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Abstract This paper presents a novel embedded feature
selection approach for Support Vector Machines (SVM)
in a choice-based conjoint context. We extend the L1-
SVM formulation and adapt the RFE-SVM algorithm to
conjoint analysis to encourage sparsity in consumer prefer-
ences. This sparsity can be attributed to consumers being
selective about the attributes they consider when evaluat-
ing alternatives in choice tasks. Given limited individual
data in choice-based conjoint, we control for heterogeneity
by pooling information across consumers and shrinking the
individual weights of the relevant attributes towards a pop-
ulation mean. We tested our approach through an extensive
simulation study that shows that the proposed approach can
capture the sparseness implied by irrelevant attributes. We
also illustrate the characteristics and use of our approach
on two real-world choice-based conjoint data sets. The
results show that the proposed method has better predictive
accuracy than competitive approaches, and that it provides
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additional information at an individual level. Implications
for product design decisions are discussed.
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1 Introduction

In today’s highly competitive market, firms introducing new
products require information on consumers’ preferences
to develop customized offers that meet consumers’ needs
[32]. Conjoint analysis [16] has proven to be a powerful
methodology for identifying such customers’ preferences
on product features. After collecting conjoint data, diverse
econometric methods are typically used to estimate the
corresponding preference parameters. This task has been
tackled more recently by using machine learning models
such as Support Vector Machines (SVM) [8, 9].

One of the critical results of conjoint analysis is the iden-
tification of the most important attributes that consumers
consider when evaluating product alternatives [27]. When
identifying these attributes, researchers usually assume that
consumers use all of the attributes when facing product
evaluation tasks. However, respondents may ignore some
attributes for several reasons, including: (i) lack of knowl-
edge or uncertainty regarding some characteristics, (ii) use
of a simple heuristic for choosing between profiles, and/or
(iii) the fact that an attribute can truly be irrelevant for the
choice [19]. It is expected that consumers might be selec-
tive regarding the attributes they take into account when
facing complex products characterized by a large number
of characteristics, a behavior that is known in the con-
joint analysis literature as “attribute non-attendance” [19].
In addition, given the typical limited individual data in
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conjoint analysis, researchers usually pool the information
from the consumers. Therefore, in the context of preference
sparsity, it is critical to control for heterogeneity and for
simultaneously allowing sparsity at the individual level.

In this paper, we propose a novel technique based on
SVM to determine the subset of attributes consumers use to
evaluate alternatives in a choice-based conjoint. Instead of
using the traditional l2-SVM formulation for conjoint anal-
ysis [9], in which the shrinkage (complexity) is controlled
by the Euclidean norm of the part-worths, we use the l1-
norm. This strategy has been used successfully in SVM
for classification and provides a good compromise between
reducing complexity and allowing for sparsity [35]. The
identification of the relevant attributes that each customer
uses to evaluate products, with the corresponding reduction
in the dimensionality of the customers’ preference repre-
sentations, is achieved by a backward attribute elimination
procedure based on the individual weights (part-worths).
The final set of part-worths is obtained by using a linear pro-
gramming approach that simultaneously handles model fit,
complexity, and heterogeneity, pooling information across
customers by shrinking the individual part-worths of the
relevant attributes towards an estimated population mean.
Thus, our main goal is to contribute to the consumer analytic
literature by providing a new methodology that captures
underlying sparsity in consumer preferences in the context
of choice based conjoint.

The rest of this work is organized as follows: In Section 2,
SVM approaches for conjoint analysis are presented and
discussed. Section 3 presents a description of feature selec-
tion methods with SVM. Section 4 describes the proposed
feature selection method for CBC. Experimental results in
both simulated and real-world datasets are presented in
Section 5. Finally, a conclusion is given in Section 6, with
managerial implications in Analytics and suggested future
developments.

2 Conjoint estimation via SVM

In this section, we discuss the relevant SVM formulations
for conjoint analysis. First, the notation is introduced in
Section 2.1. Section 2.2 presents the SVM formulation
for preference estimation in choice-based conjoint (CBC-
SVM). Finally, different approaches for heterogeneity con-
trol in CBC-SVM are discussed in Section 2.3.

2.1 Notation and preliminaries

Consider a set of N consumers that evaluate K different
product profiles, randomly presented, and choose one pro-
file at each choice occasion t = 1, . . . , T . Each profile is
described by J attributes, and each attribute is defined on

nj levels, j = 1, . . . , J . SVM specifies an additive utility
function for each customer i = 1, . . . , N of the form
ui(x) = wi

�x that represents the utility that consumer
i assigns to profile x. In our formulation we specify any
attribute using dummy coding representing an attribute
level, as is usually done in SVM classification with nominal
variables [20].

Consumer decisions can be modeled as tuples of the form([
x1
it , . . . , x

K
it

]
, yit

)
, where xk

it ∈ �J represent the product
profile and yit ∈ {1, . . . , K} represent the chosen profile.
The condition yit = k indicates that at choice occasion t

individual i prefers the kth alternative among the K pro-
files described by

[
x1
it , . . . , x

K
it

]
. This implies a series of

inequalities ui(x
yit

it ) ≥ ui(xb
it ), ∀b ∈ {1, . . . , K} \ {yit }

[8]. Following previous research, after all the responses are
collected, the information can be rearranged such that the
chosen profile at each occasion t is the first profile in our
formulation, i.e. yit = 1, 1 ≤ i ≤ N and 1 ≤ t ≤ T . Thus,
the inequalities can be rewritten as follows:

wi
� (

x1
it − xk

it

)
≥ 0, (1)

where 1 ≤ i ≤ N , 2 ≤ k ≤ K , and 1 ≤ t ≤ T . This data
processing does not affect the solution of the optimization
problem.

2.2 CBC-SVM formulation

In order to determine the weights wi , also known as part-
worths, SVM follows the structural risk minimization prin-
ciple [33]. This approach minimizes the Euclidean norm
of wi with noise penalization performed by slack variables
ξkt (l2-soft margin formulation), leading to the following
convex quadratic programming problem for each individual
i = 1, . . . , N [8, 11]:

min
wi ,ξ

1

2
‖wi‖2 + C

T∑

t=1

K∑

k=2

ξk
t

s.t. wi
� (

x1
it − xk

it

)
≥ 1 − ξk

t , t = 1, . . . , T , k = 2, . . . , K,

ξk
t ≥ 0, t = 1, . . . , T , k = 2, . . . , K. (2)

Formulation (2) minimizes the complexity of the model
by using the Euclidean norm as a regularizer while penaliz-
ing the inconsistencies in the choices. The trade-off between
both objectives is controlled by the parameter C, which is
usually set via cross-validation (see e.g. [30]). The solution
to Formulation (2) provides the individual part-worths wi .

2.3 Heterogeneity control in CBC-SVM

Conjoint studies usually lack sufficient individual data to
estimate individual preference models independently given
the limited length of questionnaires. To overcome this issue,
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hierarchical approaches are used to capture general pat-
terns at the population level by pooling information across
customers and simultaneously estimating individual prefer-
ences (see e.g. [14]).

Some approaches have been proposed to perform this
pooling in the context of SVM. The first strategy, proposed
by [11], computes a population part-worth w = 1/N

∑
i wi

after performing the main optimization process. The final
individual part-worths correspond to the weighted sum
γiwi + (1 − γi)w of the initial individual parth-worths and
the a-posteriori population part-worth. Parameter γi ∈ [0, 1]
is usually obtained via a cross-validation procedure [11].

Another alternative for heterogeneity control was pro-
posed by [8], in which a single optimization problem was
proposed for individual part-worth estimation while pool-
ing information across customers. Similarly, [12] suggest a
single formulation to obtain all part-worths, in which the
weights are shrunk towards a vector w0, whose components
are also decision variables.

Our methodology follows the latter shrinkage approach.
Specifically, after performing the attribute selection step, we
estimate the part-worths by shrinking the weights towards
an average weight vector w0 which is estimated simulta-
neously. To encourage sparseness, we consider the l1-norm
instead of the traditional Euclidean norm. This procedure is
further described in Section 4.

The main difference between our approach and the one
proposed in [12] is that the latter is designed for part-worth
estimation exclusively, and does not include a regularization
strategy to encourage feature selection. A second difference
is that in [12] the authors include an additional matrix D,
related to the covariance matrix of the partworths, which
is estimated by using the calibration data. Since such a
formulation is complex to solve due to non-linearity, the
authors therefore use a simple iterative strategy to obtain wi

and w0 given D, and then D, given wi and w0. Our pro-
posal does not include this term since it does not provide
additional information to our problem of individual spar-
sity, which allows us to solve a single LP without the need
of performing a probably quite time-consuming iterative
process.

3 Feature selection for SVM

Feature selection is a very important artificial intelligence
task that has several applications in various domains, such
as churn prediction [23], fault detection [7], or those in
the environmental sciences [29]. The goal of feature selec-
tion is to find a subset of the original attributes in order
to improve predictive performance, removing noisy, irrele-
vant, and redundant variables that could lead to overfitting
[5]. Feature selection is of primary interest in Business

Analytics since it improves the understanding of the deci-
sion process [23], leading to important managerial insights
regarding customer preferences in the context of conjoint
analysis [24].

There are several strategies for performing feature selec-
tion in SVM. The most common strategy is to remove
irrelevant attributes before constructing a predictive model
using statistical measures to assess relevancy or redundancy
[18]. Another approach is the use of search strategies to
evaluate various subsets of features using SVM models.
The selection of those subsets is a combinatorial prob-
lem. Thus, different simplifying heuristics are used to select
those subsets, and the decision is made according to the
highest accuracy among the models. Although these strate-
gies are simple to implement and powerful, because they
consider the interactions among variables and their influ-
ence in the multivariate model, their main disadvantage is
the high computational cost, especially in high-dimensional
data sets [18].

One popular search strategy is the Sequential Backward
Elimination approach that consists of a sequential elimina-
tion of features, starting with the complete set of variables.
This strategy was adapted by [17] in their Recursive Feature
Elimination (RFE) SVM method, in which the variable to
be eliminated in each iteration is the one whose removal has
less impact on the SVM solution. That is, the variable j to
be eliminated is the one with the lowest
∣∣∣‖w‖2 − ∥∥w(j)

∥∥2
∣∣∣ , (3)

where w(j) is the computation of the weight vector with
variable j removed. Feature selection can also be performed
by encouraging variable elimination directly via a spar-
sity term in the objective function [6, 21]. For instance,
the squared Euclidean norm from the classical SVM (‖w‖2

from Formulation (2)) can be replaced by the l1-norm
�(w) = ∑

j |wj |, as presented in the l1 Support Vector
Machine (l1-SVM) approach [2, 6]. The l1-SVM method
has been further extended to other SVM strategies, such
as twin SVM [13], or sparse linear SVM [4]. Besides per-
forming variable elimination while training the models,
the l1-norm can be used to speed up the training process
by transforming the quadratic programming (QP) problem
solved by standard SVM to a linear programming (LP) prob-
lem [6]. Alternatively, SVM can be solved efficiently via
linear approximations in combination with advanced opti-
mization techniques (e.g. stochastic gradient descent [10]),
or by combining SVM with sampling strategies (see, e.g.
[26]).

[24] proposed an embedded feature selection approach
for CBC using SVM. SVM-RFE was extended to conjoint
analysis, solving Formulation (2) for individual part-worth
estimation and subsequently removing irrelevant attributes
iteratively for each consumer. Heterogeneity control was
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performed as suggested in [11], i.e. computing a popula-
tion part-worth w and controlling the trade-off via cross-
validation using a parameter γ .

There are two main differences between the current
approach and previous research: regularization and sparsity.
In the present work, we introduce regularization by solving
a single optimization problem to obtain all individual part-
worths simultaneously while controlling for heterogeneity.
This represents an improvement in this context as suggested
in [12] in a related context. The second difference is the use
of the l1-norm instead of the Euclidean norm to induce spar-
sity and encourage attribute elimination. We investigated the
relative contribution in performance of these two additions.

4 Proposed method l1-SVM for conjoint estimation

In this section, we present an embedded feature selection
algorithm for CBC using Support Vector Machines. The
main contributions are two fold: the use of the l1-norm
instead of the Euclidean norm to induce sparsity by shrink-
ing the individual part-worths towards zero, and the control
for heterogeneity in both consumer preferences and attribute
selection.

Allowing for individual sparsity and simultaneously con-
trolling for heterogeneity presents an interesting challenge.
The strategy of pooling individual part-worths towards a
population mean could remove the capability of the method
to select attributes at the individual level. Thus, feature
selection and heterogeneity control might imply opposite
goals. However, since our hypothesis is that most attributes
are relevant at the population level, but that individuals may
ignore some of them, both objectives cannot be accom-
plished simultaneously and successfully in one step. Indeed,
a one-step procedure might kill individual sparsity unless
the relative weight of the l1-norm is high compared to fit.
Still, this will most likely hurt the model fit badly. Conse-
quently, we propose a sequential optimization procedure to
accommodate these two goals.

In the first stage we perform feature selection at the indi-
vidual level without heterogeneity control. At this stage,
we estimate the part-worths only to determine the relative
importance of each attribute. We need to remove all part-
worths corresponding to the eliminated attribute to perform
the feature selection. We use a backward elimination algo-
rithm for each individual to remove the attributes whose
contribution is small, based on the magnitude of their part-
worths. In the second stage, we re-estimate the individual
part-worths for the selected attributes using heterogeneity
control. That is, the population estimates will affect only
the estimates of the individuals for whom the attribute
is relevant. Below, we present the sequential optimization
procedure.

1. Initial part-worth estimation: For each customer i ∈
{1, . . . , N}, the individual part-worths are obtained by
solving the following optimization problem:

min
wi ,ξ

k
it

‖wi‖1 + C

T∑

t=1

K∑

k=2

ξk
it

s.t. w�
i (x1

it −xk
it )≥1−ξk

it , i =1,. . ., N, t =1, . . . , T , k = 2,. . ., K,

ξk
it ≥ 0, i =1, . . . , N, t =1, . . . , T , k=2, . . . , K. (4)

Although the L1 norm is a non-smooth function, the
previous formulation can be transformed into a linear
optimization problem by adding a positive variable zi ,
which relates to the weight vector via the following con-
straints: −zi ≤ wi ≤ zi for all i = 1, . . . , N (see [6]
for details). The LP formulation for this step follows:

min
wi ,zi ,ξ k

it

J∑

j=1

zij + C

T∑

t=1

K∑

k=2

ξk
it

s.t. w�
i (x1

it −xk
it ) ≥ 1−ξk

it , i =1,. . ., N, t =1,. . ., T , k=2,. . ., K,

ξk
it ≥ 0, i = 1, . . . , N, t = 1, . . . , T , k = 2, . . . , K,

−zi ≤ wi ≤ zi , i = 1, . . . , N. (5)

2. Attribute elimination step: We assess the attribute’s rel-
evance by computing the difference between the highest
and the lowest part-worths [15]. Formally, we define the
attribute contribution ACj for attribute j as:

ACj(w
j
i ) = max wj

i − min wj
i . (6)

For each customer i ∈ {1, . . . , N}, we remove those
attributes that are irrelevant (i.e. with a low AC) in the
corresponding utility function using a backward elimi-
nation procedure. Algorithm 1 presents this procedure.
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The parameter ε ≥ 0 corresponds to a relevance
threshold for the relative contribution of each attribute.
This threshold needs to be sufficiently small to avoid
eliminating relevant attributes. The stopping criterion
is reached when the contribution of all remaining
attributes is above this threshold, or when only one
attribute remains.

3. Preference estimation: We applied the following model
to obtain the final part-worths, considering only the
relevant attributes for each customer:

min
wi ,w0,ξk

it

N∑

i=1

(‖wi‖1 + θ‖wi − w0‖1) + C

N∑

i=1

T∑

t=1

K∑

k=2

ξk
it

s.t. w�
i (x1

it −xk
it )≥1−ξk

it , i =1,. . ., N, t =1,. . ., T , k=2,. . ., K,

ξk
it ≥ 0, i =1, . . . , N, t =1, . . . , T , k = 2, . . . , K,

wj
i = 0, i = 1, . . . , N, j 	∈ Si , (7)

with control parameters θ > 0 and C > 0. Part-worths
associated with attributes removed in the previous stage are
not estimated but are fixed to zero and do not participate
in the estimation of the population part-worths. The pro-
cedure yields individual utility functions that consider only
the relevant attributes for each customer, and also yields the
population pattern that reflects the preferences for individ-
uals with non-zero preferences for each attribute. Note that
solving Formulation (7) without performing feature selec-
tion leads necessarily to non-sparse solutions since the term
‖wi −w0‖1 will pool information across customers and shift
part-worths linked to irrelevant attributes towards w0 instead
of to zero.

Similarly to Formulation (5), the previous problem can
be cast into an LP model by the inclusion of new variables.
The linear version for Formulation (7) follows:

min
wi ,w0,zi ,ui ,ξ

k
it

N∑

i=1

J∑

j=1

(
zij + θuij

) + C

N∑

i=1

T∑

t=1

K∑

k=2

ξk
it

s.t. w�
i (x1

it−xk
it )≥1−ξk

it , i=1,. . ., N, t=1,. . ., T , k=2,. . ., K,

ξk
it ≥ 0, i =1,. . . , N, t=1, . . . , T , k=2, . . . , K,

wj
i = 0, i = 1, . . . , N, j 	∈ Si ,

−zi ≤ wi ≤ zi , i = 1, . . . , N,

−ui ≤ wi − w0 ≤ ui , i = 1, . . . , N. (8)

The proposed approach has several advantages compared
with other state-of-the-art techniques:

– Regularization and model fit: The approach reduces the
complexity of the model by using the structural risk
minimization principle [33] via the l1-norm, providing
a good compromise between model fit and robust-
ness, which usually translates into better out-of-sample
performance.

– Identification of the relevant attributes: The feature
selection algorithm mitigates the effects of the curse
of dimensionality by reducing the number of deci-
sion variables in the individual utility functions, and
simultaneously provides a better understanding of the
preference model.

– Heterogeneity control: The model incorporates gen-
eral population patterns into each customer preference
model, resulting in a general model that takes all
available information into account to derive individual
preferences.

– Model efficiency: The feature selection framework is
based on several small linear programming models,
which can be solved efficiently using standard opti-
mization solvers.

5 Experimental results

We applied the proposed approach to four simulated
datasets and two real-world conjoint applications. In
Section 5.1, we describe the experimental setting and the
conjoint data. We also describe the implementation of
the proposed approach and the performance metrics. In
Section 5.2, we present the results obtained for all the pro-
posed and alternative approaches. Managerial insights and
the relevance of this work in Analytics are discussed in
Section 5.3.

5.1 Datasets and experimental setting

5.1.1 Simulated datasets

We designed a simulation exercise to study how our
approach performs under different conditions. In particular
we studied fit and predictive ability as a function of fea-
ture usage rate and response error. To study these effects,
and for easy comparison with previous research findings [3,
31], we used the same standard simulation procedure that
was used by these researchers, but modified it as needed to
include irrelevant attributes. We generated various datasets
varying the noise condition in consumer choices (low and
high noise), and the number of irrelevant attributes (low and
high).

For each of the four datasets, N = 200 consumers
were simulated. Each individual chose its best alternative
among K = 3 product profiles for each of the T = 12
choice occasions. From the 12 choice occasions, 10 ques-
tions were used for model training and calibration, while
the remaining two were used for testing. For each profile,
J = 10 variables were used to describe the simulated prod-
ucts, and each attribute j was further described by nj = 4
levels.
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We used the following standard procedure to vary
the amount of noise and to create irrelevant variables:
Each attribute was generated from a normal distribu-
tion with mean μ = (−β, −β

3 ,
β
3 , β) and covariance

matrix � = βI , where I denotes the identity matrix.
Following [24], we created irrelevant attributes by set-
ting μ = 0 for those attributes. Two and six irrelevant
attributes were generated at an individual level for the
low sparseness and high sparseness conditions, respec-
tively. Following [3], values of β = 0.5 and β =
2 were used to create high and low noise conditions,
respectively.

5.1.2 CBC dataset 1: Lower-dimensional dataset

For this dataset, N = 125 subjects responded to 20 choice
questions about digital cameras, with each choice question
comprised of four product profiles. A digital camera in this
study is described by J = 5 attributes with nj = 4 levels
(j = 1, . . . , 5): price ($500, $400, $300 and $200), resolu-
tion (2, 3, 4 and 5 megapixels), battery life (150, 300, 450
and 600 pictures), optical zoom (2x, 3x, 4x and 5x) and cam-
era size (SLR, medium, pocket and ultra compact). From
the 20 choice occasions, 16 questions were used for model
training and calibration, while the remaining four were used
for testing. See [1] for further details about the conjoint
experiment.

5.1.3 CBC dataset 2: Higher-dimensional dataset

This second CBC application consists of N = 602 individ-
uals that face 12 choice occasions involving three product
profiles. Each product is described by J = 10 attributes,
with each attribute having a different number of levels: three
attributes have 3 levels, five attributes have 4 levels, one
attribute has 7 levels, and one attribute has 16 levels. Ten
of the questions were used for training and the tuning of
the parameters, while the remaining two were used for test-
ing purposes. Due to the proprietary nature of the data, the
actual product and the specific attributes and attribute levels
are not mentioned.

5.1.4 Proposed and benchmark models

The following approaches were used in the experimental
section:

1. l1-SVM: Proposed 1-norm SVM model for feature
selection and heterogeneity control, including the back-
ward elimination process.

For a more thorough comparison, in addition to
our proposed model we estimated various preference
models:

2. l2-SVM: Traditional 2-norm Linear SVM using indi-
vidual part-worths (Formulation (2)) without feature
selection.

3. l1-SVMε=0: Proposed 1-norm SVM model for feature
selection and heterogeneity control with ε = 0, i.e.
without the backward elimination process.

4. l1-SVMθ=0: Proposed 1-norm SVM model for feature
selection with θ = 0, i.e. no heterogeneity control.

5. l2-SVM-RFE: 2-norm Linear SVM allowing feature
selection and including heterogeneity control.

We also include the l2 formulation of Problem (7)
as an additional benchmark to assess the gain in terms
of sparsity of our proposal compared to the proposed
l1-SVM model. We first solve the Formulation (9), and
then Algorithm 1 is applied.

min
wi ,w0,ξk

it

1

2

N∑

i=1

(
‖wi‖2

2 + θ‖wi − w0‖2
2

)
+ C

N∑

i=1

T∑

t=1

K∑

k=2

ξk
it

s.t. w�
i (x1

it−xk
it ) ≥ 1−ξk

it , i=1,. . ., N, t=1,. . ., T , k=2,. . ., K,

ξk
it ≥ 0, i = 1, . . . , N, t = 1, . . . , T , k = 2, . . . , K. (9)

6. HB Mixed Logit: Mixed Logit model where each
attribute level is represented by a binary variable. We
use a hierarchical Bayesian Markov chain Monte Carlo
(MCMC) procedure [28], which is the state-of-the-art
approach for estimating the parameters of the Mixed
Logit model (see the complete specification of the
priors and full conditional distributions in Appendix A).

We used the SLINEARSOLVE and QUADSOLVE
solvers for the linear and quadratic programming SVM
implementations, respectively. Both solvers can be found in
Matlab’s Spider toolbox [34]. The HB Mixed Logit method
was also implemented in Matlab as in [11] and [12].

5.1.5 Performance metrics

We estimate the preference models mentioned above and
compare them based on the following performance mea-
sures:

1. In-sample hit rate: Average number of correctly pre-
dicted choices for the calibration data.

2. Out-of-sample hit rate: Average number of correctly
predicted choices for the holdout data.

3. Feature usage rate (FU − rate): Average number of
attributes used by customers. We compute this measure
as follows:

FU − rate =

N∑

i=1
|Si |

N · J
, (10)
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where |Si | is the cardinality of Si , the subset of selected
attributes for customer i (i = 1, . . . , N), and J is the
number of all available attributes.

5.1.6 Tuning of the parameters

Our method has the important advantage of being a linear
programming problem with a single solution. In contrast
to HB Mixed Logit, SVM does not make any assumptions
regarding the part-worth distribution, automating the model
identification process [9]. As a consequence, no random
term is present, and the simulation step used in HB Mixed
Logit, which can be expensive in terms of running times,
is avoided. Nevertheless, SVM requires several parameters
that need to be tuned via cross validation, which can be
seen as a disadvantage compared to HB Mixed Logit or
non-compensatory approaches.

We need to calibrate the parameter C for all SVM mod-
els. For the more general formulations we need to calibrate
either the parameters ε, or θ , or both. We use a leave-one-out
cross validation (LOOCV) strategy to tune these parameters
using only the training data. This LOOCV procedure con-
siders a subset of the training data comprising all questions
but one, for each individual. The individual part-worths
are then estimated using this subset, and used subsequently
to predict the response to the question left out (valida-
tion subset). The predictive performance of the solution is
assessed using a hit-rate metric. This procedure is repeated
so that each question in the training sample is left out once
and used for validation purposes. The parameters are set
to the values that maximize the cross-validation hit rate.
Finally, after the parameters have been tuned (and fixed),
the utility functions are constructed using the entire calibra-
tion set, and the final evaluation is performed in a test set
(holdout sample), which remains unused during the calibra-
tion process. This well-known machine learning procedure
has been used previously in a conjoint analysis context [11,
12, 30].

Based on previous research [22], we explored the follow-
ing sets applying grid search, covering the combinations of
a relatively wide range of possible values:

C, θ ∈ {2−5, 2−4, 2−3, 2−2, 2−1, 20, 21, 22, 23, 24, 25},
ε ∈ {0.0, 0.1, 0.25, 0.5, 0.75, 1.0}.

5.2 Results

Synthetic data The results of the simulation show that
the performance of HB Mixed Logit decreases as the level
of sparseness (attributes ignored by customers) increases,
whereas, in contrast, the performance of the SVM approach
with and without feature selection does not decrease
with the level of sparseness. Additionally, consistent with
machine learning and forecasting applications, selecting
the most relevant attributes improves the predictive per-
formance: the proposed method outperforms alternative
approaches in terms of out-of-sample hit rate as the level of
noise and sparseness increase.

Tables 1 and 2 presents the results for the proposed
method and the alternative approaches for the four simulated
datasets. We indicate with an asterisk the best predictive hit
rate or that which is not significantly different from the best
at the 5 % significance level.

The following results can be derived from these experi-
ments:

– Interestingly, l1-SVM performs similarly to l1-SVMε=0

in terms of predictive performance but provides a more
parsimonious representation. That is, hold-out hit rate
is not affected by the backward elimination procedure
although the elimination of the less relevant attributes
is substantial in l1-SVM compared to l1-SVMε=0 (55-
70 % vs 30-55 % of the attributes).

– In contrast, l1-SVM achieves significantly higher per-
formance compared to l1-SVMθ=0 in two out of
four conditions, demonstrating that pooling information
across consumers is a crucial step of the algorithm.

Table 1 Results for Preference Models (in percentages)

Low Noise – Low Sparsity Low Noise – High Sparsity

Hit rate Hit rate

Models Ina Outb FU-ratec In Out FU-rate

HB Mixed Logit 87.5 56.3∗ 100 82 50.3 100

l2-SVM 98.1 51.8 100 98.3 54.0 100

l1-SVMε=0 98.8 54.0∗ 71.6 98.0 59.8∗ 65.4

l1-SVMθ=0 98.8 52.0 72.6 97.7 59.8∗ 65.4

l2-SVM-RFE 95.8 54.3∗ 54.4 91.2 59.0∗ 34.1

l1-SVM 97.1 54.3∗ 48.0 93.0 60.5∗ 30.5

a In-sample hit rate. b Out-of-sample hit rate. c Feature usage rate.
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Table 2 Results for Preference Models (in percentages)

High Noise – Low Sparsity High Noise – High Sparsity

Hit rate Hit rate

Models Ina Outb FU-ratec In Out FU-rate

HB Mixed Logit 76.4 43.5 100 73.3 41.2 100

l2-SVM 99.7 44.0 100 98.0 47.3∗ 100

l1-SVMε=0 95.0 45.3 61.9 92.3 50.0∗ 55.1

l1-SVMθ=0 94.3 44.3 63.5 93.0 48.3∗ 49.6

l2-SVM-RFE 83.1 47.0∗ 31.0 98.1 48.5∗ 70.5

l1-SVM 86.6 49.8∗ 28.7 82.7 50.0∗ 27.6

a In-sample hit rate. b Out-of-sample hit rate. c Feature usage rate.

– l1-SVM and l2-SVM-RFE achieved relatively similar
results (although the former has a slightly better per-
formance), but the 2-norm formulation always selects
more attributes than the 1-norm formulation when using
the same value for parameter ε, demonstrating the
advantage of the l1-regularization in achieving sparser
solutions.

– l2-SVM presents some overfitting since the in-sample
fit is the highest, but out-of-sample predictions are not
better than those of the proposed method. The main
source of overfitting seems to be the reduced number of
questions per individual relative to the large number of
parameters that needs to be calibrated.

– The performance of HB Mixed Logit decreases as the
level of sparseness (attributes ignored by customers)
increases, whereas, by contrast, the performance of the
SVM approach with and without feature selection does
not decrease with the level of sparseness.

– The performance of the different methods improves as
the noise decreases, which is somehow to be expected.

– Finally, selecting the most relevant attributes improves
the predictive performance: the proposed l1-SVM
method outperforms alternative approaches in terms

of out-of-sample hit rate as the level of noise and
sparseness increase.

In summary, the proposed method achieved the best pre-
dictive performance while having the lowest gap between
in-sample and out-of-sample hit rate among the SVM
approaches: the average gaps are 49.3, 43.8, 44.9, 39.9, and
36.2 for l2-SVM, l1-SVMε=0, l1-SVMθ=0, l2-SVM-RFE,
and the proposed l1-SVM, respectively. These experiments
demonstrate the advantages of using feature selection and
heterogeneity control in reducing the magnitude of the
overfitting by reducing the number of parameters to be
estimated.

CBC datasets Recall that the CBC dataset 1 involves
125 subjects and product profiles described by 5 attributes
whereas CBC dataset 2 is a higher-dimensional dataset
that involves 602 subjects choosing among product profiles
described by 10 attributes. Table 3 presents the results for
both real-world CBC applications. We indicate the best pre-
dictive hit rate or those which are not significantly different
from the best at the 5 % level with an asterisk.

Table 3 shows that the proposed feature selection
methodology has the best average performance in terms of

Table 3 Comparison of the Preference Models in two real-world datasets

CBC dataset 1 CBC dataset 2

Hit rate Hit rate

Models Ina Outb FU-ratec In Out FU-rate

HB Mixed Logit 84.5 58.0∗ 100 70.4 57.2∗ 100

l2-SVM 92.3 56.4 100 95.0 58.6∗ 100

l1-SVMε=0 91.6 58.4∗ 77.3 94.7 56.3 49.5

l1-SVMθ=0 87.1 56.4 72.6 95.9 56.0 54.8

l2-SVM-RFE 86.0 58.2∗ 65.6 92.9 54.5 33.3

l1-SVM 85.9 59.8∗ 64.0 74.5 58.0∗ 14.3

a In-sample hit rate. b Out-of-sample hit rate. c Feature usage rate.
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the out-of-sample hit rate. Best performance is achieved for
the digital camera dataset, while the methods l2-SVM, the
proposed l1-SVM, and the HB Mixed Logit models yield
superior predictive performance for the higher-dimensional
data.

Notably, the best results are obtained with l1-SVM using
only 64 % of the features on average across customers for
the digital camera dataset. We note that the backward elim-
ination procedure in the proposed method yields slightly
higher predictive performance compared to l1-SVMε=0

although it considers a lower number of attributes (64.0 %
vs 77.3 %). For the second dataset, it is noteworthy that the
proposed model (l1-SVM) considers on average only 14.3 %
of the attributes across customers.

Another important issue is the influence of the differ-
ent parameters. For the digital camera datasets, we explored
the performance of parameters C, ε, and θ in the predic-
tive performance (LOO validation hit rate). We observed a
fairly stable performance for these parameters using a rea-
sonably large set of values, concluding that our proposal is
not strongly parameter-dependent. The detailed analysis is
presented in Appendix B.

In both real-world datasets, l1-SVM outperforms l1-
SVMε=0 and l1-SVMθ=0, demonstrating the importance of
accounting for both feature selection and heterogeneity con-
trol simultaneously since the full method is the only one
that achieves the same predictive performance as the best
model using a significantly lower number of attributes. The
most important gain compared to the full method, however,
is given by the better interpretation of the results, as we will
explain in the following section.

Regarding running times, the comparison between HB
Mixed Logit and SVM-based approaches is not straightfor-
ward since the latter methods require an extra step in order
to calibrate the parameters. Using the digital camera dataset
(CBC dataset 1) as an illustrative example, the running time
for HB was 1057.13 seconds, while the training time for our
approach was 13.5 for a given configuration of C, ε, and θ .
Although solving one instance of our approach is about 100
times faster than solving one instance of the HB method, we

performed a grid search for these three parameters, there-
fore needing to run our method 11*11*6 times, leading to a
total running time of approx. 9801 seconds. In both cases,
running times are tractable and marginal compared to the
effort of data collection and preprocessing.

5.3 Managerial insight and impact in consumer
analytics

The proposed model achieved slightly better results in gen-
eral compared to the alternative methods but used fewer
attributes. In particular, it selected 3.2 out of the five, and 1.4
out of ten attributes for the first and second CBC datasets,
respectively. Here, the gain for decision making is the iden-
tification of the relevant attributes at the individual level,
allowing consumer segmentation according to the usage of
the attributes.

A second analysis that is important for product design is
the percentage of individuals that consider a given attribute
to be useful according to the proposed model. For the dig-
ital cameras dataset, attribute Price was used in 84.0 % of
the utility functions, Resolution was used in 73.6 % of the
utility functions, Battery Life was used in 58.4 % of the
utility functions,Optical Zoom was used in 63.2 % of the
utility functions, and Camera Size was used in 40.8 % of
the utility functions. This information provides a ranking of
relevancy for the attributes, which can be useful in prod-
uct design. These results confirm our previous finding that
Camera size and Battery Life are less relevant attributes for
consumers. Indeed, their elimination by most respondents
does not affect the predictive ability of the proposed model.

It is equally important to note that 16 % of the subjects do
not consider price at all. These price-insensitive customers
constitute an important niche that premium brands should
explore. It is important to note that this price insensitivity
applies only within the price range presented to respondents.
That is, it is possible that outside this price range, these
customers might become more price sensitive.

We further studied the implied willingness to pay (WTP)
estimates that the proposed model derives compared with

Table 4 Willingness to pay per changes in attribute levels for the proposed SVM-based feature selection approach and the HB Mixed Logit. The
numbers are understood as follows: for the proposed model, a change from Resolution 2 to 5MP is equivalent to a change in $264.9

Attributes for digital cameras

Models Resolution Battery Life Optical Zoom Camera Size

2 vs 5MP 150 vs 600p 2 vs 5X SLR vs U. compact

l1-SVM $264.9 $158.9 $299.3 $128.5

HB Mixed Logit $146.5 $53.4 $131.2 $39.3

HB Mixed Logit∗ $182.9 $85.2 $209.3 $95.9

∗ Considering the same respondents as the l1-SVM model.
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those of the HB Mixed Logit. Following the standard
method in the conjoint literature, we compared the equiva-
lent change in utility points that correspond to changes in
prices, and then used that relationship to compare changes
in the other attributes. Table 4 reports the median esti-
mates for both models. Note that for the proposed model
the median is calculated only among consumers for whom
the corresponding attribute is relevant. Consistent with pre-
vious research, we observed that the HB Mixed Logit that
does not accommodate for irrelevant attributes yields sub-
stantially lower estimates for the WTP compared with our
proposed model.

To study if this difference is due to selection of respon-
dents, we also reported the results for the HB Mixed Logit,
but included the same respondents that we used for the l1-
SVM model. Although the WTP estimates increased, they
are still lower than the WTP indicated by the proposed
method.

6 Discussion and conclusions

In this paper, we address the problem of identifying the
relevant attributes consumers use when evaluating alterna-
tives in a choice-based conjoint (CBC) task. We present a
new methodology based on SVM to bring these relevant
attributes to light. We adapt the l1-SVM formulation to iden-
tify relevant attributes in CBC at the individual level, and to
control for heterogeneity by pooling data across consumers
simultaneously with the optimization procedure.

We compared the proposed approach with several bench-
mark models including nested versions of the proposed
model. Our approach always yielded at least equivalent
predictive performance results to that of the best bench-
mark model although it considers only a fraction of the
attributes. The results of our illustrative examples show
that consumers may use a small fraction of the avail-
able attributes to evaluate the alternatives. The relevant
attributes, however, differ importantly across subjects. It
is therefore imperative that the identification of the rele-
vant attributes be performed individually instead of at the
population level. At the same time, controlling for hetero-
geneity borrows information from the rest of the population
to improve the recovery of individual preferences. Since
these two objectives may contradict each other, we use
a leave-one-out method to calibrate the weight of these
components properly in the SVM formulation that yields
high predictive performance on the holdout sample. We
contribute to the consumer analytics literature by offer-
ing a method that can select the most relevant attributes
at the individual level without sacrificing predictive perfor-
mance. Further we provide additional evidence of the use-
fulness of using machine learning techniques, such as SVM,

to analyze conjoint data in an attribute non-attendance
context.

The present methodology is a first step toward using
machine learning methods to address the problem of
attribute non-attendance, a research problem that is attract-
ing the attention of both researchers and practitioners.
Current methods cannot easily accommodate this behav-
ior and use survey data to augment the information with
explicit information about non-neglected attributes. Other
approaches try to infer relevant attributes using latent class
methods, assigning customers to a set of predefined clus-
ters based on a limited combination of attributes attended
to. Compared to these approaches, our model offers sev-
eral advantages. It does not require collecting additional
information because it uses only choice data, and allows
for any combination of relevant/irrelevant attributes at the
individual level.

The feature selection method based on SVM that we
developed provides a promising tool for addressing con-
sumer behavior beyond non-attendance in CBC. For future
work, first, it would be interesting to apply this approach
to other conjoint applications such as menu-based conjoint
analysis. These data collection methods could induce cus-
tomers to use simplifying heuristics that ignore attributes
at the different stages of the decision process. Second, it
would be interesting to further explore if there is a cor-
relation between the number of levels that characterize an
attribute and the likelihood of ignoring such an attribute.
This issue may have important managerial implications,
especially for web retailers. Third, one could explore how
data collected through eye-tracking methods can enhance
the capabilities of the methodology we developed to identify
relevant/irrelevant attributes. Finally, one could study the
extension of our proposal to kernel-based SVM for CBC.
This is not straightforward since the part-worths cannot
be obtained explicitly in the kernel-based formulation, and
therefore feature selection cannot be encouraged directly via
L1 penalization.
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Appendix A: HB mixed logit estimation

Prior and full conditional distributions

We denote by θ i the set of random-effect parameters.
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Priors

Random-effect parameters θ i

θ i ∼ N(μθ , �θ ) ⇒ P(θ i ) ∝ exp

(
1

2
(θ i −μθ )

��−1
θ (θ i −μθ )

)

μθ ∼ N(μ0,V0)⇒P(μθ ) ∝ exp

(
1

2
(μθ −μ0)

�V−1
0 (μθ −μ0)

)

�−1
θ ∼ W(df0, S0)

Likelihood

L(data, {θ i}, μθ , �θ )=P(data|{θ i})P ({θ i}|μθ , �θ )P (μθ )P (�θ ),

where P(data|{θ i}) corresponds to the Multinomial Logit
model.

Full conditionals

P(θ i |μθ , �θ , datai ) ∝ exp

(
−1

2
(θ i −μθ )

��−1
θ (θ i −μθ )

)
P(datai |θ i )

μθ ∼ N(μi ,Vi ), �
−1
θ ∼ W(df1, S1)

where

V−1
i = [V−1

0 + N�−1
θ ]

μi = Vi[μ0V
−1
0 + Nθ̄�−1

θ ]
df1 = df0 + N

S1 =
N∑

i=1

(θ i − μθ )(θ i − μθ )
� + S−1

0 .

The MCMC procedure generates a sequence of draws
from the posterior distribution of the model’s parameters.
Since the full conditionals for θ i do not have a closed form,

Fig. 1 Leave-one-out validation hit rates for l1-SVM for different values of C, ε, and θ (Camera data set)
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the Metropolis-Hastings (M-H) algorithm is used to draw
the samples. In particular, we use a Gaussian random-walk
M-H where the proposal vector of parameters ϕ(t) for θ i

at iteration t is drawn from N(ϕ(t−1), σ 2
) and accepted
using the M-H acceptance ratio. The tuning parameters σ

and 
 are chosen adaptively to yield an acceptance rate of
approximately 20 %.

We use the following uninformative prior hyperparame-
ters: μ0 = 0, V0 = 103INθ×Nθ , df0 = Nθ +5, S0 = df0C,
where N is the number of individuals, and C is an Nθ ×Nθ

matrix with 2 on the diagonal and 1 off the diagonal for the
levels of each attribute. We assume that the parameters are
a priori uncorrelated across attributes (see e.g. [25]).

Appendix B: Model calibration and influence
of the parameters

In the proposed models, three parameters need to be cali-
brated: regularization parameter C, threshold ε, and shrink-
age θ . We analyze how the performance of each model
varies as a function of each parameter. For illustration pur-
poses, we show the procedure used for the Camera data
set. Similar analyses were conducted for the other data sets.
Our goal was to assess whether the results are stable along
different values of these parameters. A less rigorous valida-
tion strategy can be used in such a case. In contrast, a high
variance in the performance requires an exhaustive model
selection procedure such as LOOCV in order to find the best
combination of parameters.

Figure 1 depicts the LOOCV hit rates as a function of C,
ε, and θ for the proposed feature selection approach.

Figure 1 reveals the influence of parameters C, ε, and θ

in the predictive performance (Leave-one-out validation hit
rate). Results are relatively stable for small values of θ and
ε, and values of C around the unit, although we observe an
important influence of these parameters in the final outcome
of the proposed method.

Performing an adequate grid search is highly recom-
mended, varying the parameters C, ε, and θ along the
suggested values in order to obtain the desired results.
Additionally, the fact that the optimal values for these
parameters are always above zero confirms the importance
of feature selection and shrinkage to control for potential
overfitting when a relatively small number of respondents is
present.
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Julio López received his B.S.
degree in Mathematics in 2000
from the University of Tru-
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