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a b s t r a c t 

In this work, a novel nearest neighbor approach is presented. The main idea is to redefine the distance 

metric in order to include only a subset of relevant variables, assuming that they are of equal importance 

for the classification model. Three different distance measures are redefined: the traditional squared Eu- 

clidean, the Manhattan, and the Chebyshev. These modifications are designed to improve classification 

performance in high-dimensional applications, in which the concept of distance becomes blurry, i.e., all 

training points become uniformly distant from each other. Additionally, the inclusion of noisy variables 

leads to a loss of predictive performance if the main patterns are contained in just a few variables, since 

they are equally weighted. Experimental results on low- and high-dimensional datasets demonstrate the 

importance of these modifications, leading to superior average performance in terms of Area Under the 

Curve (AUC) compared with the traditional k nearest neighbor approach. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

The k Nearest Neighbor ( k -NN) classifier [5] is a well-known

pattern recognition method that has been used widely in several

applications. Simplicity is its main virtue, allowing the classifica-

tion of two or more patterns based on a quite simple rule: a test

sample will belong to the class that the majority of its k nearest

neighbors belongs to Han and Kamber [9] . 

Due to this simplicity, the k -NN method has several issues to

deal with. Two main shortcomings, which are related to high-

dimensional applications, are discussed in this paper. First, metrics

such as the Euclidean distance may not be suitable in this context,

since the concepts of distance and proximity are ill defined [10,20] .

A second issue is feature relevancy: in contrast to methods such

as logistic regression or Support Vector Machines, the feature im-

portance cannot be derived with the original version of k -NN, and

all variables are assumed to be equally important in obtaining the

neighbors [9] . This fact can cause poor prediction if most variables

are irrelevant, ‘diluting’ the patterns present in the relevant vari-

ables. Nowadays, there are several applications that have hundreds

or even thousands of potentially redundant or irrelevant variables.

In most cases, all the information is collected at once, and it is not

clear which variables are relevant a priori. For such applications,

models are required for helping us disentangling the signal from

the noise. 
∗ Corresponding author. 
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In this work, these two issues are taken into account in order to

esign robust k -NN classifiers for both low- and high-dimensional

ettings. Three different distance metrics (Euclidean, Manhattan,

nd Chebyshev) are studied and modified in order to incorporate

nly a subset of the available information. Filter methods for fea-

ure selection are embedded in the definition of the distance met-

ic, in order to encourage sparsity based on only the most relevant

ariables for the problem. 

The remainder of this paper is organized as follows: previous

ork on k -NN is discussed in Section 2 . The proposed frame-

ork for k -NN classification based on novel distance metrics is de-

cribed in Section 3 . In Section 4 , experimental results using bi-

ary classification datasets are given. Finally, the main conclusions

f this study and ideas for future developments are presented in

ection 5 . 

. k-NN classification 

The k Nearest Neighbor method is arguably the simplest pat-

ern recognition method for classification [9] . Given a fixed value

or k , i.e., the number of neighbors, this nonparametric approach

ssigns the class label y ∗ to an unlabeled sample x ∗, which occurs

ost frequently in its neighborhood of k closest examples from the

raining set [5] . 

Formally, given two sets of m training tuples { ( x i , y i ) } m 

i =1 
, where

 i ∈ � 

n and y i ∈ {−1 , +1 } are its respective class labels, and given

t test samples { x t 
l 
} mt 

l=1 
⊂ � 

n , this method first computes the dis-

ance between an unlabeled sample x t 
l 

and all training examples

 , for i = 1 , . . . , m . Assuming a set S that contains all variables
i 

https://doi.org/10.1016/j.patrec.2018.03.023
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
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 |S| = n ), the squared Euclidean distance is usually used for this

ask [9] : 

 l 2 ( x 

t 
l , x i ) = 

∑ 

j∈S 
(x t l, j − x i, j ) 

2 . (1)

Next, the k training observations that are closest to x t 
l 

are

elected, i.e., the k elements with lowest d l 2 ( x 
t 
l 
, x i ) for all i =

 , . . . , m . The label assigned to x t 
l 

is the most frequent one among

hese k elements. 

Several improvements to the traditional k -NN algorithm have

een developed in recent years. One research line involves us-

ng alternative distance measures for improving performance

17,26,27] or dealing with different types of data [4,6] . For exam-

le, a penalty dissimilarity measure was proposed in Datta et al.

6] in order to deal with missing information. Cost and Salzberg

4] proposed a weighted measure for handling symbolic features.

ariations of the Minkowski distance have been used previously in

omains such as anomaly [19] and intrusion detection for prevent-

ng network attacks [17] . 

An important aspect of this research is adapting the k -NN

istance metric for dealing with high dimensionality. Few stud-

es have been proposed in this direction. Hastie and Tibshirani

10] proposed a locally adaptive strategy to try to ameliorate

his course of dimensionality in k -NN classification, and Pal et al.

20] proposed a dissimilarity measure based on mean absolute dif-

erences between inter-point distances. The latter strategy reduces

he negative effects caused by a high dimensionality, such as the

oncentration of pairwise distances, thus improving predictive per-

ormance. 

A related research line uses the k -NN principles for perform-

ng feature selection. Navot et al. [18] proposed a feature-weighted

 -NN version for simultaneous regression and feature selection.

his strategy was used to model cortical neural activity. Li et al.

13] developed an ensemble strategy based on various k -NN clas-

ifiers, which were constructed based on random subsets of vari-

bles. This approach, which resembles the reasoning behind ran-

om forest, can be used as feature ranking, and subsequently for

erforming backward feature elimination. Another feature selec-

ion method that uses the ideas behind random forest and k -NN

as proposed by Park and Kim [21] . 

Other heuristics have been used for performing feature selec-

ion and k -NN classification. For example, Tahir et al. [23] proposed

 hybrid approach based on a Tabu search for simultaneous feature

eighting and classification. Lee et al. [12] used genetic algorithms

or dealing with the issue of having various scales in the datasets.

he authors proposed an efficient k -NN reference set editing strat-

gy for maximizing accuracy, while reducing running times and

emory resources. 

Efficiency has also been a relevant topic in the k -NN literature.

eliakov and Li [1] proposed an efficient strategy for replacing the

ort operation, by using order statistics and parallel computing via

PUs. Li et al. [14] developed a strategy for reducing the number

mount of target samples to be considered by creating partial sets

f the nearest neighbors. 

. Proposed strategy for nearest neighbor classification 

Dimensionality reduction is quite an important topic in pat-

ern recognition. A low-dimensional data representation reduces

he risk of overfitting by constructing simple models with few pa-

ameters, yielding to a better predictive performance. It also pro-

ides a better understanding of the outcome of the model while

educing storage and acquisition costs [15] . In pattern recognition

nd image processing, dimensionality reduction is related with fea-

ure extraction, which corresponds to the process of constructing
ew features from the original dataset, aiming at reducing redun-

ancy and identifying latent dimensions of the image that describe

he data with sufficient accuracy. 

Most methods are able to deal with noisy/irrelevant features

y either removing them during the model training, or weighting

hem down when constructing a separating hyperplane. Decision

rees fall in the first category, while methods such as logistic re-

ression, SVM, or ANN on the second. In contrast, k -NN weights all

ariables equally, and it is usually outperformed by these alterna-

ive methods for this reason. 

The main idea of the proposed approach is to adapt the classic

 -NN method in order to deal with the two main issues pointed

ut in the introduction: the course of dimensionality faced by dis-

ance metrics such as the Euclidean norm, and the problem of hav-

ng equal weights for all variables, which may lead to poor predic-

ion if redundant or irrelevant variables, are included in the k -NN

lassification task. 

Our contribution is twofold: first, we propose variations of the

inkowski distance that are more suitable under conditions of

igh-dimensionality, such as the Chebyshev distance or l ∞ 

-norm.

dditionally, we propose a modification of the Minkowski metric

s the distance of two samples based only on a subset of the avail-

ble variables, demonstrating that this modified Minkowski dis-

ance can, indeed, be considered as a distance measure. 

Formally, the following distance metric is proposed for a given

et of variables U ⊂ S, which is a subset of the full set of features

, and two data objects x k ∈ � 

|S| for k = { 1 , 2 } : 

 l p , U ( x 1 , x 2 ) = ‖ x 1 − x 2 ‖ p, U = 

( ∑ 

j∈U⊂S 
| x 1 , j − x 2 , j | p 

) 1 /p 

, (2)

or p ≥ 1. This distance is designed to be used with p ∈ {1, 2, ∞ }, i.e.,

he Manhattan, Euclidean, and Chebyshev distances, respectively.

he proof that the proposed modified Minkowski distance satis-

es the various properties required for being a distance measure is

resented in Appendix A (see online supplementary material). 

Next, the modified k -NN algorithm is proposed. The inputs of

he model are the training samples { ( x i , y i ) } m 

i =1 
, the (unlabeled)

est objects { x t 
l 
} mt 

l=1 
, a predefined number of nearest neighbors k , a

redefined number of selected attributes r , and the Minkowski dis-

ance parameter p ∈ {1, 2, ∞ }. The output is the label vector for the

est samples. The proposed strategy is formalized in Algorithm 1 . 

lgorithm 1 Modified k -NN method. 

nput: Training tuples { ( x i , y i ) } m 

i =1 
; Test samples { x t 

l 
} mt 

l=1 
; Number

of nearest neighbors k ; Feature ranking strategy F R ; Number of

selected attributes r; Distance parameter p ∈ { 1 , 2 , ∞} . 
utput: Test labels { y t 

l 
} mt 

i =1 
. 

1: R ← Feature ranking resulting from using strategy FR on the train-

ing samples . 

2: U ← subset of attributes corresponding to the r largest values of

rank R . 

3: for l = 1 , . . . , mt do 

4: Compute the distance between the sample x t 
l 

and all

the training samples x i , i = 1 , . . . , m , using the modified

Minkowski distance d l p , U ( x 
t 
l 
, x i ) . 

5: N l ← Subset of the k nearest neighbors from the training set of

the test sample x t 
l 
. 

6: y t 
l 
← Label corresponding to the mode in N l . 

7: end for 

The first step of the algorithm corresponds to the construction

f the feature ranking R . This ranking is constructed by sorting the

ariables according to its relevancy using, e.g. statistical measures.
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The following ranking strategies are proposed for the first step of

Algorithm 1 : 

• Fisher Score: This approach assesses relevancy by computing

the difference between the mean values of the two classes,

assuming a binary classification problem, and dividing it by

a combined standard deviation [8] . For a given variable j , its

Fisher Score FS ( j ) follows: 

F S( j) = 

∣∣∣∣ μ+ 
j 

− μ−
j 

(σ+ 
j 
) 2 + (σ−

j 
) 2 

∣∣∣∣, (3)

where μ+ 
j 

and μ−
j 

are the averages for the j -th variable in the

positive and negative classes, respectively, while σ+ 
j 

and σ−
j 

are

their respective standard deviations. 
• Mutual Information: Another well-known strategy for assess-

ing relevance is using the Mutual Information (MI) measure

[25] . Loosely speaking, this metric evaluates the amount of in-

formation obtained about one random variable by observing the

other. In order to use MI as a feature selection strategy, the la-

bel variable is compared with all the covariates to assess de-

pendency. In contrast with the Fisher Score, MI was originally

developed for categorical variables, therefore numerical inputs

have to be discretized by binning. For a given variable j , its Mu-

tual Information MI ( j ) follows: 

MI( j) = 

∑ 

y ∈ y 

∑ 

x ∈ x j 
p(x, y ) log 

(
p(x, y ) 

p(x ) p(y ) 

)
, (4)

where x and y are the various levels related to variable x j and

the label vector y , respectively; and p ( x ) and p ( y ) are their

marginal probability distributions, with p ( x, y ) being their joint

distribution. 
• Eigenvector Centrality: The reasoning behind Eigenvector Cen-

trality (EC) is computing a measure that defines pairwise re-

lationships among variables, by constructing an affinity graph

and weighting the edges formed by the various covariates [22] .

The EC metric combines the Fisher Score, the Mutual Informa-

tion, and the variables’ standard deviation in order to define an

adjacency matrix A , whose edges a j j ′ can be interpreted as the

discriminative power of attributes j and j ′ , when they are taken

into account jointly. A feature ranking can be constructed by

computing the eigenvector related to the largest eigenvalue of

A . 
• Correlation Score : Unlike previous measures, the Correlation

score (CFS) aims at taking the redundancy among the variables

into account, rather than the dependency between the label

vector and the covariates [8] . In a first step, the pairwise Pear-

son’s correlation is computed for each pair of variables j and j ′ :

ρ j, j ′ = 

� j, j ′ 

σ j σ j ′ 
, (5)

where � j, j ′ corresponds to the covariance of j and j ′ . A feature

ranking can be constructed by finding the lowest absolute cor-

relation for each variable, and sorting them in ascending order:

CF S( j) = min 

j ′ 
| ρ j, j ′ | . (6)

Notice that there is a plethora of ranking methods that can be

used as an alternative for this step. We refer the reader to the book

by Guyon et al. [8] , chapter 3: Filter methods. Good alternatives for

this step are methods rank the variables by balancing redundancy

and relevance. For example, the Scalar Selection Technique (SST)

[24] ranks the variables by balancing redundancy and relevance.

For a given attribute, SST computes a weighted sum by combining

the Fisher Score and the sum of the bivariate correlations between

it and the rest of the variables. 
The second step of the algorithm simply identifies the top r

ariables in terms of relevancy according to the ranking R . These

ariables define the subset U ⊂ S, which is used to define the

eighborhood for each new sample. Notice that the definition of

he neighborhood is not fully unsupervised because of this step, in

ontrast with the traditional k -NN approach. 

Steps 3 to 7 in Algorithm 1 correspond to the modified k -NN

ethod: Step 4 computes the distance between each unlabeled ob-

ect and all the training samples using the modified Minkowski

istance ( Eq. (2) ), i.e., only the attributes in U are used. Step 5

dentifies the k nearest neighbors, i.e., the k samples in the train-

ng set that have the shortest distance to the test sample l based

n the distance matrix computed in Step 4. Finally, a label is as-

igned to each test sample based on the most frequent one among

he k nearest neighbors (Step 6). 

. Experiments 

The proposed k -NN strategy was applied to 14 datasets of

arious dimensionality: eight well-known benchmark data sets

rom the UCI Repository (Australian Credit -AUSTRALIAN-, Wis-

onsin Breast Cancer -WISCONSIN-, BUPA Liver -LIVER-, German

redit -GERMAN-, Pima Indians Diabetes -DIABETES-, Heart/Statlog

HEART-, IONOSPHERE, and SONAR), and six microarray datasets

Alon’s colon cancer data -ALON-, Gravier’s breast cancer data -

RAVIER-, Alizadeh’s lymphoma data -ALIZADEH-, Pomeroy’s cen-

ral nervous system embryonal tumor data -POMEROY-, West’s

reast cancer data -WEST-, and Shipp’s lymphoma data -SHIPP-).

able 1 presents the number of variables and sample size for each

ataset [see 15 , for more details on these datasets]. 

We compared the proposed strategy with the standard k -NN

ethod using k ∈ {1, 3, 5, 9, 15}. For the proposed approach, we ex-

lored the following values for r (cardinality of U) and Minkowski

istance parameter p: r ∈ {1, 3, 5, 10, 15} (UCI datasets), r ∈ {1, 5,

0, 20, 50, 100, 500, 1000} (microarray datasets), and p ∈ {1, 2,

 }. Results with all available variables are also reported for com-

leteness. Model validation was performed using 10-fold cross-

alidation for all the datasets. Results in terms of Area Under the

urve (AUC) multiplied by 100 are reported. 

Tables 2 and 3 compare k -NN and the proposal empirically to

ssess the influence of the two important aspects of it: the se-

ection of a subset of relevant variables, and the variation of the

inkowski distance (parameter p ). Table 2 summarizes the per-

ormance for each subset selection method (FS, MI, EC, and CFS),

sing all available variables ( k -NN all). The best configuration for

arameters k, r , and p is reported. Table 3 summarizes the per-

ormance for each variation of the Minkowski distance (Manhat-

an, Euclidean, and Chebyshev), for which the best configuration

or parameters k, r , and the subset selection method (all variables,

S, MI, EC, or CFS) are reported. The largest AUC is highlighted in

old type for each dataset. 

It can be observed in Table 2 that the largest AUC is always

chieved with the Fisher Score, Mutual Information, or Eigenvec-

or Centrality. This result demonstrates the importance of using an

dequate subset of relevant attributes for computing the distance

etric; using all variables or selecting a subset based on redun-

ancy leads to worse results in terms of predictive performance. 

In Table 3 the three distance metrics studied in this paper

re compared: Manhattan ( p = 1 ), Euclidean ( p = 2 ), and Cheby-

hev ( p = ∞ ). We conclude with the information on this table that

he Manhattan distance has the best overall performance, achiev-

ng the maximum AUC in eight of the 14 datasets, while the Eu-

lidean and Chebyshev distances worked best in five and four of

he datasets, respectively. 

Besides k -NN, we compared the proposed approach with the

ollowing binary classification approaches: 
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Table 1 

Number of variables and sample size for all data sets. 

Dataset #features #examples Dataset #features #examples 

LIVER 6 345 SONAR 60 208 

DIABETES 8 768 ALON 2,0 0 0 62 

HEART 13 270 GRAVIER 2,905 168 

AUSTRALIAN 14 690 ALIZADEH 4,026 96 

GERMAN 24 10 0 0 POMEROY 7,128 60 

WISCONSIN 30 569 WEST 7,129 49 

IONOSPHERE 34 351 SHIPP 7,129 77 

Table 2 

Predictive performance summary (AUC ×100) for the various subset selection 

methods. 

k -NN all k -NN FS k -NN MI k -NN EC k -NN CFS 

LIVER 66.3 66.3 66.3 67.2 66.3 

DIABETES 70.4 72.5 73.5 72.8 70.4 

HEART 71.5 82.1 82.8 71.5 72.3 

AUSTRALIAN 86.3 86.9 86.9 86.3 86.3 

GERMAN 63.6 65.4 63.9 64.2 63.6 

WISCONSIN 96.8 96.8 96.8 97.0 96.8 

IONOSPHERE 89.1 90.5 89.1 89.1 89.1 

SONAR 84.0 84.0 84.0 84.0 84.0 

ALON 81.3 90.0 88.8 90.0 81.3 

GRAVIER 61.7 74.1 65.3 66.2 62.8 

ALIZADEH 87.5 97.1 95.0 82.1 91.3 

POMEROY 60.4 72.9 60.4 73.3 65.8 

WEST 54.2 89.2 88.3 61.7 67.5 

SHIPP 84.0 96.3 94.0 92.5 84.7 

Table 3 

Predictive performance summary (AUCx100) for various dis- 

tance metrics: Manhattan ( p = 1 ), Euclidean ( p = 2 ), and 

Chebyshev ( p = ∞ ). 

k -NN p = 1 k -NN p = 2 k -NN p = ∞ 

LIVER 67.2 66.8 65.8 

DIABETES 72.8 71.7 73.5 

HEART 82.8 82.4 79.6 

AUSTRALIAN 86.9 86.9 86.9 

GERMAN 65.4 65.1 64.8 

WISCONSIN 97.0 96.7 96.5 

IONOSPHERE 90.5 86.7 86.3 

SONAR 84.0 82.6 83.1 

ALON 90.0 87.5 90.0 

GRAVIER 73.3 74.1 72.1 

ALIZADEH 96.3 97.1 90.4 

POMEROY 72.9 68.3 73.3 

WEST 86.7 89.2 88.3 

SHIPP 96.2 96.3 92.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Predictive performance summary (AUC ×100) for the various classifi- 

cation methods. 

Prop. k -NN Logit NB ANN SVM 

LIVER 67.2 66.3 67.0 58.3 54.8 67.5 

DIABETES 73.5 70.4 72.5 71.8 73.7 72.2 

HEART 82.8 71.5 84.8 84.5 80.7 84.1 

AUSTRALIAN 86.9 86.3 85.8 79.3 86.2 86.2 

GERMAN 65.4 63.6 70.0 69.4 70.0 68.6 

WISCONSIN 97.0 96.8 95.2 92.7 96.4 96.9 

IONOSPHERE 90.5 89.1 83.6 83.2 86.5 90.9 

SONAR 84.0 84.0 75.8 69.2 74.6 76.6 

ALON 90.0 81.3 70.0 83.8 72.5 83.8 

GRAVIER 74.1 61.7 60.5 66.9 71.4 76.0 

ALIZADEH 97.1 87.5 59.5 85.8 90.0 94.6 

POMEROY 73.3 60.4 38.8 65.4 52.9 61.3 

WEST 89.2 54.2 40.0 50.0 47.5 61.7 

SHIPP 96.3 84.0 61.8 67.8 85.0 94.2 
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• Logistic regression (Logit): This method constructs a classifica-

tion function which is linear in terms of the variables via max-

imum likelihood estimation [9] . 
• Naïve Bayes (NB): This approach uses the Bayes theorem to

compute the a posteriori probability for each class, under the

assumption that all variables are independent of each other. A

new sample is assigned to the class with maximum probability

[9] . 
• Artificial Neural Networks (ANN): This machine learning tech-

nique computes a nonlinear classifier using a network architec-

ture inspired by the functioning of neurons in an animal brain

[9] . In this work, we used a single layer ANN with 10 nodes

in the hidden layer. Although more complex architectures could

have been used, such as deep learning approaches, a single hid-

den layer neural network usually suffices when dealing with

structured datasets, such as the ones studied in this section [9] .

Deep learning is particularly useful for tasks in which the pre-
processing step requires a complex featurization process, such

as in pattern recognition with images or videos [11] . 
• Support Vector Machines (SVM): This method constructs a

maximum-margin hyperplane that aims at classifying the tow

training patterns accurately. The linear and nonlinear soft-

margin SVM were implemented using the LIBSVM toolbox [3] .

The results of this comparison are reported in Table 4 , in which

he best performance in terms of AUCx100 is presented for the

arious subset selection techniques and distance metrics. The best

erformance among all methods is highlighted in bold type. The

oal of these experiments is to show that k -NN is indeed outper-

ormed by the alternative classification techniques when all vari-

bles are used due to its inability for dealing with noisy/irrelevant

eatures, but the inclusion of the proposed modifications (“Prop.”)

akes this approach competitive with the same available informa-

ion. 

In Table 4 , it can be observed that no method is able to out-

erform the others, although our proposal achieved best perfor-

ance on the high-dimensional datasets. This is mainly because

f the use of only a subset of variables, since there are previous

tudies that confirm that feature selection improves performance

or these datasets [see e.g. 15 ]. Next, we report the training times

or all the previous methods in Table 5 , including the various rank-

ng strategies discussed in the previous section. All methods were

mplemented on MATLAB 2014a, on an HP Envy dv6 with 16 GB

AM, 750 GB SSD, a i7-2620M processor with 2.70 GHz, and using

icrosoft Windows 8.1 Operating System (64-bits). We used p = 1

or the proposed method since the running times for the various p

alues were quite similar. 

It can be concluded from Table 5 that all methods have

ractable running times, being all below 10 s. Notice that a high

imensionality causes larger training times, especially for the pro-

osed approach using Eigenvector Centrality or Correlation Score.

n contrast, the use of the Fisher Score leads to running times be-

ow one second, being actually faster than k -NN with all variables

n high-dimensional settings. In other words, the computation of
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Table 5 

Training times (seconds) for the various classification methods. 

Prop. Prop. Prop. Prop. k -NN Logit NB ANN SVM 

FS MI EC CFS 

LIVER 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.34 0.02 

DIABETES 0.02 0.02 0.02 0.01 0.03 0.00 0.00 0.11 0.01 

HEART 0.02 0.01 0.02 0.00 0.00 0.01 0.00 0.10 0.01 

AUSTRALIAN 0.02 0.02 0.02 0.02 0.02 0.03 0.01 0.32 0.02 

GERMAN 0.11 0.18 0.20 0.10 0.04 0.03 0.01 0.31 0.07 

WISCONSIN 0.01 0.02 0.03 0.01 0.03 0.24 0.01 0.35 0.01 

IONOSPHERE 0.05 0.07 0.10 0.01 0.01 0.17 0.02 0.23 0.01 

SONAR 0.03 0.08 0.10 0.01 0.02 0.24 0.03 0.32 0.00 

ALON 0.75 0.48 1.06 0.35 0.88 0.15 0.11 0.80 0.05 

GRAVIER 0.74 0.86 2.31 0.94 0.48 0.57 0.21 1.27 0.48 

ALIZADEH 0.54 0.93 3.26 1.49 0.93 0.33 0.22 1.65 0.23 

POMEROY 0.75 1.56 7.28 3.04 1.16 0.21 0.29 2.01 0.22 

WEST 0.75 1.54 7.48 3.03 1.28 0.16 0.29 1.54 0.17 

SHIPP 0.77 1.58 7.54 3.10 1.21 0.31 0.28 5.48 0.25 

Table 6 

Holm’s post-hoc test for pairwise comparisons. Various subset selection methods. 

Method Mean Rank Mean AUCx100 p value α/ (k − i ) Action 

k -NN FS 1.86 83.15 - - not reject 

k -NN MI 2.61 81.08 0.209 0.0500 not reject 

k -NN EC 2.68 78.42 0.169 0.0250 not reject 

k -NN CFS 3.64 77.30 0.003 0.0167 reject 

k -NN all 4.21 75.51 0.001 0.0125 reject 
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the distance matrix with few attributes is able to compensate the

computational effort that requires the ranking step. 

Next, a statistical analysis is performed to further exploration

of the influence of the various subset selection methods and dis-

tance metrics. Based on the information provided in Tables 2 and

3 , a ranking is constructed for the subset selection methods and

distance metrics, respectively. The average ranking is subsequently

computed, and the Holm’s test is used to assess whether or not

one strategy outperforms the others in terms of AUC. This test

was suggested by Demšar for comparing various machine learning

methods statistically [7] , and performs pairwise comparisons be-

tween each strategy and the one with the best performance. This

analysis is presented in Tables 6 and 7 for the various subset selec-

tion methods (including the use of all available variables) and for

the various distance metrics, respectively. 

It can be concluded from the results of the experiments pre-

sented in Table 6 , that our proposal outperforms k -NN when Fisher

Score, Mutual Information, or Eigenvector Centrality are used for

selecting the subset of variables. There are no significant differ-

ences among these three approaches. By contrast, the Correlation

Score and the use of all variables are significantly worse than FS,

MI, and EC ( p -value below the threshold defined by the Holm’s

test). In Table 7 , it can be seen that no distance metric is able to

outperform the others statistically. 

For the next set of experiments, the performance is studied for

the various values of r , the cardinality of U , when varying parame-

ters k, p , and the subset selection method ( Figs. 1 , 2 , and 3 , respec-

tively). The goal of these experiments is to analyze the stability of

the proposed method, and to understand whether or not perfor-

mance is affected by the size of U . 

The stability analysis is presented using the AUSTRALIAN

and ALON datasets for illustrative purposes. Fig. 1 presents the

AUCx100 for an increasing number of r and k , for the best configu-

ration of p and the subset selection method (AUSTRALIAN: p = 1

and FS, ALON: p = ∞ and FS). It can be observed in this figure

that r has a strong influence on performance, showing an inverted-

U shape where the worst performance is achieved with either just

few ( r ≤ 3) or all attributes ( r = n ). This phenomenon is particularly
trong on the ALON dataset, for which the gain of using a subset

f approximately 100 attributes is noticeable compared with using

he 20 0 0 features. Regarding the influence of k , it can be observed

hat predictive results are quite poor for k = 1 , being all perfor-

ances relatively similar when k > 1. 

Fig. 2 presents the AUCx100 for an increasing number of r and

 , for the best configuration of k and the subset selection method

AUSTRALIAN: k = 9 for p = 1 , k = 5 for p = 2 , k = 15 for p = ∞ ;

LON: k = 5 for p = 1 , k = 9 for p = 2 , and k = 5 for p = ∞ ).

he three distance metrics show relatively similar results in both

atasets and, although the Chebyshev distance has the single best

erformance for the ALON dataset for r = 100 , this measure is not

ble to outperform the other distances for the various r values. In

erms of the influence of r , the inverted-U shape pattern can again

e observed. 

Finally, Fig. 3 illustrates the AUCx100 for an increasing number

f parameter r and for the various subset selection methods (FS,

I, EC, and CFS), for the best configuration of k and the best sub-

et selection method (AUSTRALIAN: k = 9 and p = 1 for FS, k = 15

nd p = ∞ for MI, k = 15 and p = 1 for EC, and k = 15 and p = 1

or CFS). The methods FS, MI, and EC show remarkably better per-

ormance than CFS, demonstrating that the latter approach fails at

dentifying the right subset for the proposed model. Regarding the

nfluence of r , the results coincide with those shown in Figs. 1 and

 in the sense that the best performance is achieved with approx-

mately half of the variables for the AUSTRALIAN dataset, and 100

ttributes for the ALON dataset. 

The main findings of this experimental section are: 

• Among the various distance metrics related to our proposal,

the Manhattan norm showed best performance in comparison

with the Euclidean and Chebyshev distances. Although these

differences are not significant, we recommend using p = 1 for

low-dimensional datasets, and p = 2 for microarray data with a

subset of 10 0–20 0 variables. All norms are relatively similar in

terms of computational time, and therefore we recommend the

ones that showed best predictive performance. Although the

theory suggests that the Euclidean norm is not suitable in high-

dimensional settings, the use of a feature subset for computing

the neighborhood leads to robust results with any norm. 
• In high-dimensional settings, the definition of a subset of

ranked features was crucial for achieving good predictive per-

formance. This confirms the importance of variable selection in

datasets such as microarray data. For these experiments,our ap-

proach not only outperformed k -NN, but also all the alternative

binary classification approaches studied. 
• Among the various ranking methods related to our proposal,

the Fisher Score showed best performance, especially in high-
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Table 7 

Holm’s post-hoc test for pairwise comparisons. Various distance metrics: Manhattan 

( p = 1 ), Euclidean ( p = 2 ), and Chebyshev ( p = ∞ ). 

Method Mean Rank Mean AUCx100 p value α/ (k − i ) Action 

k -NN p = 1 1.61 83.00 - - not reject 

k -NN p = 2 2.00 82.24 0.30 0.0500 not reject 

k -NN p = ∞ 2.39 81.63 0.04 0.0250 not reject 
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Fig. 1. Performance (AUC ×100) for an increasing number of r and k . 
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Fig. 2. Performance (AUC ×100) for an increasing number of r and p . 

 

 

 

 

 

 

 

dimensional settings. Since this technique is also the one with

the fastest running time, we strongly recommend this approach

for feature ranking. Notice that Fisher Score assesses only fea-

ture relevancy; approaches such as Eigenvector Centrality can

be useful in applications that face a high level of redundancy,

such as computer vision [2,8] . 
• Although each dataset shows a different behavior, there are

some noticeable results: among the low-dimensional datasets,

HEART is the only one in that our method shows significant

gains in terms of performance compared with standard k -NN.

Interestingly, this dataset is also the smallest in terms of sam-

ples, showing that our approach may be useful to avoid overfit-

ting when few examples are available. This can be confirmed
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Fig. 3. Performance (AUCx100) for an increasing number of r . Various subset selec- 

tion methods. 
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with the results obtained on high-dimensional datasets since

they also have few samples. Our method leads to at least a 10%

increase in terms of AUC for all those datasets. 
• Despite the fact we believe that the “no free lunch” theorem

holds for our proposal, in the sense that no configuration seems

to work best in every dataset [28] , our proposal with p = 1 and

Fisher Score as ranking method achieved robust results, being a

good alternative for k-NN classification and machine learning in

general. Nevertheless, we strongly suggest trying multiple mod-

els and find one that works best for a particular problem. In

high-dimensional settings, feature selection is strongly recom-
mended [8] . 
. Conclusions 

The present study provides a modified k -NN algorithm which

omputes the distances between samples based only on a subset of

he available attributes. Three different variations of the Minkowski

istance are also explored, namely the Manhattan, the Euclidean,

nd the Chebyshev distances. Our proposal aims at solving two

ajor problems found in standard k -NN classification: the first is

he course of dimensionality which has a strong influence when

efining a neighborhood in high-dimensional settings [16] , and

he second is that irrelevant features affect predictive performance

egatively, since the traditional Euclidean distance measure used

o obtain the k nearest neighbors weights each variable equally,

egardless of its dependency on the target variable. A novel metric

s proposed, and the proof that it satisfies the properties required

or being a distance measure is included. 

In our experiments, various strategies for defining an adequate

ubset of variables were explored. In particular, the Fisher score,

utual information, eigenvector centrality, and correlation score

ere studied in order to discard noisy attributes that affect per-

ormance negatively. The proposed method was applied on low-

nd high-dimensional datasets, outperforming the classical k -NN

ne when relevancy is considered as a feature selection criterion.

orrelation-based selection, in contrast, failed at identifying an ad-

quate feature subset. It was found that the proposed method

orked best with k > 3 and a subset size of about half of the vari-

bles for low-dimensional datasets, and approximately 100 of them

or the microarray datasets. 

There are several directions for future work. The proposed ap-

roach can be extended to other k -NN variations, such as regres-

ion or multi-class classification. Furthermore, the Big Data era has

pened new challenges for dealing with the three V’s: velocity, vol-

me, and variety. The proposed approach not only enhances pre-

ictive performance; it also confers efficiency, since it discards ir-

elevant information quickly, allowing faster computation of the

istances between points. There is, however, room for improve-

ent in other aspects of the algorithm, such as instance selection

14] or parallel computing [1] for an efficient definition of the near-

st neighbors. 
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