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A B S T R A C T

Selecting the relevant factors in a particular domain is of utmost interest in the machine learning community.
This paper concerns the feature selection process for twin support vector machine (TWSVM), a powerful
classification method that constructs two nonparallel hyperplanes in order to define a classification rule. Besides
the Euclidean norm, our proposal includes a second regularizer that aims at eliminating variables in both twin
hyperplanes in a synchronized fashion. The baseline classifier is a twin SVM implementation based on second-
order cone programming, which confers robustness to the approach and leads to potentially better predictive
performance compared to the standard TWSVM formulation. The proposal is studied empirically and compared
with well-known feature selection methods using microarray datasets, on which it succeeds at finding low-
dimensional solutions with highest average performance among all the other methods studied in this work.

1. Introduction

Robustness has been a relevant topic in the SVM literature in recent
years [11,30]. Second-order cone programming (SOCP) [2,23] is a
popular convex optimization approach that has been used to develop
robust maximum margin classifiers [5,29]. In the scheme presented by
Nath and Bhattacharyya [29], the worst data distribution is assumed
for a given mean and covariance matrix, while each training pattern is
classified correctly for predefined false positive and false negative error
rates. This strategy has demonstrated superior predictive performance
thanks to its robust framework [5,25,29].

Twin support vector machine (TWSVM) [19] has gained popularity
in recent years due to its performance and geometrical properties. For
binary classification, this strategy constructs two nonparallel hyper-
planes in such a way that each one is close to one of the two training
patterns, and as far as possible from the other. The two classifiers can
either be constructed independently by using two optimization pro-
blems [19], or simultaneously by using a single model. This latter
approach was proposed in Shao et al. [34], and is known as Nonparallel
Hyperplane SVM (NH-SVM).

Feature selection is an important task in the process of knowledge
discovery [22]. The right identification of the relevant attributes and
the removal of noisy variables lead to more effective classifiers in terms
of predictive performance, faster training, and relevant insight for
decision-making gained from the process that generates the data

[15,16,27]. Feature selection is particularly useful in high-dimensional
applications like text classification [18] and bioinformatics [37].

A plethora of feature selection methods has been proposed for SVM
(see e.g. [16,27]). For twin SVM, however, feature selection is more
challenging since the two hyperplanes are constructed independently,
leading to different subsets of relevant variables for each classifier.
Some feature selection methods have been extended to twin SVM, such
as the well-known SVM-RFE [40] and l1-SVM methods [4,15,41].
These methods lead to sparse solutions but do not perform synchro-
nized feature selection in such a way that a subset of common relevant
attributes is detected.

In this work, we propose a robust SOCP formulation for twin SVM
that includes a group penalization term, shrinking the weights toward
zero at the attribute level. The approach combines the ideas of
Nonparallel Hyperplane SVM [34] as a SOCP formulation, as is
presented in Carrasco et al. [9], and the use of the infinite norm as
group penalty function for embedded feature selection [44].

This paper is structured as follows: previous work on twin SVM,
also including its robust formulation based on second-order cones, is
discussed in Section 2. In Section 3, an overview of feature selection
methods for SVM classification is presented. The proposed strategy for
simultaneous feature selection and robust twin SVM classification is
described in Section 4. In Section 5, experimental results using high-
dimensional microarray datasets are given. Finally, the main conclu-
sions of this study are presented in Section 6.
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2. Twin SVM classification

In this section, previous research on twin SVM is presented. First,
the standard twin SVM is described. Subsequently, the Nonparallel
Hyperplane SVM formulation is reviewed. Finally, the robust formula-
tion that extends NH-SVM to SOCP (RNH-SVM), which represents the
base classifier for our approach, is discussed at the end of this section.

2.1. Twin support vector machine

The original twin SVM formulation proposed by Jayadeva [19]
constructs two quadratic programming (QP) problems that aim at
classifying each class correctly. This approach generates two linear
nonparallel hyperplanes of the form bw x + = 0k k

⊤ , k=1,2, in such a way
that each one is closer to the data samples of one of the classes and as
far as possible from those of the other class. Formally, let us denote by
mk the cardinality of class k=1,2, and by RA ∈ m n×1 ( RB ∈ m n×2 ) the
data matrix related to the positive (negative) class. The twin SVM
model follows [35]:
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where c1, c2, c3, and c4 are positive parameters, and e1 and e2 are
vectors of ones of appropriate dimensions. Formulation (1) and (2) is
the one proposed by Shao et al. [35] (Twin-Bounded SVM), which is
equivalent to the original twin SVM model proposed by Jayadeva et al.
[19] when setting c c= = ϵ1 2 , with ϵ > 0 a fixed small parameter. A new
sample x is assigned to class k* according to its proximity to the
hyperplanes based on the following rule:
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where dk is the perpendicular distance of the data point x from
hyperplane bw x + = 0k k

⊤ , k=1,2.

2.2. Nonparallel hyperplane SVM (NH-SVM)

The NH-SVM method [34] solves a single QP problem, constructing
the two hyperplanes bw x + = 0k k

⊤ simultaneously. The linear NH-SVM
model follows:
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where c1 and c3 are positive parameters [34]. Equivalent to twin SVM,
a new data sample x inRn is assigned to k* by identifying the nearest of
both hyperplanes according to Equation (3).

2.3. Robust nonparallel hyperplane SVM (RNH-SVM)

A robust nonparallel hyperplane SVM version based on second-
order cones (SOCs) was presented by Carrasco et al. [9]. This method
(RNH-SVM) extends the ideas of the NH-SVM approach by construct-
ing two nonparallel classifiers simultaneously, in such a way that each

hyperplane is close to one class and far away from the other class. The
main difference between both methods lies in the strategy used to
represent the two hyperplanes: while NH-SVM considers the reduced
convex hulls, each training pattern is represented by ellipsoids in RNH-
SVM.

Formally, let X1 and X2 be random vectors that generate the data
objects of the positive and negative classes, respectively, with means
and covariance matrices given by μ Σ( , )k k for k=1,2, where RΣ ∈k

n n×

are symmetric positive semidefinite matrices. The two linear nonpar-
allel hyperplanes can be obtained by solving the following quadratic
chance-constrained programming problem:
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where θ > 0, η ∈ (0, 1)k (k=1,2), and

H b b H b bw x x w w x x w( , )≔{ : + ≥ 1}, ( , )≔{ : + ≤ − 1}.+ ⊤ − ⊤

The constraints are used to assure that the two hyperplanes, H+ and
H−, classify the instances correctly from both classes up to the rate ηk
(k=1,2) under a probabilistic scheme.

The chance-constrained problem can be cast to a deterministic
problem by using the multivariate Chebyshev inequality [21, Lemma
1]. The RNH-SVM formulation follows:
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where κ =k
η

η1 −
k

k
and Σ S S=k k k

⊤, for k=1,2. This problem is an instance

of quadratic SOCP with two SOC constraints [2]. Generally speaking,
an SOC constraint on the variable Rx ∈ n is of the form

D dx b c x∥ + ∥ ≤ +⊤ , where Rd ∈ , Rc ∈ n, Rb ∈ m, and RD ∈ m n×

are given.

3. Feature selection for SVM

In this section, we refer to the best-known strategies for feature
selection for SVM classification, whose use as benchmark approaches
will be shown in the empirical section; the concept of group penalty,
which represents the cornerstone of our proposal; and previous
research in feature selection for both SOCP classifiers for SVM
classification and twin SVM, and their main differences compared with
our proposal.

3.1. The Fisher score

This method is a statistical measure used to rank the variables
according to their contribution before applying any classifier. The
Fisher Score computes the absolute value of the difference between the
mean of both classes for each variable, and divides it by a joint
standard deviation [13]:

F j
μ μ

σ σ
( ) =

−

( ) + ( )
,j j

j j

+ −

+ 2 − 2
(7)

where μj
+ (resp. μj

−) is the mean for the j-th attribute in the positive

(resp. negative) class and σj
+ (resp. σj

−) is the respective standard
deviation. Support Vector Machines can be applied over the subset of
relevant features (i.e. with highest Fisher Score).
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3.2. Recursive feature elimination SVM

The SVM-RFE approach uses the SVM solution to rank the
variables according to their contribution in the SVM margin [17]. A
backward elimination scheme is developed in order to remove those
variables whose elimination leads to the largest margin. The margin
can be rewritten in terms of the dual variables Rα ∈ m as follows:

∑αW α α y y x x( ) = · .
i s

m

i s i s i s
2

, =1 (8)

Following the previous description, the value of α αW W| ( ) − ( )|p
2

(− )
2

represents the contribution of variable p in the margin, where αW ( )p(− )
2

corresponds to the margin when variable p is removed from the data
matrix [17].

3.3. Group penalty functions

The idea of the group penalty function is to penalize a group of
related weights together in such a way that sparsity is encouraged at a
variable level instead of removing weights independently [42]. Such
strategies are well-known in binary classification with categorical
attributes with multiple levels, which are usually transformed into sets
of dummy variables. It is desirable to remove the full set of dummy
variables to enhance interpretability [42]. Another application is multi-
class classification in which several classifiers are constructed in order
to shatter each class. Feature selection can be performed simulta-
neously at a variable level, jointly penalizing all the weights related to
one attribute in each classification function [10].

The best-known group penalty is called group-lasso. This function
has the following form:
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related features linked to a given attribute j J= 1, …, , where p| | =j j is
the total number of levels for nominal variables, or the number of
classifiers constructed for the case of multiclass classification, and

p n∑ =j
J

j=1 represents the total number of estimated weights.
Another strategy for group penalization is known as the l − norm∞

penalty [44], which has the following form:
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where ww∥ ∥ = max {| |}j
l l

( )
∞ ∈ j . The l − norm∞ penalty was originally

developed for dealing with categorical variables in binary SVM
classification, under the name of F − norm∞ SVM. The formulation
can be cast into a LP problem by introducing decision variables of the
form t w= ∥ ∥j

j( )
∞, and adding a new set of constraints w t| | ≤l j for each

l ∈ j and j J= 1, …, . This is an important property in our proposal
since it reduces the complexity of the problem; which is why this
alternative was chosen instead of the lasso penalty.

3.4. Feature selection for SOCP-based maximum margin classifiers

Some feature selection approaches have been proposed for SVM
classifiers based on the concept of ellipsoids proposed by Nath and
Bhattacharyya [29]. For example, Bhattacharyya [5] replaced the
Euclidean norm as a regularization approach by the l1-norm for binary
classification, extending the ideas of Bradley and Mangasarian [6] for
standard SVM to SOCP. The method provides a good compromise
between regularization and sparsity [26], leading to very good pre-
dictive performance. The l1-SOCP formulation follows:
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where ww∥ ∥ = ∑ | |i
n

i1 =1 denotes the l1-norm of w.
The SVM-RFE has also been extended to the robust framework

already discussed for binary [26] and multiclass classification [24].
These approaches follow the same ideas: for binary classification, the
variables with less impact in the margin are removed in a backward
elimination process; while the squared sum of all weights related to a
given variable is used as the contribution metric for multiclass learning.
None of the previous approaches have been applied in either twin
classification or in tasks in which coordinated feature selection at a
variable level is required.

3.5. Feature selection for twin SVM

Like for SOCP-SVM approaches, some feature selection methods
developed for twin SVM have been reported in the literature. The SVM-
RFE approach was extended for twin SVM in Yang et al. [40], in which

αW ( )2 (see Eq. (8)) is redefined as the sum of the weights linked with
attribute j in both twin classifiers. Relevant variables are the ones with
a value higher for this sum in absolute value: w w| *| + | *|j j1 2 , in which all

weights are normalized as follows: w* =lj
w
w
| |

∥ ∥
lj

lj 2
, for l=1,2 and

j n= 1, …, .
The popular l1-SVM method [6] has been extended to standard twin

SVM [4] and other variations, such as least squares twin SVM [15,41]. The
main difference between standard twin SVM and least squares twin SVM is
that the latter uses a quadratic loss function instead of the traditional hinge
loss to penalize the slack variables ξ that control model fit.

For the sake of completeness, we propose the l1-NHSVM method,
which adapts the NH-SVM model presented in Formulation (4) to
perform embedded feature selection by replacing the l2 regularization
on w1 and w2 by the LASSO penalty. The main difference between this
proposal and l1 twin SVM [4] is that the latter solves both twin
problems independently. The l1-NHSVM formulation follows:
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where c c, > 01 3 .
The main issue with the current state of the art is that none of these

approaches perform a coordinated feature selection at a variable level;
each twin problem is solved independently, leading to different subsets
of relevant features in each twin classifier. To the best of our knowl-
edge, no approach that includes group penalty has been developed for
twin SVM. Our approach also differs from other methods based on
double regularization for embedded feature selection, such as elastic
net [43], and other combinations of the l2-norm and the l1-norm
[7,31], for the same reason: such methods do not perform a coordi-
nated feature selection at a variable level.

4. A novel SOCP method for simultaneous twin feature
selection

In this section, we propose a novel method for embedded feature
selection and robust twin SVM classification. The main idea is to include a
group penalty, namely l − norm∞ penalization, in the RNH-SVM method
in order to achieve a coordinated elimination of variables in both
hyperplanes, conferring sparsity to the robust twin SVM method.
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The RNH-SVM model has an important advantage over the
standard twin formulation for the following reason: instead of splitting
the problem into two different QPPs, it uses a single optimization
problem to construct the two twin hyperplanes, allowing the use of a
group penalty function. Regarding the group penalty function, we
choose l − norm∞ penalization over the group LASSO because the
resulting optimization problem is less complex: the latter strategy
requires additional conic constraints in order to cast the non-smooth
function presented in Eq. (9) into a smooth convex optimization
problem, while the l − norm∞ penalization requires only linear con-
straints for this purpose, as detailed in Section 3.3.

Formally, let us consider the following formulation:
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ww∥ ∥ = max | |j k kj( ) ∞ =1,2 , for j n= 1, …, . It can be noticed that the above
formulation corresponds to the RNH-SVM method (cf. formulation
(6)) with the inclusion of the l − norm∞ regularization term (cf. Eq.
(10)) in the objective function. Parameters θ, and λ control the trade-
off between l2 regularization (margin maximization), model fit, and
sparsity. Both constraints are used to guarantee that each twin hyper-
plane is close to one of the ellipsoids representing the training patterns,
and as far as possible from the other.

In order to avoid the use of a non-smooth function in the previous
problem, we cast Formulation (13) into a quadratic SOCP problem by
introducing an additional variable Rz ∈ n, leading to the following
formulation:
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where e denotes a vector of ones of dimension n. We refer to this
formulation as l l −RNH−SVM2 ∞ .

4.1. Dual formulation of l l −RNH−SVM2 ∞ and geometric
interpretation

In this section, the dual formulation of the l l −RNH−SVM2 ∞ is
presented, which is derived from Formulation (14) in the Appendix,
and provides geometrical insights into the method. The dual formula-
tion for l l −RNH−SVM2 ∞ is given by:
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Remark 1. The optimal value for t can be obtained by fixing variables
zk , uk, αk , and βk (for k=1,2); and solving the following linear system:
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Fig. 1. Geometric interpretation for RNH-SVM and l l −RNH−SVM2 ∞ .
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μ μS κ κSB z z u u( , , ) = { : = + , ∥ ∥ ≤ 1}. (18)

The set μ S κB( , , ) denotes an ellipsoid centered at μ whose shape is
determined by S, and size by κ.

Remark 2. Formulation (15) (similarly (17)) tells us that the dual
problem of (14) can be seen as the maximization of a function subject
to a set of constraints that defines two ellipsoids, including inequality
and affine equality constraints.

Fig. 1 presents the geometrical interpretation of RNH-SVM and
l l −RNH−SVM2 ∞ in a two-dimensional toy data set. The attribute
presented on the X-axis is an irrelevant variable generated at random,
having completely overlapping class conditional densities. The attri-
bute on the Y-axis was generated to be relevant, resulting in two
disjoint clumps. The dashed lines represent the three hyperplanes
constructed with RNH-SVM: the two nonparallel classifiers over the
training patterns, and the one that defines the decision rule between
both twin hyperplanes. Similarly, the dot-dash lines correspond to the
hyperplanes defined by l l −RNH−SVM2 ∞ .

Two important points can be noticed in this example. First, the
ellipsoids that represent each training pattern, the non-parallel hyper-
planes, and the final classifier resulting from the margin maximization
can be clearly distinguished by both methods. Additionally, the main
difference between both approaches is easy to recognize: the RNH-
SVM method uses both attributes in the construction of the non-
parallel hyperplanes, while our proposal l l −RNH−SVM2 ∞ ignores the
irrelevant variable, leading to completely flat hyperplanes. This is the
result of the synchronized feature selection process.

5. Experimental results

The proposed l l −RNH−SVM2 ∞ methodology was applied to five
microarray datasets for binary classification. This section is organized
as follows: a description of the experimental setting and the datasets
used in this work is provided in Section 5.1. Subsequently, a perfor-
mance summary is presented in Section 5.2, in which the best results
among different subsets of variables are analyzed. In Section 5.3, the
predicted performance for each subset of variables is studied for each
method. The usefulness of the group penalty in terms of providing a
synchronized feature selection is discussed in Section 5.4. Finally, a
sensitivity analysis is performed for the relevant parameters of the
proposed l l −RNH−SVM2 ∞ method in order to illustrate the influence of
these parameters and the stability of the method. These experiments
are discussed in Section 5.5.

5.1. Experimental setting and datasets

The following experimental procedure was performed: leave-one-
out cross-validation (LOO) was used in each dataset for model selection
and validation purposes, using the Area Under the Curve (AUC) as
performance metric. Feature selection was performed on the training
set. For each method, the performance was monitored for various
subsets of features of the following cardinality:
n = {20, 50, 100, 250, 500, 1000}. The RFE strategy for twin SVM
classification described in Section 3.5 was applied to the twin SVM,

NH-SVM, l1-NHSVM, and l l −RNH−SVM2 ∞ methods in order to obtain
subsets of n variables.

Regarding the validation procedure, the following values were
explored for the parameters C (soft-margin SVM); c c c, , ,1 2 3 and c4
(twin SVM, where c c=1 2 and c c=3 4); c1 and c3 (NH-SVM and l1-
NHSVM); and θ and λ (l l −RNH−SVM2 ∞ ): {2 , 2 , …, 2 , 2 }−7 −6 6 7 . This
validation procedure was performed for each baseline classifier before
applying feature selection.

Results from the following alternative feature selection methods are
reported, along with the proposed l l −RNH−SVM2 ∞ : Fisher Score as a
filter strategy for SVM (Fisher+SVM), the RFE-SVM method, the
TWSVM-RFE strategy [40] using twin SVM and NH-SVM as baseline
classifiers, the l1-NHSVM method, and Bhattacharyya's l1-SOCP-SVM
method for robust classification and feature selection [5].

The following datasets were used in the analysis: Alon's colon
cancer data [3], Gravier's breast cancer data [14], Alizadeh's lymphoma
data [1], West's breast cancer data [38], and Pomeroy's central nervous
system embryonal tumor data [33]. The relevant descriptive informa-
tion is presented for each dataset in Table 1, including the total number
of variables and examples, and the number of observations per class.

5.2. Performance summary

The average and maximum AUC is reported in Tables 2, 3,
respectively, for all predefined subsets of attributes and for all datasets.
The average AUC can be considered as a measure for model stability: it
is desirable not only as a model that finds a single best solution while
exploring various subsets of features, but also as model that consis-

Table 1
Number of features, number of examples, and number of examples per class for all five
datasets.

Dataset #features #examples #class (min., maj.)

ALON 2000 62 (22;40)
GRAVIER 2905 168 (57;111)
ALIZADEH 4026 96 (35;61)
POMEROY 7128 60 (21;39)
WEST 7129 49 (24;25)

Table 2
Average LOO AUC over all subsets of selected attributes, in percentages, for all five
datasets.

Method ALON GRAVIER ALIZADEH POMEROY WEST

Fisher+SVM 86.1 73.6 93.7 62.7 72.8
RFE-SVM 87.0 70.7 93.5 60.5 70.1
RFE-TWSVM 88.4 75.4 69.3 67.5 68.7
RFE-NHSVM 88.7 73.7 70.0 68.4 68.1
l1-NHSVM 91.0 79.5 95.6 73.3 85.1
l1-SOC-SVM 91.7 78.3 95.4 64.1 87.5
l l −RNH−SVM2 ∞ 91.7 78.2 98.3 71.3 89.5

Table 3
Maximum LOO AUC over all subsets of selected attributes, in percentages, for all five
datasets.

Method ALON GRAVIER ALIZADEH POMEROY WEST

Fisher+SVM 88.2 78.8 95.6 72.0 89.8
RFE-SVM 89.4 74.9 95.6 67.4 89.8
RFE-TWSVM 93.0 78.4 94.6 76.9 81.7
RFE-NHSVM 95.0 77.5 95.3 75.8 85.7
l1-NHSVM 94.0 80.6 97.1 78.0 100.0
l1-SOC-SVM 91.7 78.3 97.1 66.1 87.8
l l −RNH−SVM2 ∞ 94.0 80.1 98.5 81.7 91.8

Table 4
Holm's post-hoc test for pairwise comparisons.

Method Mean rank Mean AUC p value α k i/( − ) Action

l l −RNH−SVM2 ∞ 1.7 89.22 – – Not reject
l1-NHSVM 1.8 89.94 0.9417 0.0500 Not reject
Fisher+SVM 4.6 84.88 0.0338 0.0250 Not reject
RFE-NHSVM 4.6 85.86 0.0338 0.0167 Not reject
l1-SOC-SVM 4.9 84.20 0.0192 0.0125 Not reject
RFE-TWSVM 5.0 84.92 0.0157 0.0100 Not reject
RFE-SVM 5.4 83.42 0.0068 0.0083 Reject
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tently achieves good performance for all trials. The highest AUC is
highlighted in bold type for both datasets.

In Tables 2, 3, we observe that the best overall performance is

achieved with the proposed method considering both the average and
maximum AUC: l l −RNH−SVM2 ∞ has the highest average predictive
performance in four of the five datasets, and the highest maximum

Fig. 2. Performance (AUC) for an increasing number of features. All datasets.
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predictive performance in three of the five datasets. The proposed
approach is slightly below l1-NHSVM in terms of average AUC for the
GRAVIER dataset, and slightly below RFE-NHSVM and l1-NHSVM in
terms of maximum AUC for the ALON and WEST datasets, respec-
tively.

In order to demonstrate that our approach has the best overall
performance, we compute the average rank for each method based on
the maximum AUC (Table 3). The Holm's test is used to study
statistical significance, as suggested by Demšar [12]. This test performs
pairwise comparisons between each technique and the one with the
best performance. This analysis is reported in Table 4.

From the experiments presented in Table 4, we conclude that the
proposed l l −RNH−SVM2 ∞ achieves the best overall performance. Our
approach, however, is not able to outperform all the others statistically;
only RFE-SVM is statistically worse than l l −RNH−SVM2 ∞ . Notice also
that the two methods proposed in this work (l l −RNH−SVM2 ∞ and l1-
NHSVM) are very close in terms of average ranking (1.7 and 1.8
respectively), being very far from the remaining methods.

5.3. Feature selection performance

Next, the feature selection performance is detailed by plotting the
AUC for an increasing number of selected attributes n for all datasets.
For visualization purposes, only the most relevant alternative methods
were selected for comparison: RFE-NHSVM and l1-SOC-SVM, which
are also the ones that have either the highest average or maximum

performance in any of the datasets. The RFE-NHSVM method is a
relevant benchmark since it shares the same classification principle
with our proposal (twin SVM solved in a single optimization problem),
while l1-SOC-SVM is relevant because it is the best-known embedded
feature selection method for SOCP-based SVM classification. These
graphs are presented in Fig. 2.

In Fig. 2, it can be seen that the proposed l l −RNH−SVM2 ∞ method
has better overall performance compared to the two alternatives,
although no method outperforms others in any of the datasets. It can
be noticed, however, that l l −RNH−SVM2 ∞ has a higher or similar AUC
compared to RFE-NHSVM and l1-SOC-SVM, for all subsets of variables
in the ALIZADEH and WEST datasets. We conclude that
l l −RNH−SVM2 ∞ is a very stable and powerful predictive method for
embedded feature selection and SVM classification thanks to its robust
framework, leading to best average performance in high-dimensional
datasets.

5.4. Is the feature selection process actually synchronized?

In this work, it is hypothesized that the l l −RNH−SVM2 ∞ method
removes attributes in a synchronized fashion, in the sense that each
twin classifier should have similar relevant variables in its functions.
Twin SVM, by contrast, assigns weights to each variable independently
while constructing the hyperplanes, and, therefore, high agreement in
terms of variable relevancy cannot be expected. In this section this
hypothesis is explored by computing the level of agreement for each
method that constructs twin classifiers.

The following methodology was applied to assess the synchroniza-
tion at feature weighting: each twin method was first trained, and the
weights related to both hyperplanes were then sorted (using the
absolute values) in descending order. Two binary vectors, one for each
function, were created for each method, and for each subset of
variables n = {20, 50, 100, 250, 500, 1000}, representing with a 1 a
variable that has a weight that belongs to the n largest ones in
magnitude, and with a 0 otherwise. Finally, the Pearson's correlation
[32] between both binary variables was computed as a metric of
coordinated feature selection. A value close to the unit for this measure
indicates high synchronization since the two twin classifiers are
identifying the same variables as relevant, while values close to zero
indicate that the process is performed independently.

Similar to Section 5.2, the average and maximum Pearson's
correlations are presented in Tables 5, 6, respectively, summarizing
the synchronization for each subset of variables n in two values for all
datasets and all twin approaches.

Strong agreement in the feature selection process for the proposed
method can be observed in Tables 5, 6, with both average and

Table 5
Average Pearson's correlation over all subsets of selected attributes for all five datasets.

Method ALON GRAVIER ALIZADEH POMEROY WEST

TWSVM 0.59 0.23 0.20 0.58 0.69
NHSVM 0.49 0.58 0.20 0.79 0.76
l1-NHSVM 0.51 0.58 0.52 0.92 1.00
l l −RNH−SVM2 ∞ 0.91 0.97 1.00 0.95 0.96

Table 6
Maximum Pearson's correlation over all subsets of selected attributes for all five datasets.

Method ALON GRAVIER ALIZADEH POMEROY WEST

TWSVM 0.65 0.30 0.23 0.63 0.75
NH-SVM 0.55 0.62 0.21 0.82 0.79
l1-NHSVM 0.70 0.69 0.62 1.00 1.00
l l −RNH−SVM2 ∞ 1.00 1.00 1.00 0.97 1.00

Table 7
AUC for different values of λ and θ, ALON dataset.

λ θ⧹ 2−7 2−6 2−5 2−4 2−3 2−2 2−1 20 21 22 23 24 25 26 27 MAX

2−7 83.6 94.0 86.9 85.9 92.7 86.9 88.2 88.2 89.2 88.2 90.5 90.5 87.2 89.4 89.4 94.0
2−6 87.2 88.2 94.0 90.5 88.2 88.2 86.9 87.2 89.4 89.2 91.7 90.5 85.9 87.2 89.4 94.0
2−5 89.4 89.4 92.7 94.0 90.5 89.4 89.2 87.2 85.9 88.0 88.2 90.5 90.5 91.7 89.4 94.0
2−4 89.4 91.7 87.2 90.5 92.7 85.9 86.9 88.2 86.9 88.2 90.5 88.2 89.4 88.2 88.2 92.7
2−3 88.2 94.0 89.4 89.4 91.7 90.5 89.4 85.9 86.9 90.5 88.0 88.2 88.2 88.2 88.2 94.0
2−2 88.2 88.2 88.2 89.4 85.9 90.5 89.4 89.4 88.2 88.2 91.7 88.2 88.2 89.4 90.5 91.7
2−1 90.5 90.5 90.5 90.5 89.4 91.7 94.0 89.4 91.7 91.7 90.5 88.2 88.2 87.2 87.2 94.0
20 90.5 91.7 90.5 90.5 90.5 89.4 91.7 89.4 89.2 89.4 85.9 89.4 89.4 89.4 89.4 91.7
21 91.7 91.7 90.5 91.7 90.5 91.7 90.5 89.4 90.5 88.2 84.7 89.4 88.2 89.4 87.2 91.7
22 90.5 90.5 90.5 90.5 91.7 90.5 90.5 91.7 88.2 88.2 88.2 84.9 88.2 88.2 87.2 91.7
23 90.5 90.5 90.5 90.5 90.5 91.7 91.7 91.7 91.7 87.2 88.2 90.5 85.9 88.2 88.2 91.7
24 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 89.4 87.2 88.2 88.2 85.9 90.5
25 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 91.7 87.2 84.7 88.2 91.7
26 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 89.4 91.7 85.9 85.9 91.7
27 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 89.4 88.2 85.9 90.5

MAX 94.0 94.0 94.0 92.7 94.0 91.7 94.0 91.7 91.7 91.7 91.7 90.5 91.7 91.7 90.5 94.0
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maximum Pearson's correlations close to the unit for all datasets.
Significantly lower agreement is achieved by NH-SVM and then by
TWSVM. For the case of l1-NHSVM, strong agreement is only observed
in two of the five datasets, demonstrating that the LASSO penalty does
not guarantee synchronized feature elimination.

With this set of experiments the usefulness of a group penalty
function to achieve a synchronized feature selection is confirmed, as is
the advantage of using NH-SVM over TWSVM as the baseline classifier
for this purpose.

5.5. Influence of the parameters

The proposed l l −RNH−SVM2 ∞ method includes two new para-
meters for controlling the trade-off between complexity, model fit,
and synchronized feature selection. These parameters, λ and θ, are set
via grid search during the model selection procedure. In this section,
we analyze how the performance of the model varies as a function of
these parameters. For illustration purposes, we report the AUC for
θ λ, ∈ {2 , 2 , …, 2 , 2 }−7 −6 6 7 for the ALON data set. Similar analyses were
conducted for the other data sets in order to assess whether or not the
results are stable along different values of these parameters. These
results are presented in Table 7.

In Table 7, we observe relatively stable results for the various values
of θ and λ, although the highest difference between the lowest and the
highest performance is significant (10.34% AUC). We conclude that an
adequate grid search is highly recommended in order to guarantee
adequate predictive results.

6. Conclusions

A novel method for simultaneous feature selection and twin SVM
classification is presented in this work. The robust framework pre-
sented in Nath and Bhattacharyya [29] was adapted in order to provide
a robust framework for the construction of twin classifiers. In this
framework, a pessimistic approach is assumed, in which each training
pattern needs to be classified correctly for predefined false positive and
false negative error rates, even for the worst data distribution for a
given mean and covariance matrix, leading to a single SOCP model. A
group penalty function is included in it to perform a synchronized
feature elimination in each twin classifier in such a way that only the
variables that have a large weight in both hyperplanes are considered
relevant. The l − norm∞ is added to the objective function, leading to an
SOCP model with three objectives: model fit, structural risk minimiza-
tion, and coordinated feature selection.

Experiments were performed in high-dimensional genomic datasets

for cancer prediction. Predictive performance was analyzed, and the
proposed method achieved superior performance in general compared
to well-known feature selection and SVM classification strategies. The
proposed l l −RNH−SVM2 ∞ has the highest AUC in four of the five
datasets, also having stable results: the method has the best perfor-
mance when both the AUC curves for an increasing number of selected
variables and the average AUC among all studied feature subsets are
analyzed. The effect of the group penalty function is assessed by
Pearson's correlation between two binary vectors that represents the
variable selection in each twin classifier. The proposed l l −RNH−SVM2 ∞
performed a synchronized feature elimination effectively, constructing
hyperplanes that has almost the same relevant variables in them
(Pearson's correlation close to the unit), in contrast to the twin SVM
and NH-SVM classifiers. The main issue with such approaches when
performing RFE is that a backward elimination process forces the
removal of potentially relevant attributes if they have a low average of
both weights.

Regarding future developments, several research opportunities
were identified from this work. First, the robust SOCP framework
can be used in multiclass classification (see e.g. [24]), in which several
hyperplanes are constructed to shatter each class. The most common
strategies for multiclass classification are One-versus-All, One-versus-
One, and all-together approaches. For the latter methods, all necessary
hyperplanes are constructed via a single optimization problem [39],
and feature selection can be performed in a coordinated fashion using a
group penalty function [10]. Additionally, other penalty functions can
be explored to perform embedded feature selection; for instance, a
concave approximation of the l0-norm [6] can be used, and, although it
may lead to non-convex optimization problems, there are some
strategies to deal with this issue in the conic programming literature
[8,20]. Finally, the use of a generic solver like SeDuMi [36] for the
SOCP implementation may bottleneck the use of the SOCP methods in
large-scale problems, and therefore the development of more efficient
implementations tailored for the structure of the SVM formulations is
an interesting line of future research.
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Appendix A. Derivation for the dual formulation of l l −RNH−SVM2 ∞

In this appendix, the dual formulation of the l l −RNH−SVM2 ∞ problem (cf. Formulation (14)) is derived. Let L be the Lagrangian function for
Problem (14), which is given by

∑

α β μ μ

α β

L b t A b B b θ b b λ t t

t b b κ S t b b κ S

w z w e w e w w e z w w w w

w w w w w z w z

( , , , , , ) = 1
2

(∥ + ∥ + ∥ + ∥ ) +
2

(∥ ∥ + + ∥ ∥ + ) + − ( − ) + ( − )

+ (−( − ) + 1 + ∥ ( − )∥) + (( − ) + 1 + ∥ ( − )∥) + ( ( − ) − ( + )),

k k k k k

k
k k k k

1 1 1
2

2 2 2
2

1
2

1
2

2
2

2
2 ⊤

1 1 2
⊤

1 2 1 2
⊤

2

1 1 2 1 1
⊤

1 2 2 1 2 2 2
⊤

1 2
=1

2
⊤ ⊤

(A.1)

where α βt , , ≥ 0k k k , for k=1,2. Since v u v∥ ∥ = max u∥ ∥≤1
⊤ holds for any Rv ∈ n, the Lagrangian can be rewritten as follows:

α β α βL b t L b tw z w z u u( , , , , , ) = max{ ( , , , , , , ): ∥ ∥ ≤ 1},k k k k k k k k k k k k
u u,1 2

with L given by
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∑

α β μ μ
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(A.2)

Thus, Problem (14) can be written equivalently as

α β α βL b t tw z u umin max { ( , , , , , , ): ∥ ∥ ≤ 1, , , ≥ 0},
α βb t

k k k k k k k k k kw zu, , , , ,k k k k k k

and therefore the Wolfe-dual of Formulation (14) (see [28]) corresponds to

α βL L L L tumax { : ∇ = 0, ∇ = 0, ∇ = 0, ∥ ∥ ≤ 1, , , ≥ 0}.
α βt

b k k k ku
w z

, , ,k k k k
k k (A.3)

The following linear system is obtained when computing the gradient of L with respect to wk , bk (k=1,2), and z:

α βA A θI b A t tw e z z( + ) + + − = − ,⊤
1 1

⊤
1 1 1 1 1 2 2 (A.4)

α βB B θI b B t tw e z z( + ) + + − = − + ,⊤
2 2

⊤
2 2 2 1 1 2 2 (A.5)

A b θ t te w e e+ ( + ) = − ,1
⊤

1 1 1
⊤

1 1 2 (A.6)

B b θ t te w e e+ ( + ) = − + ,2
⊤

2 2 2
⊤

2 1 2 (A.7)

α α β βλe − ( + ) − ( + ) = 0,1 2 1 2 (A.8)

where μ κ Sz u= −1 1 1 1 1 and μ κ Sz u= +2 2 2 2 2. Note that relations (A.4), (A.6) and (A.5), (A.7) can be written compactly as

⎛
⎝⎜

⎞
⎠⎟

α βH H θI Zv t( + ) + −
0

=⊤
1

1 1

(A.9)

and

⎛
⎝⎜

⎞
⎠⎟

α βG G θI Zv t( + ) + −
0

= − ,⊤
2

2 2

(A.10)

respectively, where RH A e= [ , ] ∈ m n
1

×( +1)1 , RG B e= [ , ] ∈ m n
2

×( +1)2 , Rbv w= [ , ] ∈k k k
n⊤ ⊤ +1 for k=1,2, Rt tt = [ ; ] ∈1 2

2, and
RZ z z= [ , − ; 1, − 1] ∈ n

1 2
+1×2. Here, the operator ’,’ in a b[ , ] concatenates matrices a and b horizontally, while the operator ’;’ in a b[ ; ] concatenates

both matrices vertically.
Since the symmetric matrices H H θI( + )⊤ and G G θI( + )⊤ are positive definite, for any θ > 0, the following expressions are obtained for v1 and v2:

α βH H θI Zv t= ( + ) ( − ( − )),1
⊤ −1

1 1 (A.11)

and
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2 2 (A.12)
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Using these expressions, the terms in the objective function can be rewritten in terms of v1 and v2 as follows:

A b θ b H H θIw e w v v1
2

+ +
2

(∥ ∥ + ) = 1
2

( + ) ,1 1 1
2

1
2

1
2

1
⊤ ⊤

1 (A.13)

and

B b θ b G G θIw e w v v1
2
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2
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2 (A.14)

Then, by using (A.13)–(A.14) and (A.8), the function L (see Eq. (A.2)) can be rewritten as

α β α βL H H θI G G θI Zv v v v e t w v v t w= 1
2

( + ) + 1
2

( + ) + + ( − ) + ( − ) + ( − ),∼
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⊤

1 1 2 1
⊤

2
⊤

2 2 (A.15)

where Re = [1; 1] ∈∼ 2. Hence, from (A.9) and (A.10), the expression (A.15) reduces to

L H H θI G G θIe t v v v v= − 1
2

( + ) − 1
2

( + ) .∼⊤
1
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1 2
⊤ ⊤

2 (A.16)

In consequence, the dual formulation for l l −RNH−SVM2 ∞ can be derived by using Eqs. (A.11) and (A.12) in (A.16), as follows:
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