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Abstract We study an algorithm recently proposed, which is called sequential parametric
approximation method, that finds the solution of a differentiable nonconvex optimization
problem by solving a sequence of differentiable convex approximations from the original
one. We show as well the global convergence of this method under weaker assumptions than
those made in the literature. The optimization method is applied to the design of robust truss
structures. The optimal structure of the model considered minimizes the total amount of
material under mechanical equilibrium, displacements and stress constraints. Finally, Robust
designs are found by considering load perturbations.

Keywords Sequential parametric convex approximation · Truss optimization ·
Robust design · Stress constraints

1 Introduction

In a recent paperBeck et al. [7] haveproposed the sequential parametric convex approximation
method (SPCA), to find the solution of a differentiable nonconvex optimization problem by
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solving a sequence of differentiable convex ones. Let us consider the following optimization
problem: {

min
x∈Rn

f (x)

s.t. gi (x) ≤ 0 i = 1, . . . ,m,
(P)

where gi , i = 1, . . . , p are differentiable nonconvex functions, whilst f and gi , i = p +
1, . . . ,m are differentiable convex ones. Given x0 ∈ R

n , a feasible point of (P), for each
k ∈ N the SPCA solves iteratively the following differentiable convex optimization problem:⎧⎪⎨

⎪⎩
min
x∈Rn

f (x)

s.t. Gi (x, ψi (xk)) ≤ 0 i = 1, . . . , p ,

gi (x) ≤ 0 i = p + 1, . . . ,m,

(Pk)

whereGi : Rn ×Y → R, i = 1, . . . , p are continuous functions such thatGi (·, y) : Rn → R

is a differentiable convexupper estimate of the nonconvex gi . The setY is called theadmissible
parameters set. The continuous functions ψi : Rn → Y , i = 1, . . . , p play the role in
providing a convenient value for the parameter at the actual iterate xk ; in particular, the
parameter ψi (xk) must be such that gi (xk) = Gi (xk, ψi (xk)) ensuring that Gi (·, ψi (xk))
be an approximate of gi in a neighborhood of xk , and that the feasible iterate xk of (P) be
the same also for (Pk). The next iterate xk+1 is defined by the SPCA method as the optimal
solution of (Pk).

As other methods of nonlinear programming, the SPCA replaces the original constrained
optimization problem by a simpler auxiliary one, which is solved to obtain an approximate
solution. For instance, in penalty and barrier methods [6,22,23] the auxiliary problem is an
unconstrained optimization one that can be solved using known algorithms for unconstrained
problems. In the SPCA the key feature of the auxiliary problem is convexity, which allows
us the application of algorithms for nonlinear convex ones, e.g. the efficient interior-point
algorithms of convex programming [9,12]. Once the approximate solution is obtained, a
new auxiliary problem can be defined to obtain a more accurate solution. While in penalty
and barrier methods the new auxiliary problem is obtained by updating the penalty and
barrier parameters, in the SPCA this is obtained by evaluating the functions ψi at the actual
solution. Another important feature of the SPCA is that the functionsGi , i = 1, . . . , p, upper
estimate the functions gi in the original problem; hence the feasible set of each auxiliary one
is completely contained in the feasible set of the original problem. Therefore, as in barrier
and feasible direction methods [16,22], the entire sequence {xk}k∈N generated by the SPCA
method is also feasible. Asmentioned byHerskovits [17], feasible approaches are appropriate
for engineering design optimization, where function evaluation is in general quite expensive.
Since any intermediate design can be employed, the iterations can be safely stopped when
the objective reduction per each becomes small enough.

Some sequential quadratic programming (SQP) methods [16,22] are also based on the
solution of convex auxiliary optimization problems which are given by a quadratic convex
approximation of the Lagrangian function and linear approximations of the constraints. How-
ever, in SQPmethods, the feasible set of the auxiliary problems is not necessarily contained in
the original one, although there exist several SQP variants that generate a feasible sequence
of solutions [31,32]. In SQP methods the auxiliary problems are easily defined by using
local information (derivatives) of the original functions; hence SQP algorithms are generally
applicable to any nonlinear optimization problem. However, since the auxiliary problems of
the SQP represent well the original optimization one only in a neighborhood of the actual
iterate, line-search or trust-region approaches must be used to define a suitable next iterate.
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The SPCA is instead applicable only to problems where suitable convex upper estimates of
the nonconvex constraints are known. This is maybe one of the main drawbacks of the SPCA,
since there is not a general systematic procedure to obtain upper convex approximations of
general functions. However, if such estimates are known for a particular problem and they
represent well the original constraints in a broad region of the feasible set, then the SPCA
could be a better alternative, especially if the convex auxiliary problems admit the use of
known efficient algorithms.

In this paperwepresent a newproof of global convergence toKarush–Kuhn–Tucker (KKT)
points of (P) for the SPCAmethod, consideringweaker assumptions than those studied in [7].
In this context, global convergence means monotone convergence of the objective function
and KKT conditions satisfied for each accumulation point of the sequence generated by the
SPCA method. Our global convergence result is obtained under a Slater-like qualification
condition instead of the linear independence constraint qualification and strict convexity of
the objective function considered in [7]. We note that the qualification condition assumed in
this paper is absolute necessary if interior point algorithms are used to solve the auxiliary
problems (Pk). The convergence analysis is done by viewing the SPCAmethod as the repeated
application of a closed point-to-set map and by using the classical Zangwill theorem of
convergence.Comments about the application of this approach to non-differentiable problems
are also given.More efficient approaches can be devised by allowing the use of an approximate
solution of (Pk) at each iteration. For this purpose, we study the application of closed feasible
descent algorithms to (Pk).

The second part of this paper is devoted to the study of optimal designs of robust trusses
under mechanical displacements and stress constraints. To obtain a robust design we assume
that in addition to set of primary external loads, which are applied only at the nodes of
the truss, there exists also a set of secondary loads that are uncertain in size and direction,
which can be viewed as perturbations of the main loads. The objective is to find the truss
that minimizes the total amount of material or weight, i.e., the most economical structure,
satisfying stress and displacements constraints under the main loads and any possible load
perturbation, i.e., we follow the worst-case formulation of the robust design problem, which
leads to a nonlinear, nonconvex, semi-infinite mathematical programming problem.We show
that if the set of secondary loads takes the form of an ellipsoid, then the optimization problem
can be reformulated as a nonlinear optimization one with a finite number of nonlinear,
nonconvex constraints. This last problem can then be solved numerically by using the SPCA
method.

The paper layout is as follows. Section 2 provides the convergence analysis of the SPCA
method. Section 3 describes the proposed model for the optimal design of robust trusses
and shows how to state a SPCA for this model. Section 4 presents some numerical results
showing that the proposed formulation is effective to obtain a robust design. Finally, Sect. 5
presents the conclusions.

2 General algorithm

Given x ∈ R
n , let (Px ) be the following differentiable convex optimization problem:

⎧⎪⎨
⎪⎩

min
z∈Rn

f (z)

s.t. Gi (z, ψi (x)) ≤ 0 , i = 1, . . . , p ,

gi (z) ≤ 0 , i = p + 1, . . . ,m.

(Px )
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Then, we can view the SPCA method as the repeated application of a map A : X ⇒ R
n ,

where X := {x ∈ R
n | gi (x) ≤ 0, i = 1, . . . ,m} is the feasible set of (P), and A is given

by:

A(x) := Argmin (Px ) . (1)

Consider the following assumptions:

Assumption 1 Functions Gi and ψi , i = 1, . . . , p, satisfy:

gi (x) ≤ Gi (x, y) for every x ∈ R
n , y ∈ Y , (2)

gi (x) = Gi (x, ψi (x)) for every x ∈ R
n . (3)

Assumption 2 For any feasible point x of (P) there exist a point ȳ such that

Gi (ȳ, ψi (x)) < 0 , i = 1, . . . , p , (4)

gi (ȳ) < 0 , i = p + 1, . . . ,m . (5)

Assumption 2 denotes that at any feasible point x of (P), the auxiliary problem (Px )
satisfies the Slater constraint qualification. Note that this assumption is necessary if we
intend to solve (Px ) by using a feasible interior point method. A direct consequence of
Assumption 2 is that any minimum point x∗ of (Px ) is a KKT point of (Px ) [11, Proposition
3.3.9]. In addition, the following lemma holds:

Lemma 1 Under assumptions 1 and 2, any local minimum x∗ of (P) is a KKT point of (P).

Proof First note that, by Assumption 1, x∗ being feasible for (P) it is the same for (Px∗).
Since x∗ is a local minimum of (P), then it is also a local minimum of (Px∗) and therefore by
convexity is a global minimum. Hence, from Assumption 2, convexity and differentiability
of (Px∗)we have that x∗ is a KKT point of (Px∗), i.e. calling yi = ψi (x∗), there exist λi ≥ 0,
i = 1, . . . ,m, such that

∇ f (x∗) +
p∑

i=1

λi∇xGi (x
∗, yi ) +

m∑
i=p+1

λi∇gi (x
∗) = 0, (6)

λi Gi (x
∗, yi ) = 0, i = 1, . . . , p, (7)

λi gi (x
∗) = 0, i = p + 1, . . . ,m. (8)

From Assumption 1, Gi (x∗, yi ) = gi (x∗), i = 1, . . . , p, and x∗ is a global minimum of the
function x �→ Gi (x, yi ) − gi (x). Therefore

∇xGi (x
∗, yi ) − ∇gi (x

∗) = 0 . (9)

Then, notation Gi in (6)–(8) can be replaced by the notation gi , hence x∗ is a KKT point of
(P). 	

Remark 1 From the proof of the previous lemma we easily see that if x∗ is not a KKT point
of (P) then x∗ is not a KKT of (Px∗). In the case that x∗ is a KKT point of (P) then, by
Assumption 1, it is also a KKT point of (Px∗) and therefore, by convexity, it is a global
minimum of (Px∗).

Remark 2 In [7], the authors considered these three elements: Assumption 1, the linear
independence constraint qualification (LICQ) and strict convexity of the objective function.
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Since Assumption 1 and LICQ imply Assumption 2 and we do not require strict convexity
of the objective function, then, the assumptions considered here are weaker than the ones
considered in [7]. To prove that Assumption 1 and LICQ imply Assumption 2, we must
take any feasible regular point x of (P) and call yi = ψi (x). Let I be the set of indexes
of the active constraints at x . For any i ∈ I , we have gi (x) = 0, so that, if i ≤ p, then
by Assumption 1 (9) holds at x . Then, x is a regular point of (Px ), and since LICQ implies
the Mangasarian-Fromovitz constraint qualification, there exists a direction d in the cone of
interior directions of (Px ) at x [6, chapter 5]. Then, taking δ > 0 small enough, ȳ = x + δd
is strictly interior to the feasible set of (Px ), therefore, Assumption 2 holds.

Remark 3 Equation (9) was considered an independent assumption in [7, Property A Eq.
2.2]. However, in the differentiable case (9) is a consequence of Assumption 1. The existence
of Gi satisfying Assumption 1 is then very important in the theoretical analysis of (P).
In the non-differentiable case a condition similar to (9), regarding the subdifferential sets
of subgradients, must be independently assumed, since it cannot be obtained directly from
Assumption 1. This fact restricts the practical application of the SPCA method to the non-
differentiable case, see Sect. 2.1 below for more details.

Consider the following definitions:

Definition 1 A point-to-set map A : X ⇒ Y is said to be closed if given {xk}k∈N ⊆ X with
xk → x̄ , and zk → z̄, with zk ∈ A(xk), then we get z̄ ∈ A(x̄).

Definition 2 F : X → R is said to be a descent function for a point-to-set map A : X ⇒ X
and a set � ∈ X if, for all x ∈ X , it satisfies: (i) x /∈ � and z ∈ A(x) then F(z) < F(x); (ii)
x ∈ � and z ∈ A(x) then F(z) ≤ F(x).

In order to prove the global convergence of the SPCA method, we consider the following
theorem:

Theorem 1 (Zangwill) Let A : X ⇒ X be a closed point-to-set map, � ⊆ X a given
solution set and F : X → R a descent function for A and �. Assume that a sequence {xk}k∈N
is generated by A, i.e. xk+1 ∈ A(xk), and that it is contained in a compact subset of X. Then,
every accumulation point of the sequence {xk}k∈N belongs to �.

Proof See [6,22]. 	

We note that in this theorem the terminology global convergence refers to the inclusion of
the set of accumulation points of the sequence {xk}k∈N in the solution set. In the following,
we assume that Assumptions 1 and 2 hold.

Lemma 2 Let xk → x̄ , zk → z̄, with zk ∈ A(xk) and ẑ be such that Gi (ẑ, ψi (x̄)) < 0 for
i = 1, . . . , p, and gi (ẑ) ≤ 0 for i = p + 1, . . . ,m. Then f (ẑ) ≥ f (z̄).

Proof By continuity of Gi and ψi we get Gi (ẑ, ψi (xk)) → Gi (ẑ, ψi (x̄)), therefore, there
exists k̄ such that Gi (ẑ, �(xk)) ≤ 0 for all k ≥ k̄, i = 1, . . . , p. Then, ẑ is feasible for (Pxk )
for all k ≥ k̄, which implies that f (ẑ) ≥ f (zk) for all k ≥ k̄. Taking the limit as k → ∞,
we obtain f (ẑ) ≥ f (z̄). 	


The main theorem of this paper is given below:

Theorem 2 Let Γ be the set of KKT points of (P), and A the point-to-set map given by (1).
Then we obtain:
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(a) f is a descent function for A and Γ .
(b) the map A is closed.

Proof Let x be a feasible point of (P). Then we have: (i) if x ∈ �, then by definition
f (z) ≤ f (x) for all z ∈ A(x); (ii) if x /∈ � then x is not a KKT point of (P) and therefore
x is not a KKT point of (Px ), see Remark 1. Then x is not a minimum point of (Px ) so that
f (x) > f (z) for all z ∈ A(x). From (i) and (ii) we have (a).
To prove (b) consider {xk}k∈N ⊆ X with xk → x̄ , and zk → z̄, with zk ∈ A(xk). By

continuity of functionsGi , ψi , for i = 1, . . . , p, and gi , for i = p+1, . . . ,m, we get x̄ ∈ X .
Take any feasible point z of (Px̄ ), i.e., a point z satisfyingGi (z, ψi (x̄)) ≤ 0 for i = 1, . . . , p,
and gi (z) ≤ 0 for i = p + 1, . . . ,m. Take ȳ be the point satisfying (4)–(5) in Assumption 2
with x ≡ x̄ . The sequence defined by z j = z + (1/j)(ȳ − z) is such that Gi (z j , ψi (x̄)) < 0
for i = 1, . . . , p, gi (z j ) < 0 for i = p + 1, . . . ,m, and satisfies z j → z as j → ∞. Using
the result of Lemma 2, we get f (z j ) ≥ f (z̄) for all j , and conclude that f (z) ≥ f (z̄) for
any feasible z. Therefore z̄ ∈ A(x̄).

Remark 4 Under the assumption of compactness of the feasible set X of (P) and using
Zangwill’s theorem,we obtain that any accumulation point of the sequence {xk}k∈N generated
by SPCA is a KKT point of (P). Furthermore, as a consequence of Theorem 2 and the
compactness of X , the monotonically decreasing sequence { f (xk)}k∈N converges.

2.1 The non-differentiable case

Let us assume in this case that f and gi , for i = 1, . . . ,m, are possibly non-differentiable
Lipschitz functions, as well as the upper convex approximation functions Gi , i = 1, . . . , p.
Let ∂ f (x) denote the Clark subdifferential of f [15]. In addition to Assumptions 1 and 2 we
have to consider the following assumption regarding the approximation functions Gi :

Assumption 3 Given any feasible point x for (P), x is a KKT point of (Px ), in the sense
that there exist real values λi ≥ 0, i = 1, . . . ,m, such that

0 ∈ ∂ f (x) +
p∑

i=1

λi∂xGi (x, yi ) +
m∑

i=p+1

λi∂gi (x) , (10)

with yi = ψi (x), only if x is a KKT point of the original problem (P), i.e., there exist real
values λi ≥ 0, i = 1, . . . ,m satisfying

0 ∈ ∂ f (x) +
m∑
i=1

λi∂gi (x) . (11)

Note that in the non-differentiable case we cannot prove that x is a KKT point of the
original problem (P) whenever x is a KKT point of (Px ), since ∂xGi (x, y) �= ∂gi (x) in the
general case (in fact, from Assumption 1 we can prove that ∂gi (x) ⊂ ∂xGi (x, y), but the
subdifferential ∂gi (x) could not contain all the subgradients in ∂xGi (x, y)). Assumption 3
is of main importance for the success of the SPCA method. If a point x were a KKT point
of (Px ) but not a KKT point of (P), the SPCA method could get stuck at a point that is not
a KKT point of (P). This situation cannot be accepted, see Fig. 1.

Assumption 3 allow us to prove the non-differentiable version of Lemma 1:

Lemma 3 If (Px ) satisfies Assumptions 1, 2 and 3, then any local minimum x∗ of (P) is a
KKT point of (P).
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Fig. 1 Example with a single
nonconvex non-differentiable
constraint, where a point x̄ is a
KKT point of (Px̄ ) but not a KKT
point of (P)

Proof By Assumption 1, x∗ is feasible for (Px∗). Since x∗ is a local minimum of (P), it is
also a local minimum of (Px∗). Thanks to Assumption 2, x∗ is a KKT point of (Px∗) [15,
Theorem 6.4.4], and by Assumption 3, x∗ must be KKT point of (P).

Remark 5 Note that Lemma 2 holds in the non-differentiable case as it is, since it does not
recall on the differentiability of (P). Theorem 2 also holds in the non-differentiable case if
(Px ) satisfies the Assumption 3. Then, under Assumptions 1, 2 and 3, the sequence generated
by the SPCA method converges globally to a KKT point of (P).

Remark 6 Note that Assumption 3 is the weakest possible condition in order that Lemma 3
hold. The disadvantage of Assumption 3 is that it is a rather difficult condition to be veri-
fied in a practical application. A more easily verifiable condition could be the assumption
∂xGi (x, yi ) = ∂gi (x), i = 1, . . . , p, which implies Assumption 3 but has the disadvantage
of being more restrictive.

2.2 Using other closed feasible descent algorithms

In most of the practical applications, Algorithm (1) cannot be implemented analytically, and
an optimization algorithm must be used to obtain an approximate solution to (Px ). This
procedure strictly falls outside the framework studied up to this section, since Algorithm (1)
is actually replaced by other algorithm for which we have to prove independently the descent
and closedness properties to ensure global convergence to a KKT point of (P).

Hence, the application of the SPCA to practical problems involves the execution of a
nested iteration, where a complete iteration to solve (Px ) is performed at each iteration of the
main algorithm. The inner iteration must then be performed very efficiently in order to allow
the application of the SPCA. Note that global convergence to a KKT point of the original
problem (P)will be obtained provided the approximate solution to (Px ) is found performing
one ormore iterations of a closed feasible descent algorithm.Next, we show a simple problem
that we can efficiently solve by reducing the inner iteration to just one of a closed feasible
descent optimization algorithm, and this simple procedure can even overcomeAlgorithm (1).

Let us consider here the following problem:⎧⎪⎨
⎪⎩

min
x∈R2

f (x) = (x1 − a)2 + (x2 − a)2

s.t. g(x) = x1x2 ≤ 1 ,

0.01 ≤ x1, x2 ≤ 100 ,

(12)
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Table 1 Performance of the algorithms

Iter x̄ ‖x̄ − x∗‖ f (x̄) − f (x∗)

a= 1.5

SPCA-Exact 24 (1.000075, 0.999925) 1.06 × 10−4 8.40 × 10−9

FDIPA 11 (1.000000, 1.000000) 2.19 × 10−9 2.17 × 10−10

SPCA-FDIPA 15 (1.000000, 1.000000) 3.85 × 10−8 4.20 × 10−9

a= 2

SPCA-Exact 30 (1.199921, 0.833372) 2.60 × 10−1 1.15 × 10−3

FDIPA 30 (1.013915, 0.986275) 1.95 × 10−2 3.81 × 10−8

SPCA-FDIPA 30 (1.056752, 0.946286) 7.81 × 10−2 2.94 × 10−5

where a is a real parameter. The same problem with a = 2 was considered in [7]. Since the
value a = 2 makes (12) to be ill-conditioned (the Hessian of the Lagrangian restricted to the
tangent plane at the solution is singular), we also consider the value a = 1.5. In both cases
the unique solution is x∗ = (1, 1). The SPCA version of (12) is given by:

G(x, λ) = λ

2
x21 + 1

2λ
x22 , ψ(x) = x2

x1
. (13)

Table 1 gives the number of main iterations required to obtain the approximate x̄ to the
exact solution x∗, when starting from the point x0 = (5, 0.02), for three different algo-
rithms: SPCA-Exact: SPCA with analytical solution of the auxiliary problems; FDIPA: the
Feasible Directions Interior Point Algorithm [17,18] applied to the original problem (12);
SPCA-FDIPA: SPCA with an inexact solution corresponding to one iteration of FDIPA. The
algorithmswere stopped if f (x̄)− f (x∗) ≤ 1.0×10−8, or 30main iterationswere performed.

Note that even though SPCA-Exact finds the analytical solution of the auxiliary problem
(Pk), it requires more main iterations than the other two algorithms to solve (P) with similar
accuracy. FDIPA, and SPCA-FDIPA perform much better than SPCA-Exact, being FDIPA
slightly better than SPCA-FDIPA. This last fact is probably due to the reinitialization of the
Lagrange multipliers. Figures 2 and 3 show the iterates obtained by the three algorithms.
The figures show why SPCA-Exact is less efficient: it performs shorts steps when the iterates
approach the boundary of the feasible region of (P), especially when a = 2. FDIPA and
SPCA-FDIPA do not exhibit this behavior.

The results obtained for this example suggest that for a general problem (P) and having
the numerical algorithm ‘A’, the better strategy should be (i) if A can solve (Px ) but not (P),
then use SPCA-A with a large tolerance to reduce the number of inner iterations; (ii) if A
can directly handle the original problem (P), then use A alone.

3 Structural optimization model

This section shows an application of the SPCA to the topology design of robust trusses
[1,2,10]. The SPCA is used to find the truss of minimum total weight among those that
satisfy some stress and displacement constraints. Stress constrained structural optimization
problems are computationally hard, and it is known that the optimum could not be the best
design because of the well-known stress singularity problem [26]. Techniques to handle this
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Fig. 2 Result obtained for
problem (12) with a = 1.5
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Fig. 3 Result obtained for
problem (12) with a = 2
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problem have been proposed, see references [13,14,21,24,26,28,29]. In this paper the stress
singularity problem is not addressed. Therefore, the present approach should be applied on
top of a good initial design, e.g. obtained by solving a classical non-robust compliancemodel.
Other mechanical constraints such as global and local buckling constraints, natural frequency
constraints, etc., are beyond the scope of this paper.

It is well known that optimal structures obtained by some models are unstable from the
mechanical point of view, thus great effort has been made in order to obtain formulations
having robust optimal trusses, see e.g. [3,5,8]. In the optimization model considered here,
robust solutions are obtained by considering a set of small secondary loadings that are
uncertain in size and direction, and can act over the structure concurrently with the main
loadings.

Let us consider a two or a three-dimensional ground structure with L nodes, m initial
potential bars, and n degrees of freedom. For the sake of simplicity, let us consider a single
primary loading f ∈ R

n . We propose the robust structural design model defined by the
following nonconvex semi-infinite mathematical programming problem:
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min
x∈Rm

m∑
i=1

xi

s.t.
∣∣u j (ξ, x)

∣∣ ≤ ū j ∀ξ ∈ E , j ∈ J ⊆ N ,

|σi (ξ, x)| ≤ σ̄i ∀ξ ∈ E , i ∈ I ⊆ M,

ε ≤ x ≤ U.

(Pw)

In (Pw), x is the vector of bar volumes, u j (x, ξ) and σi (x, ξ) denote, respectively, the
displacement corresponding to the j th degree of freedom and the stress in the i th bar, when
the external force f +ξ is acting over the structure. The values ū j and σ̄ j are the upper bounds
on the displacements and stresses, respectively. N is the set of node indexes and M is the set
of bar indexes. The lower bound ε is assumed as positive (displacements and stresses may be
undefined for configurations with zero bar volumes). The vector ξ ∈ R

n represents a small
perturbation that belongs to the set E ⊆ R

n of secondary loadings. For given x and ξ , the
displacement vector u(x, ξ) is the unique solution to the following mechanical equilibrium
equation:

K (x)u = f + ξ ,

where K (x) is the stiffness matrix given by

K (x) =
m∑
i=1

xi K
i ,

with K i = bi (bi )� denoting the stiffness matrix corresponding to the i th bar of unitary
volume and bi is a vector that depends on the coordinates of the bar and itsmaterial properties.
As usual, to obtain a well posed optimization problem we assume that the sum

∑m
i=1 K

i is
positive definite. The values ū j and σ̄i are the bounds for the displacements and the stresses,
respectively.

Note that the displacementu j (x, ξ) and the stressσi (x, ξ) are givenby similar expressions:

u j (x, ξ) = (e j )�u(x, ξ) , σi (x, ξ) = √
Ei (b

i )�u(x, ξ) ,

where e j is the canonical vector, and Ei corresponds to the Young modulus of the i th bar,
see e.g. [20, Chapter 1] and [25, Chapter 2] for details. In order to simplify the notation we
denote by C = {1, . . . , c} with c = |I | + |J | the total number of displacement and stress
constraints. Then, (Pw) can be conveniently expressed as⎧⎪⎪⎪⎨

⎪⎪⎪⎩
min
x∈Rm

m∑
i=1

xi

s.t. |(v j )�u(x, ξ)| ≤ v̄ j ∀ξ ∈ E , j ∈ C,

ε ≤ x ≤ U.

(P ′
w)

To address the infinite number of constraints, we reformulate (P ′
w) as the following non-

convex mathematical programming problem:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min
x∈Rm

m∑
i=1

xi

s.t. max{(v j )�u(x, ξ) | ξ ∈ E} ≤ +v̄ j , j ∈ C,

min {(v j )�u(x, ξ) | ξ ∈ E} ≥ −v̄ j , j ∈ C,

ε ≤ x ≤ U,

(PB)
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where we have implicitly assumed that the internal problems have optimal solutions, which
is true if we consider a compact set of secondary loadings. In the following we will consider
the ellipsoid E = {Qe | ‖e‖ ≤ 1}, where Q ∈ R

n×d is a full-rank matrix and d is the
dimension of E . Each element of E in this paper can be viewed as a small perturbation of
the main load f. This idea has been applied to model the uncertainties of external loads and
also other model parameters in the field of structural optimization, see [19] and references
therein.

In this case, since the displacement vector is linear with respect to e, the internal problems
of (PB ) can be solved analytically. In fact, we have

u(x, e) = K (x)−1( f + Qe) , (14)

and the unique optimal solutions of the internal problems are obtained by solving the KKT
conditions:

e jmax = +∇e[(v j )�u(x, e)]
‖∇e[(v j )�u(x, e)]‖ = +Q�K (x)−1v j

‖Q�K (x)−1v j‖ , (15)

e jmin = −∇e[(v j )�u(x, e)]
‖∇e[(v j )�u(x, e)]‖ = −Q�K (x)−1v j

‖Q�K (x)−1v j‖ . (16)

A direct calculation, using (14) and (15)–(16), give us the inequality constraints of (PB ) in
the form:

f �K (x)−1v j + ‖Q�K (x)−1v j‖ ≤ +v̄ j , j ∈ C,

f �K (x)−1v j − ‖Q�K (x)−1v j‖ ≥ −v̄ j , j ∈ C,

which can be equivalently expressed as∣∣∣ f �K (x)−1v j
∣∣∣ + ‖Q�K (x)−1v j‖ ≤ v̄ j , j ∈ C.

Then, (PB) can be formulated as the following nonconvex finite-dimensional model:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
x∈Rm

m∑
i=1

xi

s.t.
∣∣ f �K (x)−1v j

∣∣ + ‖Q�K (x)−1v j‖ ≤ v̄ j , j ∈ C,

ε ≤ x ≤ U.

(P ′
B)

Finally, it is convenient to introduce the additional scalar variables τ 1j and τ 2j , the vector

variable r j ∈ R
d , and the set D = {1, . . . , d} to formulate (P ′

B) as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x,τ 1j ,τ

2
j ,r

j

m∑
i=1

xi

‖r j‖ ≤ τ 2j , j ∈ C,

τ 1j + τ 2j ≤ v̄ j , j ∈ C,∣∣ f �K (x)−1v j
∣∣ ≤ τ 1j , j ∈ C,∣∣(q)�K (x)−1v j

∣∣ ≤ r j
 , j ∈ C,  ∈ D ,

ε ≤ x ≤ U,

(P ′′
B)

where q is the th column of Q.
We note that the previous formulation considers only one main force f and one ellipsoid

of perturbations. However, the model can be easily extended to consider several independent
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loadings and ellipsoids, with the consequent increase of the problem dimension and number
of constraints.

3.1 SPCA approximation of the structural model

Note that (P ′′
B) have some second-order cone (SOC) constraints, some linear constraints and

some nonlinear nonconvex constraints of the form
∣∣q�K (x)−1v

∣∣ ≤ τ . We recall that a SOC
constraint has the form

‖Ax + b‖ ≤ c�x + d,

where A ∈ R
m×n, b ∈ R

m, c ∈ R
n and d ∈ R, see e.g. [4].

The SPCA approximation of (P ′′
B) is based on the convex upper estimate function

F(x, λ, h) proposed in [7] for the function H(x) = ∣∣q�K (x)−1v
∣∣:

F(x, λ, h) = λ

2
q�K (x)−1q + 1

2λ
v�K (x)−1v + 1

λ
v�h + 1

2λ
h�K (x)h. (17)

Theorem 3 For given λ > 0 and h ∈ R
n satisfying q�h = 0, the function F(·, λ, h) defined

in the open convex set S = {x ∈ R
m | x > 0} is a convex upper estimate of H. In addition,

at any x such that H(x) �= 0, we have F(x, λ(x), h(x)) = H(x), where the functions λ(x)
and h(x) are given by

λ(x) = |θ(x)| , h(x) = K (x)−1(θ(x)q − v) , θ(x) = q�K (x)−1v

q�K (x)−1q
.

Proof See [7].

Using the above theorem, the SPCA approach presented in Sect. 2 can be applied to (P ′′
B)

as follows: given x0 ∈ R
m a feasible point of (P ′′

B), we generate iteratively the sequence
{xk}k∈N by solving the convex optimization problem (P ′′

Bk). This problem is obtained by
replacing each one of the constraints of the form

∣∣q�K (x)−1v
∣∣ ≤ τ in (P ′′

B ) by:

λ(xk)

2
q�K (x)−1q+ 1

2λ(xk)
v�K (x)−1v+ 1

λ(xk)
v�h(xk)+ 1

2λ(xk)
h(xk)

�K (x)h(xk) ≤ τ.

(18)
The next iterate xk+1 corresponds to a solution of (P ′′

Bk).
Defining the additional scalar variables α1 and α2, the inequality constraint (18) can be

expressed as:
q�K (x)−1q ≤ α1 , v�K (x)−1v ≤ α2, (19)

and
λ(xk)α1

2
+ α2

2λ(xk)
+ v�h(xk)

λ(xk)
+ h(xk)�K (x)h(xk)

2λ(xk)
≤ τ. (20)

Note that (20) is a linear constraint on the variables α1, α2 and x , while (19) can be
equivalently expressed as a set of linear and SOC constraints, as shown in the following
proposition.

Proposition 1 If ε ≥ 0, the constraints x ≥ ε and q�K (x)−1q ≤ τ can be equivalently
expressed introducing vector variables s ∈ R

m and β ∈ R
m as:

m∑
i=1

si b
i = q ,

m∑
i=1

βi ≤ τ , (si )
2 ≤ xiβi , i ∈ M , x ≥ ε . (21)
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Proof See [4, Sec. 2] and also [7,9]. The inequality (si )2 ≤ xiβi defines a rotated SOC
constraint, which can be expressed equivalently as ‖(2si , xi − βi )‖ ≤ xi + βi .

Finally, by applying Theorem 3 and Proposition 1, after some computations we obtain the
following second-order cone programming (SOCP) problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
m∑
i=1

xi

s.t. ‖r j‖ ≤ τ 2j , j ∈ C, τ 1j + τ 2j ≤ v̄ j , j ∈ C, (si )
2 ≤ xiβi , i ∈ M,

(pi j )
2 ≤ xiγi j , i ∈ M, j ∈ C, (zi)

2 ≤ xiσi, i ∈ M,  ∈ D,

λ j (xk)α1

2
+ α

j
2

2λ j (xk)
+ (v j )�h j (xk)

λ j (xk)
+ h j (xk)�K (x)h j (xk)

2λ j (xk)
≤ τ 1j ,

j ∈ C,

λ̃
j
(xk)α


3

2
+ α

j
2

2λ̃ j
(xk)

+ (v j )�h̃ j
(xk)

λ̃
j
(xk)

+ h̃ j
(xk)

�K (x)h̃ j
(xk)

2λ̃ j
(xk)

≤ r j
 ,

j ∈ C,  ∈ D,

m∑
i=1

si b
i = f,

m∑
i=1

pi j b
i = v j , j ∈ C,

m∑
i=1

zib
i = q,  ∈ D,

m∑
i=1

βi ≤ α1,

m∑
i=1

γi j ≤ α
j
2 , j ∈ C,

m∑
i=1

σi ≤ α
3,  ∈ D,

ε ≤ x ≤ U,

(P ′′
Bk)

where:

λ j (x) = |θ j (x)|, h j (x) = K (x)−1(θ j (x) f − v j ),

λ̃
j
(x) = |θ̃ j

 (x)|, h̃ j
(x) = K (x)−1(θ̃

j
 (x)q − v j ),

θ j (x) = f �K (x)−1v j

f �K (x)−1 f
, θ̃

j
 (x) = (q)�K (x)−1v j

(q)�K (x)−1q
.

4 Numerical examples

In this section we present some examples to illustrate the solution of formulation (P ′
B)

considering Q = 0, namely non-robust formulation, and Q �= 0, what we call robust
formulation. In all the examples considered here, the ellipsoids given by Q are set as balls of
secondary loads not greater than 5% of the original forces. Additionally, once the optimized
structure is obtained, we measure the maximal absolute displacement umax among all nodes,
and the maximal absolute stress σmax , among all bars, computed by considering the worst
perturbation given by (15)–(16).

In order to find an initial feasible point, we check if x0i = 1, i = 1, . . . ,m is feasible,
and if it is so, then we set x0i = 1/j , with j ∈ N the largest integer such that x0 is that way.
If x0i = 1 is infeasible then we set x0i = j with j ∈ N the smallest integer such that x0

is feasible. A lower bound ε = 1 × 10−8 was used for all the examples given. The SPCA
strategy is used to solve (P ′

B ), i.e., for each feasible xk the iterate xk+1 is found by solving the
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convex auxiliary problem (P ′′
Bk). These problems are solved using SeDuMi [30] with default

settings. The outer iteration is stopped when the reduction of the objective function is less
than 10−3. In summary, in order to solve the problem (P ′

B) we use the following algorithm:

Algorithm 1 SPCA for solving the problem (P ′
B).

Step 0 Find an initial feasible point x0 ∈ R
m by using the criterion described above. Set k = 0.

Step 1 Compute a solution xk+1 of SOCP problem (P ′′
Bk ).

Step 2 If xk+1 satisfies a prescribed stopping rule, then stop.
Step 3 Replace k by k + 1 and go to step 1.

This algorithm was implemented in MATLAB 7.13, and the numerical experiments were
performed on a computer with Intel Core i5 processor (2.6 GHz) and 8 GB RAM.

In the pictures presenting the optimized solutions, Figs. 5, 6, 8, 10, 11, 13 and 14, the bars
that resulted with a volume lower than 0.01% of the largest bar of the optimized structure
are not depicted.

Example 1 We take this example from [8]. In the reference configuration, the left nodes are
fixed, while the main loading corresponds to four forces as shown in Fig. 4. The bar stresses
are limited by the bound σ̄ = 45 and the Young modulus of all bars is E = 1. The optimized
structure for the non-robust formulation is depicted in Fig. 5, while Fig. 6 shows the robust
solution when the force at the top-right node is perturbed by a ball of secondary loads. Table 2
displays the total amount of material of the optimized structure, the maximal displacement
umax , and the maximal stress σmax obtained for the non and robust formulations. The table
shows that the non-robust solution presents high displacements and stresses when small
perturbations are applied at the top-right node. In fact, the values umax and σmax obtained
numerically are finite just because the lower bound ε is positive.

Fig. 4 Example 1: ground
structure

Fig. 5 Example 1: optimized
structure, non-robust formulation

123



J Glob Optim (2017) 68:169–187 183

Fig. 6 Example 1: optimized
structure, robust formulation

Fig. 7 Example 2: ground structure

Fig. 8 Example 2: optimized structure, robust formulation

Fig. 9 Example 3: ground
structure

Example 2 The second example corresponds to a cantilever truss structure, similar to Exam-
ple 5.1 in [7]. The left nodes of the structure are fixed and opposite forces are applied at the
free end of the cantilever as shown in Fig. 7. In this example, E = 1 and the displacements
of the nodes at the free end are bounded by a value ū = 0.35. The loading acting on the

123



184 J Glob Optim (2017) 68:169–187

Fig. 10 Example 3: optimal
structure, non-robust formulation

Fig. 11 Example 3: optimal
structure, robust formulation

structure makes it necessary to consider a robust model so as to obtain a stable structure, since
the non-robust formulation concentrates all the structural material in the bar by joining the
nodes where the forces are applied. The solution obtained for the robust formulation when
the main load is perturbed considering a ball of secondary loads at the bottom-right node is
shown in Fig. 8.

Example 3 A three-dimensional truss with two load scenarios is considered in this example,
see Fig. 9. Each scenario corresponds to only one of the vertical forces represented in the
figure. The example has the same geometry as the one considered in [7] and Problem 16 in
[27], but different loads are applied. The problems with several loading scenarios are more
likely to provide a stable truss when considering non-robust formulations. However, certain
load configurations can still provide unstable solutions, which is the case of those considered
here, according to Table 2. In this example, E = 1 × 105 all bar stresses are bounded by a
value σ̄ = 2000, and all nodal displacements are bounded by a value ū = 0.35. In the robust
case, themain loads are perturbed by a ball of secondary ones acting where the original forces
are applied. The non and robust solutions are depicted in Figs. 10 and 11.
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Fig. 12 Example 3: ground
structure

Fig. 13 Example 3: optimal
structure Non-robust case

Fig. 14 Example 3: optimal
structure Robust case

Example 4 The four-story dome of this example was considered in [5], see also [2]. It has a
vertical load applied just on the top, see Fig. 12. In this example, the stresses are bounded by
a value σ̄ = 155, E = 1, and the load on the top is perturbed by a three-dimensional ball of
secondary loads. The solution obtained for the non-robust formulation is shown in Fig. 13,
the robust counterpart is shown in Fig. 14. Table 2 shows that in this example the non-robust
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Table 2 Results

Example Model Iter CPU time (s) w∗ umax σmax

Example 1 Non-robust 40 19.3 0.711 3.25e7 1.75e9

Robust 41 29.2 0.758 2.387 45

Example 2 Non-robust 76 19.4 1.4286 1.79e8 3.02e6

Robust 178 50.9 1496.7 0.35 0.024

Example 3 Non-robust 76 6.8 3455 6.20e4 2.75e8

Robust 207 35.8 5326 0.35 1077

Example 4 Non-robust 23 25.6 0.0077 418 8650

Robust 29 28.4 0.0084 0.51 155

solution present high displacements and stresses when submitted to the worst secondary load,
that are reduced considerably by using the robust formulation.

5 Conclusions

In this paper, we have shown the global convergence of the SPCAmethod to solve nonconvex
optimization problems. The proof presented is based on Zangwill’s theorem and requires
weaker hypotheses than those considered previously. The extension of the theorem to the
non-differentiable case was also discussed. By considering a simple example, we have shown
that the strategy of using an approximate solution of the auxiliary problem can outperform
the exact solution strategy. Given that the proof of convergence presented here is based on
Zangwill’s theorem, an approximate solution provided by a closed feasible descent algorithm
can be used instead of the exact solution.

In Sect. 3, we have presented a semi-infinite nonconvex optimization model to design
robust trusses. This model leads to a nonconvex mathematical problem, which was applied
to find robust solutions. An SPCA was presented for this problem. The convex auxiliary
problems were formulated as second-order cone constrained ones that can be solved by
using available and efficient interior-point algorithms as SeDuMi. The numerical examples
given illustrate the ability of the robust model to provide a mechanically stable structure in
several situations where the non-robust formulation has an unstable solution.
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