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Abstract Kernel methods are very important in pattern
analysis due to their ability to capture nonlinear relation-
ships in datasets. The best known kernel-based technique
is Support Vector Machine (SVM), which can be used
for several pattern recognition tasks, including multiclass
classification. In this paper, we focus on maximum mar-
gin classifiers for nonlinear multiclass learning, based on
second-order cone programming (SOCP), proposing three
novel formulations that extend the most common strate-
gies for this task: One-vs.-The-Rest, One-vs.-One, and All-
Together optimization. The proposed SOCP formulations
achieved superior performance compared to their traditional
SVM counterparts on benchmark datasets, demonstrating
the virtues of robust optimization.

Keywords Multiclass classification · Second-order cone
programming · Kernel methods · Support vector machines.

1 Introduction

Multiclass classification solves the problem of predict-
ing more than two classes, where each data point can be
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assigned to only one of them. This is an important task in
artificial intelligence, with broad applications such as text
classification [19], biotechnology (DNA microarray anal-
ysis of multiple tumor types [20]), and business analytics
(credit assignment based on two types of defaulters in addi-
tion to the good payers: those who cannot pay due to the
lack of cash, and those who do not have the willingness to
pay [7]).

Support Vector Machine (SVM) [36] is one of the stan-
dard tools for multiclass classification. A series of binary
classifiers can be constructed for this task [6], although it
can also be tackled directly by solving a single multiclass
SVM [8, 13, 38]. SVM has proved to be very effective
for multiclass learning thanks to the use of kernel func-
tions [38]. These functions project the data points onto
a high-dimensional feature space, resulting in nonlinear
classifiers.

Second-order cone programming (SOCP) formulations
have been proposed as robust settings for maximum mar-
gin classifiers [2, 4, 29]. These strategies assume the
worst data distribution for a given mean and covariance
matrix, and aim at classifying each training pattern cor-
rectly for specified false positive and false negative error
rates.

In our work, we extend the SOCP formulation for binary
classification proposed by Nath and Bhattacharyya [29] to
kernel-based multiclass classification. It is important to note
that Nath and Bhattacharyya’s work differs from the SOCP-
SVM formulations proposed to deal with noisy data (i.e.
instances with measurement errors [33, 41]), and SOCP for-
mulations that solve the standard SVM model based on
reduced convex hulls [9]. We previously proposed a multi-
class SOCP formulation based on the concept of the center
of the configuration [23], which corresponds to a point
equidistant to all training patterns. The method proposed in
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this work follows a different strategy: all hyperplanes are
constructed according to the ideas Weston et al. [38] and
Bredensteiner and Bennett [8], i.e., in such a way that the
training points from class k should be closer to the k-th
hyperplane rather than to a classifier conformed by the k−1
other classes.

The paper is structured as follows: Section 2 discusses
previous work on SVM for kernel-based multiclass classi-
fication. Section 3 describes the work of Nath and Bhat-
tacharyya [29] for (linear) binary classification and its
extension to multiclass classification that we proposed in
López and Maldonado [21]. The proposed methods for
kernel-based multiclass SVM via SOCP are introduced in
Section 4. Section 5 provides experimental results using
benchmark datasets. We then present the main conclu-
sions of this study in Section 6 and address possible future
developments.

2 Kernel-based multi-class support vector machine

In this section, we provide a brief description of the three
best known SVM approaches for kernel-based multiclass
classification, namely One-vs.-The-Rest, One-vs.-One, and
All-Together multiclass SVM. Additionally, we include
recent developments in kernel-based multiclass SVM for
comparison purposes, such as One-vs.-The-Rest twin SVM
[40], Adaptive Multi-Hyperplane Machine (AMM), and
Budgeted Stochastic Gradient Descent (BSGD) [10]. The
latter two methods are highly-optimized SVM implementa-
tions designed to achieve reduced training times.

2.1 One-vs.-the-rest SVM

Considering training examples xi ∈ �n, i = 1, . . . , m, and
their respective labels yi ∈ {1, . . . , K}, One-vs.-The-Rest
SVM (OvR-SVM) constructs K hyperplanes of the form
fk(x) = w�

k x + bk such that each training sample has to
be classified correctly into class k or a second group of
instances made up of all the remaining classes except k,
k = 1, . . . , K [6, 36]. This hyperplane maximizes the mar-
gin, which is computed as the sum of the distances to the
closest points of each of the two new classes. The max-
imization of this margin is equivalent to minimizing the
Euclidean norm of wk . The label vector can be redefined as
yk
i ∈ {−1, 1}, where 1 is used for the samples from class k

and −1 for the elements of other classes of the K − 1, for
each k = 1, . . . , K .

Nonlinear classifiers can be obtained by mapping the
data samples onto a higher dimensional space via a kernel

function. The kernel-based OvR-SVM formulation for the
k-th class can be stated as follows:

max
αk

m∑

i=1
αk

i − 1
2

m∑

i,s=1
αk

i α
k
s y

k
i yk

s K(xi , xs)

s.t.
m∑

i=1
αk

i y
k
i = 0,

0 ≤ αk
i ≤ C, i = 1, . . . , m.

(1)

We based our analysis on the Gaussian kernel, which
usually achieves the best empirical performance [25, 32],
and has the following form:

K(xi , xs) = exp

(

−||xi − xs ||2
2σ 2

)

, (2)

where σ > 0 is a parameter that controls the width of the
kernel [32]. Once all K hyperplanes are constructed, the

decision function is given by fk(x) =
m∑

i=1
αk

i y
k
i K(x, xi ) +

bk . Then, a new sample x is classified into the class with the
greatest value of fk(x).

2.2 One-vs.-one SVM

Another well-known classification approach is One-versus-
One (OvO) SVM [17]. This method constructs K(K −1)/2
hyperplanes, one for each pair of classes. The following
problem is solved for the k-th and the l-th classes (k < l):

max
αkl

m∑

i=1
αkl

i − 1
2

m∑

i,s=1
αkl

i αkl
s ykl

i ykl
s K(xi , xs)

s.t.
m∑

i=1
αkl

i ykl
i = 0,

0 ≤ αkl
i ≤ C, i = 1, . . . , m,

(3)

where ykl
i = 1 means the sample belongs to the class k,

while ykl
i = −1 represents the opposite case (class l). Once

all classifiers are constructed, the decision rule for a new

sample x is given by fkl(x) =
m∑

i=1
αkl

i ykl
i K(x, xi ) + bkl .

The Max-Wins voting strategy is usually used [11], in which
each hyperplane assigns the samples to one of the two corre-
sponding classes, increasing the vote by one for the assigned
class. A majority vote scheme finally determines the label
of each new instance.

2.3 All-together multiclass SVM

Multiclass SVM can also be performed by solving a sin-
gle optimization problem, as proposed in Weston et al. [38]
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or Bredensteiner and Bennett [8]. The first approach, called
MC-SVM, constructs K classifiers simultaneously, solving
the following formulation:

min
αk

m∑

i,s=1

(
1

2
c
yi
s aias −

K∑

k=1

αk
i α

yi
s + 1

2

K∑

k=1

αk
i α

k
s

)

K(xi , xs) − 2
m∑

i=1

K∑

k=1

αk
i

s.t.
m∑

i=1

αk
i =

m∑

i=1

ck
i ai, k = 1, . . . , K,

0≤ αk
i ≤ C, i = 1, . . . , m, k = 1, . . . , K,

α
yi

i = 0, i = 1, . . . , m, (4)

where

ai =
K∑

k=1

αk
i , ck

i =
{

1 , if yi = k

0 , if yi �= k
.

Then, a new sample x belongs to the class k∗ iff

k∗ = argmax
k=1,...,K

{
m∑

i=1

(ck
i ai − αk

i )K(xi , x) + bk

}

.

2.4 One-vs.-the-rest twin support vector machine

The OvR twin SVM extends the ideas of the traditional
twin SVM (TWSVM) for binary classification proposed by
Jayadeva [16] by solving K quadratic programming prob-
lems (QPPs), one for each class [40]. Each QPP constructs
two nonparallel hyperplanes in such a way that each func-
tion is as close as possible to one of the two classes, and as
far as possible from the other class, under the One-vs.-The-
Rest framework. Each of the K problems solved by OvR
twin SVM has the following form:

min
sk,bk,ξ

1
2‖K(Ak,X)sk + bkek‖2 + c ẽ�

k ξ

s.t. −(K(Ãk,X)sk + ẽkbk) + ξ ≥ ẽk

ξ ≥ 0,

(5)

where Ak ∈ �n×mk and Ãk ∈ �n×m−mk represent the
data matrices for class k and for the remaining classes,
respectively; X = [A1 A2 . . . AK ] ∈ �n×m, c is a positive
parameter; and ek and ẽk are vectors of ones of appropriate
dimensions. A new sample x ∈ �n belongs to a given class
k∗ iff k∗ = argmink=1,...,K{K(x,X)sk + bk}, where

K(x,X) = [K(x,X•1), K(x,X•2), . . . , K(x,X•m)], (6)

with X•j denoting the j -th column of the matrix X.

2.5 Optimized approximations for efficient SVM
classification

Several strategies have been proposed to speed up the train-
ing process for SVM classification. In particular, we used
the Adaptive Multi-Hyperplane Machine (AMM) and the
Budgeted Stochastic Gradient Descent (BSGD) for bench-
marking purposes. These two methods are designed to
construct nonlinear decision boundaries, being suitable for
benchmarking kernel-based approaches.

The AMM method constructs multiple linear classifiers
in order to approximate a nonlinear function, while the
BSGD method incrementally updates the support vectors
via stochastic gradient descent, while fixing the cardinal-
ity of support vectors in the model. This latter method
constructs a nonlinear classifier using a Gaussian kernel
[10].

3 Maximum margin classifiers based
on second-order cone programming

In this section, we describe the SOCP formulation for max-
imum margin (binary) classification proposed by Nath and
Bhattacharyya [29], and formalize the One-vs.-The-Rest,
One-vs.-One, and All-Together extensions for linear mul-
ticlass classification. The first two formulations (OvR and
OvO) were used previously in López and Maldonado [21]
in the context of feature selection for microarray classifica-
tion, but only as linear classifiers. The All-Together method
for linear SOCP classification was proposed in López and
Maldonado [22].

3.1 SOCP formulation for binary classification

Let us consider Xk as a random variable that generates the
samples of the class k, with mean and covariance given by
(μk, �k) for k = 1, 2. Assuming specified false-negative
and false-positive errors 1 − ηk , with ηk ∈ (0, 1), a linear
classifier can be constructed by requiring that the accuracy
for class k should be at least ηk . Nath and Bhattacharyya
[29] suggested the following quadratic chance-constrained
programming model:

min
w,b

1
2‖w‖2

s.t. Pr{w�X1 + b ≥ 1} ≥ η1,

Pr{w�X2 + b ≤ −1} ≥ η2.

(7)



986 S. Maldonado and J. López

According to the authors, the probabilistic constraints
can be replaced in (7) with their robust counterparts:

inf
X1∼(μ1,�1)

Pr{w�X1 + b ≥ 1} ≥ η1, inf
X2∼(μ2,�2)

Pr{w�X2 + b ≤ −1} ≥ η2. (8)

The intuition behind this step is classifying each class cor-
rectly even for the worst data distribution [37]. Applying
the multivariate Chebyshev inequality [18, Lemma 1], the
constraints in (8) are equivalent to:

w�μ1 + b ≥ 1 + κ1

√
w��1w,

−w�μ2 − b ≥ 1 + κ2

√
w��2w,

where κi =
√

ηk

1−ηk
, for k = 1, 2. The Chebyshev inequal-

ity provides a bound that holds for a family of distributions
having the similar mean and covariance, and the worst case
corresponds to the case of equality for this bound [33].
Replacing these constraints in Formulation (7) leads to the
following quadratic SOCP problem:

min
w,b

1
2‖w‖2

s.t. w�μ1 + b ≥ 1 + κ1‖S�
1 w‖,

−w�μ2 − b ≥ 1 + κ2‖S�
2 w‖,

(9)

where �k = SkS
�
k , for k = 1, 2. This decomposition can be

performed, for example, via Cholesky factorization. Prob-
lem (9) is a convex formulation with a quadratic objective
function and two second-order cone (SOC) constraints [1].

3.2 One-vs.-the-rest SOCP, linear version

The previous formulation can be extended easily to OvR
classification. The following quadratic chance-constrained
programming problem is proposed in López and Maldonado
[21, 22] for each class k = 1, . . . , K:

min
wk,bk

1
2‖wk‖2

s.t. inf
Xk∼(μk,�k)

Pr{wk
�Xk + bk ≥ 1} ≥ ηk,

inf
Xc

k∼(μc
k,�

c
k)

Pr{wk
�Xc

k + bk ≤ −1}≥ ηc
k,

(10)

where Xc
k is a random variable that generates instances of

all classes except k. This random variable has a mean and
covariance (μc

k, �
c
k), where �k and �c

k ∈ �n×n are sym-
metric positive semidefinite matrices. Again, the application
of the Chebyshev-Cantelli inequality leads to the following
quadratic SOCP formulation, for each k = 1, . . . , K:

min
wk,bk,tk

1
2‖wk‖2

s.t. w�
k μk + bk ≥ 1 + κk

√
w�

k �kwk,

−(w�
k μc

k + bk) ≥ 1 + κc
k

√
w�

k �c
kwk,

(11)

with κk =
√

ηk

1−ηk
(resp. κc

k =
√

ηc
k

1−ηc
k
). The decision rule

for a new data point x ∈ �n follows: x belongs to the class
k∗ iff k∗ = arg maxk=1,...,K{w�

k x + bk}.

3.3 One-vs.-one SOCP, linear version

Similar to the One-vs.-The-Rest SOCP formulation, the
OvO-SVM method can be extended for maximum margin
SOCP classification. As described in López and Maldon-
ado [21, 22], samples from the k-th and the l-th classes
(k < l) can be classified by solving the following quadratic
chance-constrained programming problem:

min
wkl ,bkl

1
2‖wkl‖2

s.t. inf
Xk∼(μk,�k)

Pr{wkl
�Xk + bkl ≥ 1} ≥ ηkl,

inf
Xl∼(μl ,�l)

Pr{wkl
�Xl + bkl ≤ −1} ≥ ηlk,

(12)

where ηkl, ηlk ∈ (0, 1). Formulation (12) can be rewritten
as the following quadratic SOCP problem:

min
wkl ,bkl

1
2‖wkl‖2

s.t. w�
klμk + bkl ≥ 1 + κkl

√
w�

kl�kwkl,

−w�
klμl − bkl ≥ 1 + κlk

√
w�

kl�lwkl,

(13)

with κkl =
√

ηkl

1−ηkl
(resp. κlk =

√
ηlk

1−ηlk
). This model

requires K(K − 1)/2 binary classifiers, one for each pair of
classes. The decision function is given by fkl(x) = w�

klx +
bkl , and the label for a new point x ∈ �n is assigned by the
Max-Wins voting strategy.

3.4 All-together multiclass SVM, linear version

Following the ideas of All-Together Multiclass SVM
described in Section 2.3, a multiclass SOCP formulation
in which all classifiers are constructed in a single opti-
mization problem was presented in López and Maldonado
[22]. For each class k, one classifier (wk ∈ �n, bk ∈ �)

is constructed in separate classes k and l such that the
probability that the random variable Xk lies on the cor-
rect side of the hyperplane is greater than ηkl ∈ (0, 1),
k, l = 1, . . . , K, k �= l. The following chance-constrained
quadratic programming formulation is proposed:

min
wk,bk

1
2

K∑

k=1

k−1∑

l=1
‖wk − wl‖2 + 1

2

K∑

k=1
‖wk‖2

s.t. Pr{(wk − wl )
�Xk − (bk − bl) − 1 ≥ 0} ≥ ηkl,

k, l = 1, . . . , K, k �= l.

(14)
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Equivalent to the previous formulations, the worst distri-
bution approach based on the Chebyshev-Cantelli inequality
leads to the following deterministic problem:

min
wk,bk

1
2

K∑

k=1

k−1∑

l=1
‖wl − wk‖2 + 1

2

K∑

k=1
‖wk‖2

s.t. (wk− wl )
�μk− (bk− bl) ≥1+ κkl‖S�

k (wk − wl )‖,
k, l = 1, . . . , K, k �= l,

(15)

where κkl =
√

ηkl

1−ηkl
, for k, l = 1, . . . , K, k �= l.

4 Proposed kernel-based multiclass SOCP
formulations

In this section, we propose three novel multiclass formula-
tions using SOCs for kernel-based classification. We first
formalize the One-vs.-The-Rest extension. Secondly, the
One-vs.-One SOCP formulation is presented. Finally, an
“all-together” multiclass approach for maximum margin
SOCP classification is formalized.

4.1 One-vs.-the-rest SOCP, kernel-based version

The One-vs.-The-Rest SOCP formulation (Problem (11))
can be extended to nonlinear classification. Let us denote by
mk the number of elements of the class k, by mc

k the number
of elements of all classes except k, by Ak ∈ �n×mk a matrix
whose columns are points of the class k, by (Ak)c ∈ �n×mc

k

a matrix whose columns are the points of all classes except
k, and by e a vector of ones of appropriate dimension. Then,
the empirical estimates of the mean and covariance are given
by:

μk = 1

mk

Ake, μc
k = 1

mc
k

(Ak)ce,

�k = SkS
�
k , �c

k = Sc
k(S

c
k)

�,

with

Sk = 1√
mk

(Ak − μke
�), Sc

k = 1
√

mc
k

((Ak)c − μc
ke

�).

Since wk ∈ �n, it can be written as wk = [Ak, (Ak)c]sk +
Mrk , where M is a matrix with its columns as vectors
orthogonal to the training data points, and sk, rk are vectors
of combining coefficients. Then,

w�
k μk = s�k gk, w�

k μc
k = s�k gc

k,

w�
k �kwk = s�k Gksk, w�

k �c
kwk = s�k Gc

ksk,

where

gk = 1

mk

[
Kk

11e
Kk

21e

]

, gc
k = 1

mc
k

[
Kk

12e
Kk

22e

]

,

Gk = 1

mk

[
Kk

11
Kk

21

] (

Imk
− 1

mk

ee�
)[

Kk
11

�
Kk

21
�]

,

Gc
k = 1

mc
k

[
Kk

12
Kk

22

] (

Imc
k
− 1

mc
k

ee�
)[

Kk
12

�
Kk

22
�]

,

with Kk
11 = (Ak)�Ak , Kk

12 = (Kk
21)

� = (Ak)�(Ak)c,
Kk

22 = (Ak)c)�(Ak)c, matrices whose elements are inner
products of data points. Hence, in order to design non-
linear classifiers, we replace each inner product by any
function K : �n × �n → � satisfying the Mercer condi-
tion (see [27]). Thus, the above equalities are replaced by
Kk

11 = K(Ak, Ak), Kk
12 = (Kk

21)
� = K(Ak, (Ak)c), Kk

22 =
K((Ak)c, (Ak)c). Hence, the k-th kernel-based OvR-SOCP
problem solves the following formulation:

min
αk,bk

1
2α�

k K
kαk

s.t. αk
�gk + bk ≥ 1 + κk

√
αk

�Gkαk,

−αk
�gc

k − bk ≥ 1 + κc
k

√
α�

k Gc
kαk,

(16)

where Kk = [Kk
11,K

k
12;Kk

21,K
k
22] ∈ �m×m.

4.2 One-vs.-One SOCP, kernel-based version

Formulation (13) (OvO-SOCP) can also be extended to
kernel-based classification by introducing kernel functions.
Taking only training points from the k-th and the l-th classes
(k < l) into account, kernel-based OvO-SOCP solves the
following problem:

min
αkl ,bkl

1
2α�

klK
klαkl

s.t. αkl
�gk + bkl ≥ 1 + κkl

√
αkl

�Gkαkl,

−αkl
�gl − bkl ≥ 1 + κlk

√
α�

klGlαkl,

(17)

where Kkl = [Kkk,Kkl;Klk,Kll] ∈ �mk+ml×mk+ml ,

gk = 1

mk

[
Kkke
Klke

]

, gl = 1

ml

[
Kkle
Klle

]

,

Gk = 1

mk

[
Kkk

Klk

] (

Imk
− 1

mk

ee�
)[

K�
kk K

�
lk

]
,

Gl = 1

ml

[
Kkl

Kll

] (

Iml
− 1

ml

ee�
)[

K�
kl K

�
ll

]
,

with Kkk = K(Ak, Ak), Kkl = (Klk)
� = K(Ak, Al),

Kll = K(Al, Al).
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4.3 All-together multiclass SOCP-SVM, kernel-based
version

In order to obtain the kernel-based version of the multiclass
SOCP formulation, we first rewrite the objective function
of the linear version (Formulation (15)). Note that, for any
wk ∈ �n, k = 1, . . . , K , the following relation holds:

1

K

K∑

k=1

k−1∑

l=1

‖wk − wl‖2 =
K∑

k=1

‖wk − 1

K
�K

l=1wl‖2. (18)

Additionally, the following relationship between the pri-
mal and dual variables can be derived from Formulation (15)
(see Remark 4 in [22]):

wk = 1

K + 1

K∑

l=1
l �=k

(αklzkl − αklzlk), k = 1, . . . , K, (19)

where zkl, αkl are solutions of the following problem (see
[22] for details):

max
αkl ,zkl

K∑

k,l=1
l �=k

αkl − 1
2(K+1)

∥
∥
∥
∥
∥
∥
∥

K∑

k,l=1
l �=k

αklH
kl�zkl

∥
∥
∥
∥
∥
∥
∥

2

s.t. zkl = μk − κklSkukl, ‖ukl‖ ≤ 1, k,

l = 1, . . . , K, k �= l,
K∑

l=1
l �=k

(αkl − αlk) = 0, k = 1, . . . , K,

αkl ≥ 0,

with Hkl denoting an n × nK matrix with all blocks being
n × n zero matrices, except for the k-th block being In (the
identity matrix in �n×n), and the l-th block being −In, i.e.,

Hkl = [0, . . . , 0, In, 0, . . . , 0, −In, 0, . . . , 0],
k, l = 1, . . . , K, k �= l.

Then, from (19) we deduce that

K∑

k=1

wk = 1

K + 1

K∑

k=1

K∑

l=1
l �=k

(αklzkl − αlkzlk) = 0.

Taking into account the previous relation and (18), Problem
(15) can be rewritten as:

min
wk,bk

1
2

K∑

k=1
‖wk‖2

s.t. (wk − wl)
�μk − (bk − bl) ≥ 1

+ κkl‖S�
k (wk − wl)‖,
k, l = 1, . . . , K, k �= l,

K∑

k=1
wk = 0.

(20)

The previous formulation can be extended to a kernel
model. We first note that the empirical estimates of the mean

and covariance of the training dataset of the class k are given
by

μk = 1

mk

Ake, �k = SkS
�
k with Sk = 1√

mk

(Ak −μke
�)

for k = 1, . . . , K . Then,

w�
k μk = s�k gk, w�

k �kwk = s�k Gksk,

where

gk = 1
mk

⎡

⎢
⎣

K1ke
...

KKke

⎤

⎥
⎦ ,

Gk = 1
mk

⎡

⎢
⎣

K1k

...

KKk

⎤

⎥
⎦

(
Imk

− 1
mk

ee�
) [

K�
1k · · · K�

Kk

]
,

with Kkl = (Klk)
� = Ak�

(Al) ∈ �mk×ml matrices whose
elements are inner products of data points. Hence, similar to
Section 4.1, the kernel formulation of Problem (15) results
from replacing the inner products that appears in the matri-
ces Kkl by any function K : �n × �n → � satisfying
the Mercer condition. Therefore, from (20) follows that the
nonlinear formulation is given by

min
sk,bk

1
2

K∑

k=1
s�k Ksk

s.t. (sk − sl )�gk − (bk − bl) ≥ 1

+ κkl

√
(sk − sl)�Gk(sk − sl ),
k, l = 1, . . . , K, k �= l,

K∑

k=1
sk = 0,

(21)

where K ∈ �m×m is a symmetric matrix formed with the
blocks Kkl . Thanks to the Mercer condition, the symmetric
matrix K is positive semidefinite.

Since the matrices Gk are positive semi-definite matri-
ces, they can be factorized as Gk = DkD�

k for each k =
1, . . . , K . Thus, Problem (21) is a quadratic second-order
cone programming one.

Finally, for a new sample x ∈ �n, we set the classifica-
tion functions as

fk(x) = K(x,X)sk + bk, k = 1, . . . , K,

where the row vector K(x,X) is defined in (6).

5 Experimental results

We applied the proposed approaches, namely the OvR-
SOCP, OvO-SOCP, and All-Together MC-SOCP methods,
to seven benchmark data sets: the first six from the UCI
Machine Learning Repository [3], and the last used in the
classification of fish schools (see [5] for more details).
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Table 1 Number of examples, number of variables and number of
classes for all data sets

Dataset #examples #variables #classes

IRIS 150 4 3

HAYES-ROTH 160 4 3

WINE 178 13 3

GLASS 214 13 6

LED7DIGIT 500 7 10

VOWEL 528 12 11

FISH 762 12 3

We used the standard SVM counterparts (OvR-SVM, OvO-
SVM, and All-Together MC-SVM) together with recently
developed multiclass SVM formulations (OvR-TWSVM,
AMM, and BSGD) as alternative approaches for compari-
son. The relevant meta-data for each benchmark data set is
presented in Table 1.

The following model selection procedure was performed:
Training and test subsets were constructed using 10-fold
cross-validation for all datasets. Each data point was
assigned to one of the 10 subsets using stratified sampling
in order to guarantee that these subsets were of almost equal
size and balance ratio. The average of the 10 outcomes of
the model evaluations was used as a predictor of the perfor-
mance metric. More information about this procedure can
be found in [14]. We used linear and Gaussian kernels.

A grid search was performed to study the influence of
the kernel parameter σ , parameter C for standard SVM
models, parameter c for OvR twin SVM, and η for SOCP
approaches. For C, c, and σ parameters we studied the
following values:

{2−7, 2−6, 2−5, 2−4, 2−3, 2−2, 2−1, 20, 21, 22, 23, 24, 25, 26, 27}.

We explored ηkl ∈ {0.2, 0.4, 0.6, 0.8} (All-Together MC-
SOCP and One-vs-One SOCP-SVM), and ηk, ηc

k ∈
{0.2, 0.4, 0.6, 0.8} (One-vs.-The-Rest classification). Bal-
anced accuracy was used as the performance metric,

which corresponds to the average recall for all classes.
The recall of class k can be computed as the number
of correct class k matches divided by the total number
of actual class k cases. Regarding the implementation of
the approaches, we used the Spider Toolbox for Mat-
lab [39] for the standard SVM approaches, the Budgeted
SVM toolbox [10] for AMM and BSGD, the successive
overrelaxation (SOR) technique for OvR twin SVM [26],
and the SeDuMi Matlab Toolbox for the SOCP-based
classifiers [34].

Tables 2 and 3 present a summary of the results for all
seven data sets and for linear and Gaussian kernels, respec-
tively. The AMM and BSGD methods were developed as
nonlinear approaches, and therefore are presented only in
Table 3. The best performance among all methods in terms
of balanced accuracy is highlighted in bold type.

In Tables 2 and 3 we first observe that results are better
for the kernel-based versions of the seven strategies. In par-
ticular, there is a major difference in terms of performance
for datasets Hayes-Roth, Vowel, and Fish. This fact demon-
strates the virtues of the Gaussian kernel for multiclass
classification.

A comparison between SVM and SOCP classifiers
(Table 3) leads to important conclusions. First, the SOCP
approaches usually achieve better results than their SVM
counterparts. Although in some cases all methods reach
similar performance, especially for those datasets with accu-
racy of almost 100 % (Iris, Wine, and Vowel), in other cases
the gain is significant (Glass and Fish). Secondly, the One-
vs.-The-Rest strategy performs slightly worse compared to
the One-vs.-One and All-Together approaches. This fact
confirms what some literature reviews suggest for multi-
class classification [15], although in other cases the results
are not conclusive [31]. Finally, kernel-based MC-SOCP
and OvO-SOCP have the best overall performance, achiev-
ing the best balanced accuracy in four out of seven cases,
although no method outperformed others in all the kernel-
based experiments. Regarding the recently developed mul-
ticlass SVM formulations, the optimized approaches AMM
and BSGD are always below standard and SOCP methods
in terms of performance, while the OvR-TWSVM method

Table 2 Performance
summary for different
classification approaches.
Linear kernel

Iris Hayes-Roth Wine Glass Led7digit Vowel Fish

OVR-SVMl 94.7 61.5 98.6 60.7 74.1 56.4 74.4

OVO-SVMl 98.0 64.9 98.6 66.1 74.3 90.0 80.0

MC-SVMl 96.0 57.9 99.0 57.3 75.2 72.1 69.7

OVR-TWSVMl 93.3 65.4 99.0 58.7 74.0 58.3 75.1

OVR-SOCPl 96.7 66.5 99.0 64.1 75.8 54.5 67.3

OVO-SOCPl 97.3 63.1 99.0 74.8 75.9 81.3 77.2

MC-SOCPl 97.3 71.6 99.0 76.3 75.7 73.6 76.1
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Table 3 Performance
summary for different
classification approaches.
Gaussian kernel

Iris Hayes-Roth Wine Glass Led7digit Vowel Fish

OVR-SVMG 97.3 87.2 99.5 71.8 74.2 99.6 81.6

OVO-SVMG 98.0 87.7 99.0 72.2 74.7 99.6 82.6

MC-SVMG 97.3 87.8 99.0 71.4 75.9 99.0 83.2

OVR-TWSVMG 98.0 87.1 98.4 71.7 71.4 98.5 87.7

AMM 96.7 49.7 98.3 57.0 66.4 61.7 73.2

BSGD 96.0 53.8 96.7 73.3 60.0 98.3 62.9

OVR-SOCPG 97.3 86.7 99.1 75.0 75.9 99.5 84.4

OVO-SOCPG 98.7 87.1 99.5 76.3 76.1 99.5 85.1

MC-SOCPG 98.7 89.0 99.5 77.5 75.9 99.3 85.0

achieves competitive results, with the highest balanced
accuracy for Fish dataset.

The robustness analysis proposed in [12] was performed
to assess the best overall performance. The relative perfor-
mance of each strategy on a given dataset is computed as
the ratio between its balanced accuracy and the highest one
among all the methods compared. For a given method a and
a dataset i, this ratio has the following form:

AccRatioi(a) = bAcc(a)

maxj bAcc(j)
. (22)

The larger the (balanced) accuracy ratio for a given method
a and a dataset i, the better the performance. The best me-
thod a∗ will have AccRatioi(a

∗) = 1 for dataset i. The
measure

∑
i AccRatioi(a) represents a measure of over-

all performance for a method a. A high value of
∑

i Acc

Ratioi(a), close to the total number of datasets, provides
a good indicator for the best overall performance and

robustness. Figure 1 presents the distribution of AccRatioi

(a) for all seven methods and all datasets.
It can be seen in Fig. 1 that the kernel-based SOCP

approaches are indeed the best ones in terms of overall
performance and robustness. The all-together MC-SOCP
method achieves the best overall performance, followed by
OvO-SOCP and then by OvR-SOCP. The same order can
be observed for the standard SVM approaches, where OvO-
SVM and all-together MC-SVM are better than OvR-SVM
in terms of accuracy ratios. The OvR-TWSVM method
achieves better results compared with the standard SVM
approaches, demonstrating the virtues of twin SVM classi-
fication. In contrast, the optimized approaches AMM and
BSGD have the lowest accuracy ratio among all methods.
We can conclude that our proposals are positive contribu-
tions to the state of the art in maximum margin methods due
to their powerful performance and appealing optimization
schemes.

Fig. 1 Sum of accuracy ratios
for all methods
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6 Conclusions

The present study provides three kernel-based formulations
based on second-order cone programming for multiclass
maximum margin classification. These methods are exten-
sions of the well-known One-vs.-The-Rest, One-vs.-One,
and all-together MC-SVM methods. The main methodolog-
ical contribution is the MC-SOCP method, which solves
a single optimization problem for constructing all nonlin-
ear classifiers, taking all available information into account.
Our proposals have the following strenghts compared to
these methods:

– They provide a robust framework, aiming at classi-
fying the samples of each class correctly, up to a
predefined rate, even for the worst data distribution.
This robust scheme has proven to be very effective
in binary and multiclass classification based on linear
hyperplanes.

– The robust framework provides a balanced scheme that
benefits the correct prediction of each class, since the
margin maximization is performed separately for each
training pattern.

– They show superior average performance compared to
OvR SVM, OvO SVM, all-together MC-SVM, and
other recently proposed SVM formulations. Although
no method outperformed the others in terms of bal-
anced accuracy, the robustness analysis proposed in
[12] provides numerical evidence that the SOCP strate-
gies described in this work are excellent alternatives for
multiclass classification.

The main weakness of the proposals and, in particular,
of the all-together multiclass classification strategy, is that
the resulting problem can be very time-consuming on large
scale datasets, and therefore there is a pressing need for effi-
cient SOCP implementations. Our proposals were solved by
using a generic solver like SeDuMi, in contrast to standard
SVM approaches, for which ad-hoc optimization schemes
like the Sequential Minimal Optimization (SMO) strategy
[30] are used.

There are several opportunities for future work. First,
the SOCP implementation can be improved further in order
to reduce computational times, for example by speeding
up algebraic operations like the computation of the ker-
nel matrices [28] or by proposing incremental optimization
schemes like the SMO approach for SVM [30] to SOCP.
Secondly, the method can be extended to variations of the
multiclass SVM problem, such as multiclass Twin SVM
[35]. Finally, another problem that arises when facing sev-
eral classes is the “class-imbalance problem”, in which
some of the labels are under-represented in the dataset,
causing poorly balanced performance. The structure of the
SOCP formulations allows us to control the different class

recalls independently, providing an interesting framework
for this problem [24].
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21. López J, Maldonado S (2015) Robust feature selection for multi-
class support vector machines using second-order cone program-
ming. Intell Data Anal 19(S1):S117–S133
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