � 
1 

2 s 1 , 

(37) 

nd 

in 

s 2 ,b 2 

1 

2 

‖ 

K 2 •s 2 + b 2 e 2 ‖ 

2 + 

θ2 

2 

(‖ s 2 ‖ 

2 + b 2 2 ) 

s.t. s 2 
� g 1 + b 2 ≥ 1 + κ1 

√ 

s � 
2 

1 s 2 . 

(38) 

Finally, the following remark results in the decision rule for the

roposed RT-SVR k method: 

emark 2. Formulations (37) –(38) lead to two hyperplanes of the

orm 

2 m 

 

j=1 

ˆ K ( ̂ x , X • j ) s 
j 
1 

+ b 1 = 0 , 

2 m ∑ 

j=1 

ˆ K ( ̂ x , X • j ) s 
j 
2 

+ b 2 = 0 , (39)

ith 

ˆ x = (x , y ) ∈ � 

n +1 . The expression X • j denotes the j th column

f the matrix X (cf. Eq. (30)) , and 

ˆ K ( ̂ x 1 , ̂  x 2 ) = K(x 1 , x 2 ) + y 1 y 2 . Tak-

ng this last equality into account, the relations (39) can be rewrit-

en as 

m ∑ 

i =1 

(s i 1 + s m + i 
1 ) K(x , x i ) + yδ1 

ys + b 1 = 0 , 
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m ∑ 

i =1 

(s i 2 + s m + i 
2 ) K(x , x i ) + yδ2 

ys + b 2 = 0 , 

where 

δ1 
ys = 

m ∑ 

i =1 

[ y i (s i 1 + s m + i 
1 ) + ε(s i 1 − s m + i 

1 )] , 

δ2 
ys = 

m ∑ 

i =1 

[ y i (s i 2 + s m + i 
2 ) + ε(s i 2 − s m + i 

2 )] . 

Assuming that δ1 
ys , δ

2 
ys 
 = 0 , the hyperplanes in Eq. (39) can be

rescaled, leading to the following kernel-based twin regression

functions: 

f 1 (x ) = − 1 

δ1 
ys 

( 

m ∑ 

i =1 

(s i 1 + s m + i 
1 ) K(x , x i ) + b 1 

) 

and 

f 2 (x ) = − 1 

δ2 
ys 

( 

m ∑ 

i =1 

(s i 2 + s m + i 
2 ) K(x , x i ) + b 2 

) 

. 

Then, the final regressor is constructed by averaging these twin

functions: f (x ) = 

1 
2 ( f 1 (x ) + f 2 (x )) . 

4. Experimental results 

The proposed robust twin SVR method was applied to an il-

lustrative two-dimensional example with synthetic data, and to

eleven benchmark datasets from the UCI Repository [3] . A brief de-

scription of the benchmark datasets is presented next: 

• Triazines: This dataset studies the inhibition of rat mouse tu-

mors by triazines based on structural attributes (compounds).

This dataset consists of 186 samples described by 58 variables. 
• Wisconsin Breast Cancer Prognosis (WBCP): This dataset aims

to predict the time to recurrence for 198 breast cancer patients

described by 32 features computed from digitalized images. 
• Relative CPU Performance (CPU): The goal for this dataset is

to estimate the relative performance values for 209 CPUs de-

scribed in terms of 8 variables, such as cycle time, or memory

size, among others. 
• Auto MPG (A-MPG): This dataset concerns fuel consumption in

miles per gallon for 398 cars described by 25 attributes. 
• Boston Housing (Housing): This dataset is to predict housing

values in the suburbs of Boston. It consists of 506 houses de-

scribed by 13 variables, such as average number of rooms per

dwelling and crime rate by town. 
• Forest Fires (Fires): The goal for this dataset is to predict the

burned area for wildfires in Portugal. A total of 517 events are

studied, which are described by 12 variables, such as relative

humidity, temperature, rain, and wind. 
• Concrete Compressive Strength (Concrete): The concrete com-

pressive strength is studied in terms of the compounds in it,

such as cement, water, and Fly Ash. A total of 1080 samples de-

scribed by three compounds is available. 
• Wine quality (red, WQR): This dataset consists of 1599 red wine

samples from Portugal. The goal is to assess the wine quality

based on 11 physicochemical properties, such as acidity, resid-

ual sugar, chlorides, and density. 
• Quake: This dataset studies 2178 earthquakes with magnitudes

of at least 5.8 Richter that occurred between 1964 and 1986,

for which the density for the focal depth, in kilometers, is esti-

mated. 
• Abalone: The goal for this dataset is to predict the age of

abalone (4,177 samples) from 10 physical measurements. 
• Parkinson’s Disease Telemonitoring (Parkinson): This dataset

consists of 5875 voice recordings from 42 Parkinson’s disease

patients. The goal is to predict the motor UPDRS score, the

most commonly used scale in the clinical study for this disease,

based on biomedical voice measures and other variables, such

as age and sex (19 attributes in total). 

The linear and kernel-based versions of the proposal, RT-SVR l 

nd RT-SVR k , respectively, were studied together with the follow-

ng alternative approaches: standard linear regression, ε-SVR in

ts linear and kernel versions, the twin SVR approaches by Peng

30] (TSVR) and by Shao et al. [36] ( ε-TSVR) in their linear and

ernel-based forms. 

The experimental setting follows that the parameters for each

pproach are tuned using ten-fold cross-validation, in which the

hole dataset is divided into ten subsets. Each training subset in-

ludes 90% of the data, while the test set has the remaining 10%.

he following sets of parameters are explored: C, σ, c k , ˆ c k , θk ∈
 2 −7 , 2 −6 , . . . , 2 0 , . . . , 2 6 , 2 7 } , ηk ∈ {0.2, 0.4, 0.6, 0.8}, with k = 1 , 2 ,

nd ε: { 0 . 1 , 0 . 2 , 0 . 3 , . . . , 0 . 8 , 0 . 9 } . For kernel methods, we limit

urselves to the Gaussian kernel. The following relations for the

win SVR approaches are imposed in order to reduce the number

f combinations in the grid search: c 1 = c 2 , ˆ c 1 = ˆ c 2 , θ1 = θ2 and

1 = η2 . Regarding data normalization, all datasets were scaled to

 −1 , 1] . All experiments were performed in MATLAB R2016b. We

sed Matlab’s fitlm function for linear regression, the LIBSVM tool-

ox [9] for ε-SVR, the code provided by Yuan-Hai Shao [36] for

he TSVR and ε-TSVR methods, which is publicly available in http:

/www.optimal-group.org/ , and the SeDuMi toolbox for the pro-

osed SOCP method [38] . 

.1. An illustrative example 

In this section, the regression function that results from the var-

ous SVR approaches discussed in this study is illustrated with a

wo-dimensional toy example. We compare the proposed SOCP ap-

roach with the traditional ε-SVR, TSVR [30] , and ε-TSVR [36] . For

ll methods, their kernel-based formulations were used with the

aussian kernel. The synthetic dataset was generated by using the

inc function , which is defined as 

 = sinc(x ) = 

sin (x ) 

x 
, x ∈ [ −4 π, 4 π ] . (40)

A total of 252 training samples were generated using Eq. (40) ,

ith the inclusion of a Gaussian noise with zero mean and a stan-

ard deviation of 0.2. Furthermore, 500 test samples were created

ithout the introduction of noise by assuming variable x as uni-

ormly distributed over the interval [ −4 π, 4 π ] . 

Fig. 2 illustrates the regression function obtained by ε-SVR,

SVR, ε-TSVR, and the proposed RT-SVR on the toy dataset. The

est root-mean-square-error (RMSE) for the four models are 0.0507,

.0495, 0.0458, and 0.0448, respectively. Therefore, the proposal

hows a better model fit, as can be observed in Fig. 2 (the solid

ine represents the Eq. (40)) . 

.2. Results summary for the benchmark data sets 

The RMSE and the mean absolute percentage error (MAPE) are

tudied and reported as performance metrics. The best parameter

onfiguration was selected using RMSE. These metrics have the fol-

owing expression: 

M SE = 

√ 

1 

m 

m ∑ 

t=1 

(y t − f (x t )) 2 , MAP E = 

1 

m 

m ∑ 

t=1 

∣∣∣∣y t − f (x t ) 

y t 

∣∣∣∣, (41)

here y t denotes the real output of a test sample x t . In the unusual

ase where y t = 0 , the sample was omitted for the computation of

he MAPE. 

http://www.optimal-group.org/
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Fig. 2. Prediction with SVR [14] , TSVR, ε-TSVR, and RT-SVR on the noisy samples. 

Table 1 

Performance (RMSE and MAPE) for various regression approaches (linear methods). All datasets. 

linear reg. ε-SVR l TSVR l ε-TSVR l RT-SVR l 

RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE 

Triazines 0.157 0.190 0.143 0.157 0.157 0.188 0.145 0.175 0.144 0.161 

WBCP 0.273 0.788 0.260 0.530 0.267 0.895 0.255 0.500 0.254 0.496 

CPU 0.063 0.153 0.067 0.101 0.062 0.218 0.063 0.096 0.061 0.089 

A-MPG 0.085 0.224 0.085 0.393 0.085 0.225 0.085 0.215 0.083 0.202 

Housing 0.218 5.161 0.217 1.498 0.217 1.610 0.216 1.293 0.209 0.904 

Fires 0.117 0.045 0.139 0.109 0.117 0.036 0.117 0.040 0.117 0.037 

Concrete 0.261 1.752 0.262 3.649 0.261 2.439 0.261 1.623 0.260 0.926 

WQR 0.651 0.089 0.651 0.088 0.651 0.089 0.651 0.089 0.651 0.089 

Quake 0.189 0.025 0.190 0.024 0.189 0.024 0.189 0.024 0.189 0.024 

Abalone 0.079 0.176 0.082 0.190 0.079 0.177 0.079 0.176 0.079 0.176 

Parkinson 0.435 1.422 0.436 1.431 0.435 1.428 0.435 1.399 0.435 1.390 

 

f  

r  

m

 

t  

m  

a  

p  
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T  

l  

i  
Tables 1 and 2 present the best performance for all datasets and

or linear and kernel-based methods, respectively. The lowest er-

or among all methods is highlighted in bold type for both perfor-

ance metrics and for all datasets. 

It can be observed in Tables 1 and 2 , that our proposal achieves

he best performance in most cases, in which both, performance

etrics and the two families of methods (linear and kernel-based
pproaches) are considered. In the case of linear methods, the

roposed RT-SVR l achieves the lowest RMSE in ten of the eleven

atasets, and the lowest MAPE in seven of the eleven datasets (see

able 1 ). For kernel methods, the proposed RT-SVR k achieves the

owest RMSE in six of the eleven datasets, and the lowest MAPE

n five of the eleven datasets (see Table 2 ). Among the alternative
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Table 2 

Performance (RMSE and MAPE) for various regression approaches (kernel methods). All 

datasets. 

ε-SVR k TSVR k ε-TSVR k RT-SVR k 

RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE 

Triazines 0.459 0.259 0.146 0.235 0.141 0.266 0.142 0.236 

WBCP 0.253 0.629 0.268 0.647 0.255 1.003 0.236 0.501 

CPU 0.015 0.012 0.017 0.014 0.045 0.040 0.014 0.012 

A-MPG 0.077 0.182 0.077 0.180 0.077 0.182 0.077 0.177 

Housing 0.142 0.585 0.137 0.465 0.136 0.437 0.133 0.613 

Fires 0.117 0.024 0.117 0.037 0.117 0.047 0.117 0.024 

Concrete 0.142 0.715 0.143 0.788 0.155 0.834 0.143 0.722 

WQR 0.634 0.820 0.643 0.091 0.625 0.087 0.668 0.087 

Quake 0.204 0.023 0.156 0.023 0.189 0.024 0.189 0.025 

Abalone 0.076 0.166 0.076 0.166 0.076 0.172 0.075 0.167 

Parkinson 0.239 0.740 0.258 0.694 0.232 0.736 0.248 0.756 

Table 3 

Holm’s post-hoc test for pairwise comparisons. Linear methods. 

Method Mean rank p value α/ (k − i ) Action 

RT-SVR l 1.50 0 0 - - - 

ε-TSVR l 2.50 0 0 0.1573 0.0500 not reject 

TSVR l 3.2500 0.0133 0.0250 reject 

linear reg. 3.5500 0.0022 0.0037 reject 

ε-SVR l 4.20 0 0 0.0 0 01 0.0125 reject 

Table 4 

Holm’s post-hoc test for pairwise comparisons. Kernel methods. 

Method Mean rank p value α/ (k − i ) Action 

RT-SVR k 1.80 0 0 - - - 

ε-SVR k 2.3500 0.3408 0.0500 not reject 

TSVR k 2.8500 0.0690 0.0250 not reject 

ε-TSVR k 3.0 0 0 0 0.0377 0.0167 not reject 
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approaches, no method seems to outperform the others in terms

of both error measures. 

5. Discussion 

In the previous section, we observed that the proposed method

achieves the lowest error in most datasets. In order to validate

these results, the Holm’s test [17] is used to evaluate whether

or not the best method is able to outperform the others statisti-

cally when cross-validation is used. This test is constructed as fol-

lows: first, the average rank among all datasets is computed for

each method. Then, pairwise comparisons between each technique

and the one with the best rank are performed (see [12] for a de-

tailed description). This analysis is performed for the RMSE met-

ric, the main performance measure on this study, and for both lin-

ear ( Table 3 ) and kernel methods ( Table 4 ). A significant level of

α = 0 . 05 was used in both cases. 

In Tables 3 and 4 , we observe that our proposals RT-SVR l and

RT-SVR k have the best overall rank in both cases. Among the lin-

ear methods, RT-SVR l is able to outperform TSVR l , linear regres-

sion, and ε-SVR l ; although ε-TSVR l is not worse statistically than

our proposal. For the kernel methods, the differences are not sig-

nificant. 

It can be concluded that our approach clearly achieves the best

overall performance of all the methods. Although RT-SVR is not

able to outperform all the others statistically, it does it with lin-

ear regression and ε-SVR l , which are the best known approaches

among those studied in our work. We strongly believe that the

gain in terms of performance is due to the proposed robust frame-

work, which confers robustness to the twin SVR approach. 
Another important result is the fact that kernel-based SVR

ethods are better in general than their linear counterparts. Al-

hough linear formulations are useful for gaining insights into the

articular applications, in this case the use of kernels may lead to

ajor reductions in terms of average errors. 

The robust framework is designed to predict well, even with

he worst data distribution, given a mean vector and a covariance

atrix. In other words, the method is designed to be robust in the

resence of noise, this being particularly useful in datasets with

issing values. A positive predictive performance can be expected

n such cases, regardless the imputation technique. Alternative ro-

ust approaches based on SOCP have been used for dealing with

oise in the form of measurement errors, which has demonstrated

he usefulness of such strategies [32] . 

It can be seen that our proposal is particularly successful when

ealing with small-sized datasets in terms of data samples. There-

ore, another virtue related to our proposal is the data require-

ents for training. Regarding dimensionality, all the datasets re-

orted in this paper are rather low dimensional given the scope of

ur work. Feature selection is recommended in high-dimensional

ettings, since it provides important advantages, such as an im-

rovement in predictive performance, better understanding of the

utcome of the modeling process for decision-making, and reduced

torage and acquisition costs. However, feature selection is more

hallenging in twin SVM than in standard SVM because two hy-

erplanes are constructed, and each one of them can consider a

ifferent subset of variables as relevant. Although this issue can

e resolved using independent regularizers for each subproblem

33] , we recommend synchronized feature selection, using a group

enalty function that penalizes the weights related to a given vari-

ble jointly in both hyperplanes [25] . 

Regarding the training complexity of our proposal in compari-

on with the alternative approaches, the following statements can

e made: 

• Both TSVR and ε-TSVR require the inversion of a (kernel) matrix

of size (n + 1) × (n + 1) and (m + 1) × (m + 1) for the linear

and nonlinear cases, respectively, with a complexity of O(n 3 )

and O(m 

3 ) , respectively. 
• Moreover, these two methods require three matrix multipli-

cations. The two methods, therefore, have a complexity of

O(2 n 2 m + m 

2 n ) for the linear case, while the order is O(3 m 

3 )

for the kernel-based formulation. 
• Taking the required iterations into account when using

a quadratic solver such as SOR, the total computational

complexity of the TSVR and ε-TSVR methods can be es-

timated as O(n 3 + 2 n 2 m + m 

2 n ) + # iteration × O(m ) and

O(m 

3 ) + # iteration × O(m ) , where # iteration is the number

of them that SOR requires, and therefore # iteration × O(m )
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corresponds to the complexity of the SOR method for a m -sized

problem. 
• Regarding our proposal, an SOCP solver such as SeDuMi has a

complexity of O(n 3 ) for the linear case, and O((2 m ) 3 ) for the

nonlinear. Additionally, the computational cost of estimating

the first and second moments needs to be included. This cost

corresponds to O (mn 2 ) and O (m 

3 ) for the linear and kernel-

based formulations, respectively. Finally, the total complexity

of our approach is O(n 3 + mn 2 ) and O(m 

3 ) for the linear and

nonlinear cases, respectively. 

Given that n , the number of attributes, is usually smaller than

he figure of training samples m , our approach is able to reduce the

omplexity of them such as TSVR and ε-TSVR in their linear for-

ulations. For the kernel-based approaches, however, these three

ave similar complexity. Notice that we have excluded the testing

omplexity from this analysis, since the application of the final re-

ressor to a test set is quite similar for the three twin SVR methods

iscussed. 

It can be concluded that our approach achieves superior predic-

ive performance without increasing the computational complex-

ty when compared with other twin SVR approaches. However, a

eneric solver such as SeDuMi may lead to higher training times

n comparison with highly-optimized SVM solvers such as LIBLIN-

AR [15] or LIBSVM [9] . These solvers exploit the structure of the

roblem to derive efficient optimization strategies and reduce the

riginal complexity of the problem. This is the main limitation of

ur approach. Efficient optimization strategies for SOCP formula-

ions are therefore suggested for future developments. A possible

ine of research is to extend the idea behind the Reduced Support

ector Machine (RSVM), introduced by Lee and Mangasarian [23] ,

hich uses a reduced mixture with kernels sampled from a certain

andidate set. 

Along the same line, solvers such as LIBSVM use incremental

pproaches for optimizing the SVM formulation without the need

f performing algebraic operations on big kernel matrices. This has

pened interesting fields of research not only in SVM optimiza-

ion, but also in incremental learning. The latter is the study of

oth supervised and unsupervised learning algorithms when data

ecomes a continuous flux of information. The idea of such algo-

ithms is to update a current model efficiently, without the need

or a complete retraining [13] . Although this line of research falls

utside the scope of the current work, we believe that incremen-

al algorithms for SOCP can be quite useful for both improving the

raining times of our proposal, and for opening the possibility of

ew SVM-based algorithms for incremental learning. 

. Conclusions 

In this paper, a novel SVM-based regression method is pre-

ented. Following the ideas of Peng [30] and Khemchandani et al.

21] , the proposed approach constructs two twin hyperplanes to

efine an ε-insensitive tube. The main contribution is the proposed

obust framework for maximum-margin regression. Following the

ork of Saketha Nath and Bhattacharyya [34] for binary classifica-

ion, probabilistic constraints can be designed to impose adequate

greement between the twin regressors and the random variables

hat generated the training samples. These chance constraints can

e cast subsequently into an SOCP formulation by assuming a pes-

imistic approach for the data distribution, not only providing an

fficient training, but also conferring robustness to twin SVR. 

Our proposal is developed first as a linear regression method

RT-SVR l ), and subsequently extended to include kernel func-

ions RT-SVR k ). The proposed approach in its kernel-based version

chieved best overall performance compared with alternative re-

ression models using ten benchmark datasets. Furthermore, the
ual formulation of RT-SVR l is derived in order to obtain the geo-

etrical interpretation of our approach: two training patterns are

btained by shifting the dependent variable up and down by ε (the

ugmented sets), and our approach characterizes these patterns via

llipsoids, whose centers and shapes are determined by the first

wo moments of the data distribution. 

Following the ideas of Bi and Bennett [7] , the proposed method

onstructs two nonparallel hyperplanes in such a way that the two

f them is closest to one of the augmented sets, D 

+ = { (x i , y i + ε) :

 = 1 , . . . , m } or D 

− = { (x i , y i − ε) : i = 1 , . . . , m } , and as far as pos-

ible from the other. Instead of using reduced convex hulls, these

ets are represented in our approach by the means and covariance

atrices of the respective training samples. 

This work opens interesting possibilities for future develop-

ents. One of the most important issues in data analysis is dimen-

ionality reduction. A low-dimensional data representation usually

eads to a better predictive performance, allowing also a better un-

erstanding and visualization of the outcome of the modelling pro-

ess for decision-making, among other benefits [16] . In this con-

ext, one of the problems of twin SVM is that the construction of

wo hyperplanes leads to little information about the variables that

re relevant for the problem, or the rules that define the decision

unction. One possible future area of research consists of adapting

he training process in order to derive the importance of the co-

ariates automatically, leading to predictors that include only the

elevant variables for the problem. A few efforts have been made

o incorporate feature selection in twin SVM classification (see, for

nstance, [4,24,25] ), but it remains an open problem for twin SVR.

nother possible research line is the use of decision trees to ex-

ract rules from the SVM predictor in order to provide a better un-

erstanding of the model, as it was suggested in Huysmans et al.

19] for binary classification. A final future development is the use

f ad-hoc metrics to evaluate the performance of the model, taking

he costs of under- and overestimating the real value of the target

ariable into account. Measures as MAPE and RMSE weight errors

qually, and may not be the best approaches in applications such

s demand forecasting, where shortage or surplus have totally dif-

erent consequences in decision making. 
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ppendix A. Proof of Lemma 3.1 

roof. We note that both formulations are convex problems with

 Slater point. Thus, the Karush–Kuhn–Tucker (KKT) conditions are

ecessary and sufficient for them (see, for instance, [6] ). Let L 1 be

he Lagrangian function related to Formulation (18) , which is given

y 

 1 (w 1 , δ1 , b 1 , v ) = 

1 

2 

‖ 

Aw 1 + δ1 (y + εe ) + b 1 e ‖ 

2 

+ 

θ1 

2 

(‖ w 1 ‖ 

2 + δ2 
1 + b 2 1 ) − v 0 (−w 

� 
1 μx 

− δ1 ( μy − ε) − b 1 − 1) − κ2 v 
� 
1 �

1 / 2 w 

∗
1 , 

(37) 

ith v = (v 0 , v 1 ) ∈ � × � 

n +1 . Then, the KKT conditions for Formu-

ation (18) are given by 

 

� (Aw 1 + δ1 (y + εe ) + b 1 e ) + θ1 w 1 + v 0 μx − κ2 �
1 / 2 
w 

v 1 = 0 , (38) 

https://doi.org/10.13039/501100002850
https://doi.org/10.13039/501100008430
https://doi.org/10.13039/501100002848
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(y + εe ) � (Aw 1 + δ1 (y + εe ) + b 1 e ) + θ1 δ1 + v 0 ( μy − ε) 

−κ2 �
1 / 2 

δ
v 1 = 0 , (39)

e � (Aw 1 + δ1 (y + εe ) + b 1 e ) + θ1 b 1 + v 0 = 0 , (40)

−w 

� 
1 μx − δ1 ( μy − ε) − b 1 − 1 ≥ κ2 ‖ �1 / 2 w 

∗
1 ‖ , (41)

v 0 ≥ ‖ v 1 ‖ , (42)

v 0 (−w 

� 
1 μx − δ1 ( μy − ε) − b 1 − 1) + κ2 v 

� 
1 �

1 / 2 w 

∗
1 = 0 , (43)

where �1 / 2 = [�1 / 2 
w 

;�1 / 2 
δ

] , with �1 / 2 
w 

∈ � 

n ×n +1 and �1 / 2 
δ

∈ � 

1 ×n +1 .

The following equation can be obtained by multiplying (38) by w 1 ,

(39) by δ1 , (40) by b 1 , and then summing the resulting expres-

sions: 

‖ Aw 1 + δ1 (y + εe ) + b 1 e ‖ 

2 + θ1 (‖ w 1 ‖ 

2 + δ2 
1 + b 2 1 ) + v 0 w 

� 
1 μx 

+ v 0 (δ1 (μy − ε) + b 1 ) − κ2 v 
� 
1 �

1 / 2 w 

∗
1 = 0 . 

(44)

Using (43) in the above equality leads to the following expression

for v 0 : 

v 0 = ‖ Aw 1 + δ1 (y + εe ) + b 1 e ‖ 

2 + θ1 (‖ w 1 ‖ 

2 + δ2 
1 + b 2 1 ) . (45)

Note that v 0 = 0 if and only if w 1 = 0 , δ1 = b 1 = 0 . This result con-

tradicts relation (41) . Hence, the Lagrange multiplier v related to

the conic constraint in Formulation (18) is always different from

zero. The proof corresponding to the conic constraint in the second

twin problem (Formulation (19) ) can be developed similarly. �

Appendix B. Proof of Proposition 3.2 

Proof. Let us denote by ω 1 = [ w 

� 
1 , δ1 , b 1 ] 

� ∈ � 

n +2 . Then, the La-

grangian (37) can be rewritten as 

L 1 = 

1 

2 

ω 

� 
1 (H 

� H + θ1 I) ω 1 − κ2 v 
� 
1 �

1 / 2 w 

∗
1 − v 0 (−w 

� 
1 μx 

−δ1 ( μy − ε) − b 1 − 1) . 

Using Eq. (44) in the Lagrangian L 1 , the latter can be rewritten as

L 1 = −1 

2 

ω 

� 
1 (H 

� H + θ1 I) ω 1 + v 0 . (46)

Since v 0 
 = 0, we can denote by ˆ v 1 = v 1 / v 0 and by 

ˆ z = 

⎡ 

⎣ 

μx − κ2 �
1 / 2 
w 

ˆ v 1 
( μy − ε) − κ2 �

1 / 2 

δ
ˆ v 1 

1 

⎤ 

⎦ = 

[
μ2 − κ2 �

1 / 2 ˆ v 1 
1 

]
. 

Then, the relations (38) –(40) can be written compactly as (H 

� H +
θ1 I) ω 1 = −v 0 ̂ z . Since the symmetric matrix H 

� H + θ1 I is positive

definite, it holds that 

ω 1 = −v 0 (H 

� H + θ1 I) 
−1 ˆ z , 

for any θ1 > 0. Using the above relations in (B.1) , the Lagrangian L 1 
becomes 

L 1 = −v 2 0 

2 

ˆ z � (H 

� H + θ1 I) 
−1 ˆ z + v 0 . 

Hence, the dual problem for (18) can be stated as follows: 

max 
z , ̂ v 1 , v 0 

− 1 

2 

v 2 0 ̂  z � (H 

� H + θ1 I) 
−1 ˆ z + v 0 

s.t. ‖ ̂

 v 1 ‖ ≤ 1 , v 0 > 0 . 

(47)
Notice that the objective function of the dual problem (B.2) is

oncave with respect to v 0 , and it attains its maximum value at 

 

∗
0 = 

1 

ˆ z � (H 

� H + θ1 I) −1 ˆ z 
, (48)

ith optimal value 

1 

2 

1 

ˆ z � (H 

� H + θ1 I) −1 ˆ z 
. 

he dual problem (21) is obtained by using this fact. It can be

roven that the dual form for the second twin problem (Formu-

ation (19) ) becomes Eq. (22) . �
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