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a b s t r a c t 

In this paper, we propose a novel method for Support Vector Regression (SVR) based on second-order 

cones. The proposed approach defines a robust worst-case framework for the conditional densities of 

the input data. Linear and kernel-based second-order cone programming formulations for SVR are pro- 

posed, while the duality theory allows us to derive interesting geometrical properties for this strategy: 

the method maximizes the margin between two ellipsoids obtained by shifting the response variable up 

and down by a fixed parameter. Experiments for regression on twelve well-known datasets confirm the 

superior performance of our proposal compared to alternative methods such as standard SVR and linear 

regression. 
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. Introduction 

Regression is a very important machine learning task. Regres-

ion can be performed by Support Vector Regression (SVR), a pop-

lar statistical learning technique that aims at constructing a func-

ion with minimal error but as “flat” as possible at the same time

11] . This balance between empirical loss and complexity leads to

 better generalization of new data points, according to the struc-

ural risk minimization principle [31] . 

Robust optimization deals with optimization problems in which

 certain measure of robustness is sought against uncertainty by

reating a deterministic equivalent, called the robust counterpart.

obust optimization is popular because it does not assume that

robability distributions are known. In machine learning, robust-

ess is the property that characterizes how effective an algorithm

s while being tested on a new independent dataset. In the other

ords, the robust algorithm is the one with the testing error which

s close to the training error. A robust performance of an algo-

ithm is the one which does not deteriorate very much when being

rained and tested with slightly different data, making the algo-

ithm prone to overfitting [8,23] . 

Second-order cone programming (SOCP) [4,22] is a convex op-

imization technique that has been used successfully in machine
∗ Corresponding author. 
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earning methods like Support Vector Machine (SVM) for binary

nd multi-class classification [9,23,27,33] . In particular, the robust

ramework proposed by Saketha Nath and Bhattacharyya [27] is

esigned to construct robust classifiers in such a way that each in-

ample class recall can be higher than a predefined value η, even

or the worst possible data distribution for given means and co-

ariance matrices [24,27] . 

It is important to notice that this line of research differs from

he one proposed by Zhong and Fukushima [33] , which is designed

o deal with measurement errors and noisy data in general. Robust

pproaches like the one proposed in [33] were extended regression

n Chuang et al. [7] to deal with uncertainty due to measurement

rrors in the covariates. All the previously mentioned approaches

re different in nature compared to the one proposed here since

hey do not characterize the training patterns as ellipsoids. 

In this work, we extend the robust framework proposed by

aketha Nath and Bhattacharyya to SVR, adapting the formulation

roposed by Bi and Bennett [5] for this method (RH-SVR). The RH-

VR approach maximizes the margin that separates the two re-

uced convex hulls which result from shifting the dependent vari-

ble up and down by a parameter ε [5] . Geometrically speaking,

ur approach constructs ellipsoids based on the first two moments

f the distribution of the two resulting sets of points, instead of

onsidering the reduced convex hulls. The linear version of the

roposal is derived first, demonstrating its geometrical properties

y using the duality theory, and is then further extended to kernel

ethods in order to construct nonlinear regressors. 

https://doi.org/10.1016/j.neucom.2018.04.035
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This paper is organized as follows: in Section 2 the relevant SVR

formulations are discussed briefly. The proposed method based on

SOCP for SVR is presented in Section 3 . The results of our experi-

ments are described in Section 4 . Finally, our conclusions and ideas

for future developments are presented in Section 5 . 

2. Literature overview on support vector regression 

Support Vector Regression has been applied successfully in var-

ious domains. For example, it has been used in medical diagnosis

for predicting diseases [32] , such as the time to tumor recurrence

in various types of cancer [25] . Other applications are time-series

forecasting for predicting electric load consumption [12] , monthly

precipitation [14] , or vessel traffic flow [21] . SVR has also been

used for determining collar dimensions around bridge piers in or-

der to reduce scours, an important cause of bridge failures [18] .

Finally, SVR has also been used in robotics for optimal designs of

robot gripper and finger mechanisms [19,28] . 

In this section, we describe the standard SVR formulation

[11] and RH-SVR [5] , an SVR extension based on the concept of re-

duced convex hulls, which is useful for the design of our approach.

Given a set of training samples x i ∈ � 

n , and the corresponding

response value y i ∈ � , for i = 1 , . . . , m, the linear SVR method finds

a regression function of the form f (x ) = w 

� x + b by solving the

following minimization problem: 

min 

w ,b, ξ, ξ
∗

1 

2 

‖ w ‖ 

2 + Ce � ( ξ + ξ
∗
) 

s.t. y − (A w + be ) ≤ εe + ξ, ξ ≥ 0 , 

(A w + be ) − y ≤ εe + ξ
∗
, ξ

∗ ≥ 0 , 

(1)

where A = [ x 1 x 2 . . . x m 

] � ∈ � 

m ×n , y = (y 1 , y 2 , . . . , y m 

) ∈ � 

m , e ∈ � 

m

is a vector of ones, ξ, ξ∗ ∈ � 

m are positive slack vectors that indi-

cate if the samples are inside the ε-insensitive tube or not, and

C > 0 is the regularization factor that weights the trade-off be-

tween the fitting errors and the flatness of the linear regression

function [11] . 

A non-linear regression function can be constructed by map-

ping the data points onto a higher-dimensional feature space H .

Since the training samples appear only in the form of dot prod-

ucts in the dual formulation of Problem (1) , this projection can be

performed by a kernel function K ( x i , x s ) , satisfying Mercer’s condi-

tion (see [26] ), which defines a dot product in H [29] . This kernel-

based formulation follows: 

max 
α, α∗ y � ( α − α∗) − ε e � ( α + α∗) − 1 

2 

( α − α∗) � K(A, A 

� )( α − α∗)

s.t. e � ( α − α∗) = 0 , 

0 ≤ α ≤ Ce , 0 ≤ α∗ ≤ Ce , 

(2)

where α and α∗ are the dual variables associated with the con-

straints of Problem (1) , and K ( A, A 

� ) ∈ � 

m × m is the kernel ma-

trix whose elements are k is = K(x i , x s ) . Arguably the most popu-

lar kernel function is the Gaussian, which has the following form:

K(x i , x s ) = exp 

(
−|| x i −x s || 2 

2 σ 2 

)
, where σ > 0 controls the kernel width

[29] . The proper choice of the kernel function is still a matter of

research, which can be tackled e.g. via meta-learning [1] . 

Bi and Bennett proposed an SVR extension by rewriting Formu-

lation (1) as the problem of finding the closest points in the re-

duced convex hulls of two sets of data points, which consist of the

training samples augmented with the dependent variable shifted

up and down by ε > 0 [5] . 

Formally, let D 

+ = { (x i , y i + ε) : i = 1 , . . . , m } and D 

− =
{ (x , y − ε) : i = 1 , . . . , m } be the augmented sets for the shifted
i i 
esponse variable, and let us consider the data matrices 

 1 = 

[
A 

� 

(y + εe ) � 

]
, A 2 = 

[
A 

� 

(y − εe ) � 

]
∈ � 

n +1 ×m , (3)

ssociated with D 

+ and D 

−. The problem of maximizing the mar-

in between the closest points in the reduced convex hulls of D 

+ 

nd D 

− becomes: 

in 

u , v 

1 

2 

| | A 1 u − A 2 v | | 2 

s.t. e � u = 1 , e � v = 1 , 

0 ≤ u ≤ D e , 0 ≤ v ≤ D e , 

(4)

here D > 0 is a fixed parameter used to reduce the convex hulls,

imiting the influence of extreme data points [5] . Bi and Bennett

ompute the dual formulation of Problem (4) , and demonstrate

hat this dual model is equivalent to ε-SVR (cf. Formulation (1) )

nder certain conditions for C , ε, and D [5] . 

. Proposed robust SVR-SOCP formulation 

In this section, we present a novel approach for maximum mar-

in regression using second-order cones. 

In machine learning, robustness refers to how effective a model

s when it is being tested on new data. The performance of a ro-

ust model should not deteriorate very much when it is trained

nd tested on data with slightly different distributions, i.e. it gen-

ralizes well without overfitting. Inspired by the robust optimiza-

ion theory, our strategy proposes a chance-constrained formula-

ion, which is cast further into an SOCP formulation by assuming a

orst-case setting for the data distribution. 

In our proposal, we provide robustness to Support Vector Re-

ression, capitalizing the virtues of the RH-SVR formulation [5] .

his method is a different representation of the epsilon-SVR model,

hich constructs an epsilon-insensitive tube by shifting the tar-

et variable up and down by epsilon and adding it to the data

oints. This strategy, which is different from minimizing the tra-

itional epsilon-insensitive loss function, leads to two training pat-

erns whose separation margin is maximized [5] . 

Under some conditions for the hyperparameters, the optimal

yperplanes obtained with RH-SVR and epsilon-SVR are equivalent.

owever, the geometrical properties of RH-SVR make it suitable

or applying the robust min-max framework developed by Saketha

ath and Bhattacharyya for binary classification [27] . For this task,

raditional soft-margin SVM constructs a separating hyperplane

y maximizing the separation between the two training patterns

iven by the points of the two training samples, which are rep-

esented by their respective convex hulls. Saketha Nath and Bhat-

acharyya proposed using ellipsoids for representing these two pat-

erns instead of the convex hulls, leading to a SOCP model based

n robust optimization, which proved to be superior in terms of

redictive performance [27] . 

Our main contribution is threefold: First, we identified a suit-

ble formulation for applying the Saketha Nath and Bhattacharyya

ramework for the regression task. The RH-SVR model provides

oth a natural and creative starting point for developing robust re-

ressors since it maximizes the margin between two convex hulls.

econdly, we propose a robust SOCP model by replacing these con-

ex hulls with ellipsoids whose shapes are governed by the first

wo moments of the up-bound and down-bound distribution func-

ions. Finally, a kernel-based formulation is derived from this ro-

ust model, conferring flexibility for modeling complex nonlinear

atterns. 

This paper, therefore, contributes by proposing two novel for-

ulations that obtained superior predictive performance compared

ith other regression methods. To the best of our knowledge, this

pproach has not been reported previously in the SVM literature. 
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.1. Second-order cone programming SVR, linear version 

The proposal is first described as a chance-constrained opti-

ization problem. Following the framework presented in [27] , let

 1 and X 2 be random vectors that generate the samples of D 

+ 

nd D 

−, respectively. The main idea is to construct a hyperplane

hat agrees with the data from both augmented sets at least to a

ate ηk , k = 1 , 2 . A slack variable ξ ≥ 0 is introduced as a relaxation

f the chance constraint, while the objective functions represent

he trade-off between margin maximization (minimization of the

uclidean norm of the weight vector) and model fit provided by

he value of ξ [24] , controlled by a parameter C > 0. The chance-

onstrained model has the following form: 

min 

 

∗,b,ξ

1 

2 

‖ w 

∗‖ 

2 + Cξ

s.t. Pr { w 

∗� X 1 + b ≥ 1 − ξ} ≥ η1 , 

Pr { w 

∗� X 2 + b ≤ −1 + ξ} ≥ η2 , 

ξ ≥ 0 , 

(5) 

ith w 

∗ = [ w 

� , δ] � ∈ � 

n +1 . The vector w represents the weights

elated to each of the n covariates, while δ multiplies the shifted

esponse variable in the separating hyperplane. 

Following the robust setting suggested by Saketha Nath and

hattacharyya for classification [27] , each of the shifted training

attern k = 1 , 2 should be on the right side of the hyperplane, at

east to a rate ηk , even for the worst data distribution for given

eans and covariance matrices given by ( μk , �k ) for k = 1 , 2 ,

here �k ∈ � 

n +1 ×n +1 are positive semidefinite symmetric matri-

es. For this goal, the probability constraints in (5) are replaced by

heir robust counterparts: 

inf 
X 1 ∼( μ1 , �1 ) 

Pr { w 

∗� X 1 + b ≥ 1 − ξ} ≥ η1 , 

inf 
 2 ∼( μ2 , �2 ) 

Pr { w 

∗� X 2 + b ≤ −1 + ξ} ≥ η2 . 
(6) 

n order to obtain a deterministic formulation, we use the multi-

ariate Chebyshev-Cantelli inequality: 

emma 3.1. [20 , Lemma 1] Let X be a n-dimensional random vari-

bles with mean and covariance ( μ, �), where � is a positive

emidefinite symmetric matrix. Given a ∈ � 

n , b ∈ � and η ∈ (0, 1), the

ondition 

inf 
 ∼( μ, �) 

Pr { a � X + b ≥ 0 } ≥ η, 

olds if and only if 

 

� μ + b ≥ κ
√ 

a � �a , 

here κ = 

√ 

η
1 −η . 

Applying Lemma 3.1 to the constraints given in (6) , we can con-

truct the following deterministic problem: 

min 

 

∗,b,ξ

1 

2 

‖ w 

∗‖ 

2 + Cξ

s.t. w 

∗� μ1 + b ≥ 1 − ξ + κ1 

√ 

w 

∗� �1 w 

∗, 

− (w 

∗� μ2 + b) ≥ 1 − ξ + κ2 

√ 

w 

∗� �2 w 

∗, 

ξ ≥ 0 , 

(7) 
a  
r, equivalently 

min 

 ,b,δ,ξ

1 

2 

(‖ w ‖ 

2 + δ2 ) + Cξ

s.t. w 

� μx + δ( μy + ε) + b ≥ 1 − ξ + κ1 

√ 

w 

∗� �1 w 

∗, 

− w 

� μx − δ( μy − ε) − b ≥ 1 − ξ + κ2 

√ 

w 

∗� �2 w 

∗, 

ξ ≥ 0 , 

(8) 

here κk = 

√ 

ηk 
1 −ηk 

, for k = 1 , 2 , and 

1 = 

[
μx 

μy + ε 

]
, μ2 = 

[
μx 

μy − ε 

]
∈ � 

n +1 . (9)

The vectors μx and μy represent the means for the covari-

tes and target variable, respectively, and are computed as μx =
1 
m 

A 

� e ∈ � 

n and μy = 

1 
m 

y � e ∈ � . The covariance matrix �k can be

omputed as 

k = 

1 

m k 

A k 

(
I − 1 

m k 

ee � 
)

A 

� 
k , 

here m k denotes the number of columns of A k . By using this re-

ation and Eq. (3) , we have that 

1 = �2 = � = 

[
�x �xy 

�� 
xy �y 

]
∈ � 

n +1 ×n +1 , (10)

ith 

�x = 

1 

m 

A 

� 
(

I − 1 

m 

ee � 
)

A ∈ � 

n ×n , 

xy = 

1 

m 

A 

� 
(

I − 1 

m 

ee � 
)

y ∈ � 

n , 

nd 

y = 

1 

m 

y � 
(

I − 1 

m 

ee � 
)

y ∈ � . 

The first two constraints appearing in Problem (8) are called

econd-order cone (SOC) constraints 1 [2] . Thus, we refer to this

roblem as the SVR-SOCP l formulation. 

Next, we present the regression rule for the SVR-SOCP l method,

ut before formalizing it, it is important to assure that this func-

ion is not undefined, which may be the case for δ = 0 . 

emark 1. Let ( ̂  w , ̂  δ, ̂  b , ˆ ξ ) be a solution of the formulation (8) . By

24 , Lemma 1] we have that ˆ ξ ∈ [0 , 1] , and that if ˆ ξ = 1 , we get

ˆ 
 = 0 , ˆ δ = ̂

 b = 0 . We assume that ˆ w � = 0 . Then, ˆ ξ � = 1 . On the other

and, from the constraints of (8) it follows that 

ˆ ε ≥ 1 − ˆ ξ + 

(κ1 + κ2 ) 

2 

√ 

ˆ w 

� �x ̂  w + 2 ̂

 δ�� 
xy ̂  w + 

ˆ δ2 �y . 

ince ε > 0, the above relation implies that ˆ δ > 0 . 

emark 2. Formulation (8) leads to a hyperplane of the form

ˆ 
 

� x + 

ˆ δy + ̂

 b = 0 . Assuming that ˆ w � = 0 , we have that ˆ δ > 0 (cf.

emark 1 ), thus, we can rescale this hyperplane in order to obtain

he regression function, which is given by 

f (x ) = −1 

ˆ δ
( ̂  w 

� x + ̂

 b ) . (11)

Our proposal has an interesting geometrical property: it can be

een as a margin-maximization problem between two ellipsoids,

hose centers and shapes are controlled by the means and covari-

nces of X 1 and X 2 , respectively. In other words, our proposal has

 similar interpretation compared to the RH-SVR method, with the
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Fig. 1. Geometric interpretation for SVR-SOCP. 
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3

only difference being that the convex hulls are replaced by ellip-

soids. This fact is illustrated in Fig. 1 with a two-dimensional toy

example. 

Remark 3. It follows from [24] (see [24, Appendix B] for details)

that the dual formulation of Problem (7) is given by 

min 

z 1 , z 2 

1 

2 

‖ z 1 − z 2 ‖ 

2 

s.t. z k ∈ B ( μk , �
1 / 2 , κk ) , k = 1 , 2 , 

‖ z 1 − z 2 ‖ ≥ 2 √ 

C 
, 

(12)

where B ( μ, �1 / 2 , κ) = { z ∈ � 

n +1 : z = μ − κ�1 / 2 u , ‖ u ‖ ≤ 1 } . This

set denotes an ellipsoid centered at μ whose shape is determined

by �1/2 , and size by κ . Thus, the dual problem (12) can be seen as

finding the minimum distance between two ellipsoids generated

by the sets D 

+ and D 

−, under the constraint ‖ z 1 − z 2 ‖ ≥ 2 √ 

C 
. 

The inclusion of the slack variable ξ avoids the intersection be-

tween the sets that results from the dual formulation of the SOCP

problem, in which, in that case, the only feasible solution is w = 0

[24,27] . 

Following the work by Bi and Bennett [5] , the SVR-SOCP l 
method can be rewritten in such a way that δ can be omitted. 

Proposition 3.1. Let us consider the following problem 

min 

˜ w , ̃ b , ̃ ξ

1 

2 

‖ ̃

 w ‖ 

2 + 

˜ C ̃  ξ

s.t. ˜ w 

� μx + ̃

 b − μy ≤ ˜ ε + 

˜ ξ − κ1 

√ 

˜ w 

∗� � ˜ w 

∗, 

μy − ( ̃  w 

� μx + ̃

 b ) ≤ ˜ ε + 

˜ ξ − κ2 

√ 

˜ w 

∗� � ˜ w 

∗, 

˜ ξ ≥ 0 , 

(13)

where ˜ w 

∗ = [ − ˜ w 

� , 1] � ∈ � 

n +1 , ˜ ε > 0 and ˜ C > 0 . Suppose that

(8) and (13) have w and ˜ w as nonzero solutions, respectively. Then,
1 An SOC constraint on the variable x ∈ � n is of the form ‖ D x + b ‖ ≤ c � x + d, 

where d ∈ � , c ∈ � n , b ∈ � m and D ∈ � m × n . 

 

c  

g

A

he formulations (7) and (13) are equivalent for appropriate choices

f ε, ˜ ε , C and ˜ C . 

The proof for Proposition 3.1 is presented in Appendix A . As

entioned in Section 2 , Bi and Bennett used this strategy to

ewrite the RH-SVR method in such a way that it becomes equiva-

ent to ε-SVR. We can also observe similarities between our pro-

osal, written as in Formulation (13) , and ε-SVR. Primarily, the

bjective functions are similar since both represent the trade-off

etween the Euclidean norm of the weight vector and the model

t. Secondly, the constraints conform with the definition of the ε-

nsensitive loss function for both the elements of the training pat-

erns that are predicted to be larger and lower than the response

ariable for the first and second conic constraints, respectively. 

It is important to note that the proposed formulation (13) dif-

ers from the one proposed by Huang et al. [17] to deal with mea-

urement errors. Their proposal solves the following SOCP problem

see [17, Eq. (32)] ): 

min 

 ,b, α, ξ, ξ
∗

1 

2 

‖ w ‖ 

2 + Ce � ( ξ + ξ
∗
) + D e � α

s.t. w 

� x̄ i + b − ȳ i ≤ ε + ξi , i = 1 , . . . , m 

ȳ i − (w 

� x̄ i + b) ≤ ε + ξ ∗
i , i = 1 , . . . , m 

‖ �i 
zz 

1 / 2 
a ‖ ≤ αi 

√ 

β, i = 1 , . . . , m 

ξ, ξ
∗ ≥ 0 , 

(14)

here C, D > 0, β ∈ (0, 1), x̄ i and ȳ i denote the mean and covari-

nce of the observations x i and y i , respectively, �i 
zz denotes the

ovariance of z i = [ x � 
i 
, y i ] 

� , and a = [ w 

� ; −1] � ∈ � 

n +1 . Clearly, this

odel has m SOC constraints designed for dealing with a subset of

oisy covariates. 

.2. Second-order cone programming SVR, Kernel-based version 

In order to obtain a non-linear version for SVR-SOCP, first we

ompute the product A 

� 
k 

A k ′ , for k, k ′ = 1 , 2 . These products are

iven by: 

 

� 
1 A 1 = AA 

� + (y + εe )(y � + εe � ) , 
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� 
2 A 2 = AA 

� + (y − εe )(y � − εe � ) , 

nd 

 

� 
1 A 2 = (A 

� 
2 A 1 ) 

� = AA 

� + (y + εe )(y � − εe � ) . 

ote that the ij th entry of the matrix AA 

� is the inner product

 

� 
i 

x j . Then, we can replace each ij th entry of the matrix AA 

� by

(x i , x j ) , where K denotes a kernel function satisfying Mercer’s

ondition (see [26] ). Let us denote by K ∈ � 

m × m the matrix whose

j th entry is K(x i , x j ) . Thus, each product A 

� 
k 

A k ′ will be replaced by

 kk ′ ∈ � 

m ×m , where 

 11 = K + (y + εe )(y � + εe � ) , (15) 

 22 = K + (y − εe )(y � − εe � ) , (16) 

 12 = K 

� 
21 = K + (y + εe )(y � − εe � ) . (17) 

Following the framework presented in Saketha Nath and Bhat-

acharyya [27] , the following relations hold for k = 1 , 2 : 

 

∗� μk = s � g k , w 

∗� �k w 

∗ = s � �k s , (18)

here s is a vector of combining coefficients with the appropriate

imension obtained, which replaces the weight vector as a deci-

ion variable in the optimization process, and 

 k = 

1 

m k 

[
K 1k e 
K 2 k e 

]
, (19) 

k = 

1 

m k 

[
K 1k 

K 2 k 

](
I m k 

− 1 

m k 

ee � 
)[

K 

� 
1 k K 

� 
2 k 

]
, (20) 

or k = 1 , 2 . 

Replacing the equalities (15) –(17) in (19) and (20) , we obtain

hat 

 1 = 

[
1 
m 

Ke + ( μy + ε)(y + εe ) 
1 
m 

Ke + ( μy + ε)(y − εe ) 

]
, 

 2 = 

[
1 
m 

Ke + ( μy − ε)(y + εe ) 
1 
m 

Ke + ( μy − ε)(y − εe ) 

]
, 

nd 

1 = �2 = � = 

1 

m 

[
K + (y + εe ) y � 

K + (y − εe ) y � 

](
I − 1 

m 

ee � 
)

[
K + (y + εe ) y � 

K + (y − εe ) y � 

]� 
. 

Note that in the last equality we have used the fact that (y � ±
e � )(I − 1 

m 

ee � ) = y � (I − 1 
m 

ee � ) . 
Using the relations presented in Eq. (18) and taking into ac-

ount Formulation (7) , we can derive the kernel-based formulation

or SVR-SOCP, which we denote as SVR-SOCP k , as follows: 

in 

s ,b,ξ

1 

2 

s � ˜ K s + Cξ

s.t. s � g 1 + b ≥ 1 − ξ + κ1 

√ 

s � �s , 

− (s � g 2 + b) ≥ 1 − ξ + κ2 

√ 

s � �s , 

ξ ≥ 0 , 

(21) 

here 

 

 = 

[
K K 

K K 

]
+ 

[
y + εe 
y − εe 

][
y + εe 
y − εe 

]� 
∈ � 

2 m ×2 m . 
Similar to the linear case, the regression rule for the SVR-SOCP k 
ethod is presented in two steps in order to guarantee the exis-

ence of the solution. 

emark 4. Let ( ̂ s , ̂  b , ˆ ξ ) be a solution of the formulation (21) such

hat ˆ s � = 0 . Since such a solution satisfies the constraints of (21) ,

e deduce from this that 

 ̂

 s � 
[

y + εe 
y − εe 

]
≥ 1 − ˆ ξ + 

κ1 + κ2 

2 

√ 

ˆ s � �ˆ s . 

ince ε > 0 and 

ˆ ξ ∈ [0 , 1) (cf. [24 , Lemma 1]), the above relation

mplies that 

ys = [(y + εe ) � (y − εe ) � ] ̂ s 

= 

m ∑ 

i =1 

[ y i ( ̂  s i + 

ˆ s m + i ) + ε( ̂  s i − ˆ s m + i )] > 0 . 
(22) 

emark 5. Formulation (21) leads to a hyperplane of the form 

2 m 

 

j=1 

ˆ K ( ̂ x , X • j ) ̂  s j + ̂

 b = 0 , (23)

ith 

ˆ x = (x , y ) ∈ � 

n +1 . The expression X • j denotes the j th column

f the matrix X , which is given by 

 = [ A 1 A 2 ] = 

[
A 

� A 

� 

(y + εe ) � (y − εe ) � 

]
∈ � 

n +1 ×2 m , 

nd 

ˆ K ( ̂ x 1 , ̂  x 2 ) = K(x 1 , x 2 ) + y 1 y 2 . Taking into account this equality,

he relation (23) can be rewritten as 

 = 

m ∑ 

i =1 

ˆ s i (K(x , x i ) + y (y i + ε)) + 

m ∑ 

i =1 

ˆ s m + i (K(x , x i ) + y (y i − ε)) 

+ ̂

 b 

= 

m ∑ 

i =1 

( ̂  s i + 

ˆ s m + i ) K(x , x i ) + 

( 

m ∑ 

i =1 

[ y i ( ̂  s i + 

ˆ s m + i ) + ε( ̂  s i − ˆ s m + i )] 

) 

+ ̂

 b . 

ssuming that ˆ s � = 0 , the above Remark implies that δys > 0. Then,

e can rescale the hyperplane given in (23) , and thus get the fol-

owing regression function with kernel 

f (x ) = − 1 

δys 

( 

m ∑ 

i =1 

( ̂  s i + 

ˆ s m + i ) K(x , x i ) + ̂

 b 

) 

. (24) 

. Experiments and discussion 

In this section, experimental results on a toy example and

en benchmark datasets are reported. This section is organized

s follows: An illustrative example using a one-dimensional toy

ataset is presented in Section 4.1 . The experimental setting and

he benchmark datasets are described in Section 4.2 . The perfor-

ance summary is presented in Section 4.3 , including a discussion

round the main findings. Finally, the running times are reported

n Section 4.4 . 

.1. A first illustrative example on synthetic data 

We first compare the performance of the proposed formula-

ion (with Gaussian kernel) on a synthetic dataset generated by the

unction 

 = sin 

(
9 π

0 . 35 x + 1 

)
, x ∈ [0 , 10] . (25)

or this, we generated 200 training samples using Eq. (25) with

he addition of a Gaussian noise with zero mean and a standard
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Fig. 2. An illustrative toy example for ε-SVR and SVR-SOCP. 

Table 1 

Number of samples and number of features for all data sets. 

Dataset #samples #features 

Triazines 186 58 

WBCP 198 32 

CPU 209 8 

A-MPG 398 25 

Housing 506 13 

Fires 517 12 

Concrete 1080 3 

WQR 1599 11 

Quake 2178 3 

SML2010 4135 22 

Abalone 4177 10 

Parkinsons 5875 22 
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p  
deviation of 0.2, and 10 0 0 test samples without any noise. We used

a variable x uniformly distributed over the interval [0,10]. Fig. 2

illustrates the estimated function obtained by ε-SVR [11] and the

proposed SVR-SOCP for this synthetic dataset (dashed lines). The

solid line represents Eq. (25) . 

The root-mean-square error (RMSE) values on the test set for

ε-SVR and SVR-SOCP are 0.1060 and 0.0991, respectively. This re-

sult confirms that our proposal has a better predictive performance

compared to ε-SVR, demonstrating the virtues of the proposed ro-

bust framework. 

4.2. Datasets and experimental setting 

We applied the proposed and alternative approaches for regres-

sion (linear regression, ε-SVR in its linear and kernel-based form,

and the proposed SVR-SOCP in its linear and kernel-based form) to

twelve benchmark datasets from the UCI Repository [3] : Triazines,

Wisconsin Breast Cancer Prognosis (WBCP), Relative CPU Perfor-

mance (CPU), Auto MPG (A-MPG), Boston Housing (Housing), For-

est Fires (Fires), Concrete Compressive Strength (Concrete), Wine

Quality - Red (WQR), Quake, SML2010, Abalone and Parkinsons.

Table 1 summarizes the relevant information for each benchmark

data set: 

For model evaluation we used a two-level (nested) cross-

validation strategy: training and test subsets were obtained using

a 10-fold CV (outer loop), and the training subset was split fur-

ther into training and validation subsets in order to find the right

hyperparameter setting. The final regression model was then per-

formed with the full training subset from the outer loop for the

best parameters, and the performance was computed by averag-
ng the ten test results, whose samples remained unseen during

he hyperparameter selection procedure. The average RMSE as the

ain performance metric. This methodology is described as a flow

hart in Fig. 3 . 

Data pre-processing tasks, such as missing-value handling, data

ormalization, and feature selection, are very important steps in

he process of knowledge discovery, which are usually neglected

y machine learning researchers. Since machine learning methods

re highly susceptible to inconsistencies and noise, the raw data

eeds to be pre-processed to ease the modeling process [16] . Ad-

itionally, raw data usually contains much irrelevant and redun-

ant information, which deteriorates the predictive performance of

achine learning methods. A low dimensional data representation

ot only reduces the risk of overfitting, but it also leads to a better

nderstanding of the process that generated the data, reduces data

ollection costs, and speeds up the training process [15] . This step

s therefore included in the flow chart. 

For SVM approaches, we explored the following set of values

or parameters C and σ (kernel methods only) using grid search:

 2 −7 , 2 −6 , . . . , 2 0 , . . . , 2 6 , 2 7 } , and the following values for parame-

er ε: { 0 . 1 , 0 . 2 , 0 . 3 , . . . , 0 . 8 , 0 . 9 } . For the proposed method we stud-

ed the following values of η1 = η2 ∈ { 0 . 2 , 0 . 4 , 0 . 6 , 0 . 8 } . These sets

f parameters have been used in previous SVM studies for classifi-

ation (see e.g. [24] ). 

Regarding model implementation, we used Matlab’s fitlm func-

ion for linear regression, LIBSVM toolbox [6] for ε-SVR, and the

eDuMi toolbox for the proposed SOCP method [30] . All experi-

ents were performed on an HP Envy dv6 with 16 GB RAM, 750

B SSD, an Intel Core Processor i7-2620M (2.70 GHz), and using

atlab 2014a and Microsoft Windows 8.1 OS (64-bits). 

.3. Performance summary and discussion 

Table 2 summarizes the results obtained from the validation

rocedure for all regression approaches and for all datasets us-

ng RMSE (the average of the ten folds). The standard deviation

or each mean RMSE value is presented between parentheses. The

est performance among all the methods in terms of each metric

s highlighted in bold type. Approaches that are significantly worse

han the best at a 5% level are highlighted with an asterisk. Student

 -tests were used for comparing the method with the lowest RMSE

ith the remaining ones. The results using mean absolute percent-

ge error (MAPE) and mean absolute error (MAE) are presented in

ppendix B . 

It can be observed in Table 2 that no single method out-

erformed the others in all the experiments, although the pro-
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Fig. 3. Flow chart for the model evaluation procedure. 

Table 2 

Performance summary in terms of RMSE for various regression approaches. All 

datasets. 

Dataset lin. reg. ε-SVR l SVR-SOCP l ε-SVR k SVR-SOCP k 

Triazines 0.1572 0.1469 0.1414 0.1394 0.1378 

(0.1064) (0.0880) (0.0827) (0.0911) (0.0895) 

WBCP 0.2725 0.2578 0.2545 0.2593 0.2541 

(0.1281) (0.1243) (0.1257) (0.1246) (0.1273) 

CPU 0.0628 0.0672 ∗ 0.0658 0.0300 0.0271 

(0.0577) (0.0482) (0.0582) (0.0588) (0.0352) 

A-MPG 0.0848 0.0853 0.0843 0.0775 0.0781 

(0.0458) (0.0497) (0.0463) (0.0478) (0.0513) 

Housing 0.2178 0.2173 0.2167 0.1504 0.1338 

(0.1750) (0.1804) (0.3874) (0.0858) (0.0930) 

Fires 0.1174 0.1394 0.1161 0.1195 0.1168 

(0.1575) (0.1524) (0.1582) (0.1520) (0.1586) 

Concrete 0.2612 ∗ 0.2615 ∗ 0.2613 ∗ 0.1425 0.1369 

(0.1019) (0.1052) (0.1036) (0.0789) (0.0741) 

WQR 0.6510 0.6514 0.6510 0.6219 0.6240 

(0.2427) (0.2485) (0.2452) (0.2730) (0.2883) 

Quake 0.1892 0.2045 0.1893 0.1904 0.1896 

(0.0548) (0.0595) (0.0550) (0.0568) (0.0577) 

SML2010 0.0039 0.0453 0.0050 0.0458 0.0103 

(0.0029) (0.0134) (0.0027) (0.0143) (0.0051) 

Abalone 0.0791 0.0817 0.0789 0.0761 0.0763 

(0.0243) (0.0230) (0.0196) (0.0191) (0.0216) 

Parkinsons 0.4351 ∗ 0.4386 ∗ 0.4383 ∗ 0.2385 0.2309 

(0.0800) (0.0872) (0.0854 (0.0770) (0.0567) 
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Table 3 

Holm’s post-hoc test for pairwise comparisons. Various regression methods. 

Method Mean Rank Mean RMSE p value α/ (k − i ) Action 

SVR-SOCP k 1.66 0.168 – – not reject 

ε-SVR k 2.50 0.174 0.1967 0.0500 not reject 

SVR-SOCP l 2.96 0.209 0.0454 0.0250 not reject 

lin. reg. 3.38 0.211 0.0081 0.0167 reject 

ε-SVR l 4.50 0.216 < 0.0 0 01 0.0125 reject 

b  

a  
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f  
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a  
osed SVR-SOCP k method achieves best results in six of the twelve

atasets, and it is never significantly worse than the best approach.

he proposed method in its linear form shows the best perfor-

ance among the linear strategies. 

We assessed the overall performance and robustness of each

ethod by performing the analysis procedure proposed in [13] ,

n which the sum of the accuracy ratios is computed for differ-

nt classification methods in order to summarize the results in a

ingle value. For regression, we can extend this strategy for error

etrics as follows: the RMSE ratio for method a and dataset i is 

M SERatio i (a ) = 

RM SE(a ) 

min j RM SE( j) 
, (26)

here RMSE ( j ) is the root-mean-square error for technique j when

rained over dataset i . The smaller the value of RMSERatio ( a ), the
i 
etter the performance of method a in dataset i . The best method

 

∗ in i will have RMSERatio i (a ∗) = 1 . The metric �i RMSERatio i ( a )

epresents a good measure of overall performance and robustness

or a method a , and the smaller its value, the better the perfor-

ance. Fig. 4 presents the distribution of RMSERatio i ( a ) for all five

ethods and all datasets. 

In Fig. 4 , we observe that SVR-SOCP k has the best average per-

ormance, being very close to the optimal performance measure of

2. We also observe that the kernel-based SVM approaches always

ave better overall performance than their linear counterparts. The

ain in using these nonlinear approaches is noteworthy in compar-

son with linear methods. 

In order to further analyze the performance of the various re-

ression methods, a statistical analysis is performed based on the

nformation provided in Table 2 . As suggested in Demšar [10] , the

olm’s test is used to assess whether or not one strategy outper-

orms the others in terms of RMSE. This strategy performs pair-

ise comparisons between each strategy and the one with the best

erformance (lowest RMSE). The result for the Holm’s test is pre-

ented in Table 3 for the various regression strategies. 

It can be concluded from Table 3 that our proposal SVR-SOCP k 
as the best average rank (1.66), statistically outperforming linear

egression and ε-SVR l ( p value below the threshold defined by the

olm’s test). The ε-SVR k and SVR-SOCP l methods are not statisti-

ally worse than the proposed robust approach in its kernel-based

orm. 

.4. Running times 

Next, the training times are compared for each technique. The

verage running time using 10-fold crossvalidation is computed
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Fig. 4. Sum of RMSE ratios for all methods. 

Table 4 

Average running times, in seconds, for all methods and datasets. Approaches highlighted with ∗ , † , and 

‡ were implemented in the LIBSVM, SeDuMi, and Matlab’s Quadprog solvers, respectively. 

Dataset lin. reg. ε-SVR ∗
l 

ε-SVR ∗
k 

ε-SVR † 
l 

RH-SVR ‡ 
k 

SVR-SOCP † 
l 

SVR-SOCP † 
k 

Triazines 0 ′ ′ .1234 0 ′ ′ .0328 0”.0141 1 ′ ′ .5391 0 ′ ′ .9063 1 ′ ′ .40 0 0 0 ′ ′ .4281 

WBCP 0 ′ ′ .0969 0 ′ ′ .6453 0 ′ ′ .0375 1 ′ ′ .0078 1 ′ ′ .0 0 0 0 1 ′ ′ .3141 0 ′ ′ .2813 

CPU 0 ′ ′ .0766 0 ′ ′ .0125 0 ′ ′ .0063 0 ′ ′ .8266 2 ′ ′ .0625 0 ′ ′ .2938 0 ′ ′ .3719 

A-MPG 0 ′ ′ .0953 0 ′ ′ .0516 0 ′ ′ .0266 1 ′ ′ .3391 3 ′ ′ .6094 0 ′ ′ .7109 0 ′ ′ .7641 

Housing 0 ′ ′ .0844 0 ′ ′ .1109 0 ′ ′ .0516 0 ′ ′ .9563 5 ′ ′ .6250 0 ′ ′ .3031 1 ′ ′ .1875 

Fires 0 ′ ′ .0781 0 ′ ′ .7688 0 ′ ′ .0063 0 ′ ′ .9719 18 ′ ′ .734 0 ′ ′ .3156 1 ′ ′ .5891 

Concrete 0 ′ ′ .0953 0 ′ ′ .3281 0 ′ ′ .1453 0 ′ ′ .8656 19 ′ ′ .578 0 ′ ′ .2938 4 ′ ′ .7281 

WQR 0 ′ ′ .0813 0 ′ ′ .4844 0 ′ ′ .4094 1 ′ ′ .0109 65 ′ ′ .500 0 ′ ′ .2953 23 ′ ′ .242 

Quake 0 ′ ′ .0828 0 ′ ′ .4313 0 ′ ′ .3328 1 ′ ′ .1578 63 ′ ′ .234 0 ′ ′ .3109 60 ′ ′ .213 

SML2010 0 ′ ′ .2600 0 ′ ′ .1400 1 ′ ′ .5700 32 ′ ′ .750 351 ′ ′ .80 0 ′ ′ .5800 403 ′ ′ .60 

Abalone 0 ′ ′ .3500 0 ′ ′ .3625 0 ′ ′ .3094 2 ′ ′ .191 272 ′ ′ .91 0 ′ ′ .3438 494 ′ ′ .12 

Parkinsons 0 ′ ′ .3100 3 ′ ′ .0400 3 ′ ′ .5400 26 ′ ′ .340 834 ′ ′ .45 0 ′ ′ .5900 1117 ′ ′ .42 
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and presented in Table 4 with its respective standard deviation in

parentheses. The best configuration of hyperparameters obtained

with the model selection procedure is considered. The kernel ver-

sion for the RH-SVR method is also included in this analysis. Al-

though this method was not included in the performance analysis

since it is similar to ε-SVR k , it represents a relevant comparison to

SVR-SOCP k when analyzing complexity and running times. 

It can be observed in Table 4 that the training times are

tractable, being below 1 or 2 s in most cases. RH-SVR k and the

proposed SVR-SOCP k (sixth and last columns, respectively) have

the largest training times, mainly because the potentially large ker-

nel matrix that needs to be computed, and the use of a generic

solver, such as SeDuMi or QP. To illustrate the influence of using a

generic solver in contrast to a highly-optimized, specially-tailored

optimization solution such as LIBSVM, we implemented ε-SVR l us-

ing both LIBSVM (column 2) and SeDuMi (column 4). It can be ob-

served that SVR-SOCP l (column 5) has faster training times in gen-

eral compared with ε-SVR l when the same solver (SeDuMi) is used.

It can be concluded that a specially-tailored optimization strategy
 s  
ould be extremely useful for making SVR-SOCP k scalable for large

atasets. 

. Conclusions and future work 

In this paper, we present a novel SVM method for regression

ased on second-order cone programming formulations. Our work

xtends the ideas of RH-SVR [5] , a maximum-margin that sepa-

ates the two reduced convex hulls that result from shifting the

arget variable up and down by a parameter ε [5] . Our method

rovides a robust framework in which the margin between two

llipsoids that represent each shifted pattern is maximized. The

ethod is extended as a kernel method in order to construct non-

inear regression functions, which led to best overall performance

n ten datasets, compared to linear regression and ε-SVR. 

Empirically, we observed that the best performance, in average,

as achieved by our proposal in its kernel-based form. Although

he difference between the best approach and the others is rather

mall in most datasets, there are four noteworthy cases: kernel-
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ased methods led important gains in terms of performance for

he Relative CPU Performance, Boston Housing, Forest Fires, and

arkinsons datasets. 

Several research opportunities for future work were identified.

irst, the proposed approach can be extremely useful in time series

nalysis, a regression task with many applications, such as energy

oad or wind speed forecasting. Secondly, efficient implementations

or SOCP optimization in SVM are required in order to deal with

ig data problems, exploiting the structure of the model instead

f using a generic solver such as SeDuMi. Finally, our method can

e used in high-dimensional applications, and it can be extended

o perform simultaneous feature selection and model estimation.

pproaches like KP-SVR [25] , for example, penalize the use of fea-

ures in the regression function by adding an extra regularizer, in

rder to reduce the risk of overfitting by adequately balancing gen-

ralization, sparsity, and model fit. 
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ppendix A. Proof for Proposition 3.1 

roof. In order to show that formulations (7) and (13) are equiv-

lent, we analyze their respective Karush–Kuhn–Tucker (KKT) con-

itions. We note that both formulations are convex problems with

 Slater point. Then, the KKT conditions are necessary and suffi-

ient for them (see e.g. [4] ). The Lagrangian functions associated

ith Formulations (8) and (13) are given by 

 (w , δ, b, ξ , v i , t) = 

1 

2 

(‖ w ‖ 

2 + δ2 ) + Cξ

− v 10 (w 

� μx + δ( μy + ε) + b − 1) 

− v 10 ξ − κ1 v 11 
� �1 / 2 w 

∗

+ v 20 (w 

� μx + δ( μy − ε)) 

− v 20 (−b − 1 + ξ ) − κ2 v 21 
� �1 / 2 w 

∗ − tξ

(26) 

nd 

 ( ̃  w , ̃  b , ˜ ξ , ̃  v i , ̃  t ) = 

1 

2 

‖ ̃

 w ‖ 

2 + 

˜ C ̃  ξ − ˜ v 10 (− ˜ w 

� μx − ˜ b + μy + ˜ ε + 

˜ ξ ) 

−κ1 ̃  v � 11 �
1 / 2 ˜ w 

∗ − ˜ v 20 ( ̃  w 

� μx + ̃

 b − μy + ˜ ε + 

˜ ξ ) 

−κ2 ̃  v � 21 �
1 / 2 ˜ w 

∗ − ˜ t ̃  ξ , (27) 

espectively, where v i = (v i 0 , v i 1 ) , ˜ v i = ( ̃ v i 0 , ̃  v i 1 ) ∈ � × � 

n +1 , for i =
 , 2 . 

Then, the KKT conditions for Formulation (7) can be derived

rom (26) : 

 − v 10 μx + v 20 μx − �1 / 2 
w 

(κ1 v 11 + κ2 v 21 ) = 0 , (28) 

v 10 + v 20 = 0 , (29) 

− v 10 ( μy + ε) + v 20 ( μy − ε) − �1 / 2 

δ
(κ1 v 11 + κ2 v 21 ) = 0 , (30) 

 − v 10 − v 20 − t = 0 , (31) 

 

� μx + δ( μy + ε) + b − 1 + ξ ≥ κ1 ‖ �1 / 2 w 

∗‖ , (32) 
 10 ≥ ‖ v 11 ‖ , (33) 

w 

� μx − δ( μy − ε) − b − 1 + ξ ≥ κ2 ‖ �1 / 2 w 

∗‖ , (34) 

 20 ≥ ‖ v 21 ‖ , (35) 

 ≥ 0 , ξ ≥ 0 , (36) 

ξ = 0 , (37) 

 10 (w 

� μx + δ( μy + ε) + b − 1 + ξ ) = −κ1 v 
� 
11 �

1 / 2 w 

∗, (38) 

 20 (−w 

� μx − δ( μy − ε) − b − 1 + ξ ) = −κ2 v 
� 
21 �

1 / 2 w 

∗, (39) 

here �1 / 2 = [�1 / 2 
w 

;�1 / 2 
b 

] , with �1 / 2 
w 

∈ � 

n ×n +1 and �1 / 2 
b 

∈ � 

1 ×n +1 .

From Remark 1 we have that δ > 0. Then, dividing the relations

28) –(36) by δ, and dividing the relations (37) –(39) by δ2 , and us-

ng ˜ w = − w 

δ
, ̃  b = − b 

δ
, ˜ ξ = 

ξ
δ
, ̃  v i = 

v i 
δ

, ̃  t = 

t 
δ
, ˜ ε = ε − 1 

δ
and 

˜ C = 

C 
δ

we

btain the following relations: 

˜ 
 + ̃

 v 10 μx − ˜ v 20 μx + �1 / 2 
w 

(κ1 ̃  v 11 + κ2 ̃  v 21 ) = 0 , (40) 

˜ 
 10 − ˜ v 20 = 0 , (41) 

˜ 
 − ˜ v 10 − ˜ v 20 − ˜ t = 0 , (42) 

˜ w 

� μx − ˜ b + μy + ˜ ε + 

˜ ξ ≥ κ1 ‖ �1 / 2 ˜ w 

∗‖ , (43) 

˜ 
 10 ≥ ‖ ̃

 v 11 ‖ , (44) 

˜ 
 

� μx + ̃

 b − μy + ˜ ε + 

˜ ξ ≥ κ2 ‖ �1 / 2 ˜ w 

∗‖ , (45) 

˜ 
 20 ≥ ‖ ̃

 v 21 ‖ , (46) 

˜ 
 ≥ 0 , ˜ ξ ≥ 0 , (47) 

˜ 
 ̃

 ξ = 0 , (48) 

˜ 
 10 (− ˜ w 

� μx − ˜ b + μy + ˜ ε + 

˜ ξ ) + κ1 ̃  v � 11 �
1 / 2 ˜ w 

∗ = 0 , (49) 

˜ 
 20 ( ̃  w 

� μx + ̃

 b − μy + ˜ ε + 

˜ ξ ) + κ2 ̃  v � 21 �
1 / 2 ˜ w 

∗ = 0 . (50) 

hese expressions represent the KKT conditions for Formulation

13) . On the other hand, by summing the relations (49) –(50) , and

y using (40) , we get 

 = 2 ̃

 v 10 ( ̃  ε + 

˜ ξ ) + ( ̃  w 

∗) � �1 / 2 (κ1 ̃  v 11 + κ2 ̃  v 21 ) 

= 2 ̃

 v 10 ( ̃  ε + 

˜ ξ ) − ˜ w 

� �1 / 2 
w 

(κ1 ̃  v 11 + κ2 ̃  v 21 ) + 

�1 / 2 

δ
(κ1 ̃  v 11 + κ2 ̃  v 21 ) . (51) 
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Table B2 ( continued ) 

Dataset lin. reg. ε-SVR l SVR-SOCP l ε-SVR k SVR-SOCP k 

WQR 0.5038 0.5005 0.5051 0.4479 0.4786 

(0.0292) (0.0288) (0.0293) (0.0422) (0.0428) 

Quake 0.1486 0.1406 0.1479 0.1489 0.148 

(0.0059) (0.0067) (0.0060) (0.0063) (0.0061) 

Abalone 0.0566 0.0623 0.0567 0.0525 0.0537 

(0.0020) (0.0017) (0.0019) (0.0014) (0.001) 

SML2010 0.0024 0.0377 0.0029 0.0380 0.0062 

(0.0 0 01) (0.0019) (0.0 0 01) (0.0013) (0.0 0 03) 

Parkinsons 0.3680 0.3683 0.3709 0.1661 0.1554 

(0.0090) (0.0095) (0.0092) (0.0082) (0.0052) 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since ˜ w = −�1 / 2 
w 

(κ1 ̃  v 11 + κ2 ̃  v 21 ) (cf. (40) –(41) ), from (51) we

have 

‖ ̃

 w ‖ 

2 + 2 ̃

 v 10 ̃
 ξ = −2 ε ̃  v 10 − �1 / 2 

δ
(κ1 ̃  v 11 + κ2 ̃  v 21 ) > 0 . 

Clearly ˜ v 10 is different from zero. Otherwise one would have that

‖ ̃  w ‖ = 0 , contradicting our assumption. Hence, we can define 

δ = 

2 ̃

 v 10 

1 − 2 ̃  ε ̃  v 10 − �1 / 2 

δ
(κ1 ̃  v 11 + κ2 ̃  v 21 ) 

> 0 . (52)

Then, by multiplying the relations (40) –(47) by δ, the relations

(48) –(50) by δ2 , and using w = −δ ˜ w , b = −δ ˜ b , ξ = δ ˜ ξ, v i = δ ˜ v i ,

 = δ˜ t , ε = ˜ ε + 

1 
δ

and C = δ ˜ C , we obtain the relations (28) –(29) and

(31) –(39) . Finally, the relation (30) is obtained from (52) , using

˜ v i = 

v i 
δ

and v 10 = v 20 . �

Appendix B. Performance summary in terms of MAPE and MAE

Tables B1 and B2 . 

Table B1 

Performance summary in terms of MAPE for different regression approaches. All 

datasets. 

Dataset lin. reg. ε-SVR l SVR-SOCP l ε-SVR k SVR-SOCP k 

Triazines 0.2844 0.2728 0.2728 0.2649 0.2576 

(0.1324) (0.1297) (0.1181) (0.1267) (0.1217) 

WBCP 1.8999 1.7528 1.8448 1.7567 1.7333 

(0.6028) (0.5446) (0.5534) (0.5491) (0.5969) 

CPU 0.1530 0.1085 0.1027 0.0209 0.0209 

(0.0817) (0.0596) (0.0816) (0.0404) (0.0288) 

A-MPG 0.8635 0.4 94 8 0.4439 0.1898 0.1882 

(0.0532) (0.0507) (0.0520) (0.0430) (0.0303) 

Housing 0.6520 0.6683 0.6304 0.4954 0.4358 

(0.2602) (0.2538) (0.2451) (0.2483) (0.2253) 

Fires 0.0447 0.1054 0.0425 0.0688 0.0349 

(0.0244) (0.0216) (0.0251) (0.0202) (0.0252) 

Concrete 1.7521 3.6487 2.9548 2.2972 1.0361 

(0.7112) (0.7525) (0.7410) (0.2576) (0.3492) 

WQR 0.0891 0.0887 0.0926 0.0824 0.0882 

(0.0061) (0.0061) (0.0062) (0.0081) (0.0077) 

Quake 0.0249 0.0238 0.0244 0.0246 0.0245 

(0.0 0 09) (0.0011) (0.0010) (0.0010) (0.0010) 

SML2010 0.0440 0.7308 0.0507 0.7329 0.1010 

(0.0223) (0.4458) (0.0160) (0.3299) (0.0305) 

Abalone 0.1765 0.1910 0.1770 0.1730 0.1703 

(0.0098) (0.0102) (0.0093) (0.0070) (0.006) 

Parkinsons 1.4223 1.4803 1.4401 0.7398 0.7662 

(0.2425) (0.2656) (0.2369) (0.1533) (0.1148) 
Table B2 

Performance summary in terms of MAE for different regression approaches. All 

datasets. 

Dataset lin. reg. ε-SVR l SVR-SOCP l ε-SVR k SVR-SOCP k 

Triazines 0.1162 0.1032 0.1040 0.10 0 0 0.0997 

(0.0228) (0.0213) (0.0187) (0.0192) (0.0212) 

WBCP 0.2267 0.2153 0.2132 0.2185 0.2113 

(0.0283) (0.0309) (0.0316) (0.0311) (0.0311) 

CPU 0.0366 0.0515 0.0371 0.0097 0.0113 

(0.0090) (0.0083) (0.0098) (0.0101) (0.0061) 

A-MPG 0.0646 0.0647 0.0638 0.0581 0.0588 

(0.0080) (0.0091) (0.0081) (0.0087) (0.0091) 

Housing 0.1513 0.1508 0.1495 0.0981 0.0909 

(0.0348) (0.0351) (0.0349) (0.0166) (0.0172) 

Fires 0.0367 0.1090 0.0341 0.0318 0.0341 

(0.0125) (0.0126) (0.0132) (0.0103) (0.0134) 

Concrete 0.2066 0.2068 0.2073 0.0946 0.1004 

(0.0170) (0.0176) (0.0171) (0.0105) (0.0095) 

( continued on next page ) 
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