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ABSTRACT
This paper is devoted to the study of proximal distances defined over
symmetric cones, which include the non-negative orthant, the second-
order cone and the cone of positive semi-definite symmetric matrices.
Specifically, our first aim is to provide two ways to build them. For this, we
consider two classes of real-valued functions satisfying some assumptions.
Then, we show that its corresponding spectrally defined function defines
a proximal distance. In addition, we present several examples and some
properties of this distance. Taking into account these properties, we analyse
the convergence of proximal-type algorithms for solving convex symmetric
coneprogramming (SCP) problems, andwe study the asymptotic behaviour
of primal central paths associatedwith a proximal distance. Finally, for linear
SCP problems, we provide a relationship between the proximal sequence
and the primal central path.

ARTICLE HISTORY
Received 29 February 2016
Accepted 22 December 2016

KEYWORDS
Proximal distance; spectrally
defined function; symmetric
cone programming;
proximal-type algorithms;
primal central paths

1. Introduction

Since the introduction made by Martinet in 1970 [1], several proximal algorithms for solving
constrained problems (for e.g. convex programming, variational inequalities, non-linear comple-
mentarity problem, etc.) have been studied. In particular, for convex programming problems over:
the nonnegative orthant in R

n (see e.g. [2,3]), the Cartesian product of second-order cones (see e.g.
[4–6]), and the positive semi-definite symmetric matrices (see e.g. [7]). These algorithms have the
particularity of using anon-quadratic distance-like function to exploit the geometry of the constraints.

With the purpose of providing a unified technique for analysing and designing interior proximal
methods with non-quadratic distance, Auslender and Teboulle [8] defined a class of proximal
distances with respect to an open nonempty convex set of a Euclidean space, that includes the
class of Bregman [2,3], ϕ-divergence [9,10], and second-order homogeneous distances [11]. The idea
of using these classes of proximal distances has been carried out by several researchers [6,12–17]. For
instance, Pan and Chen [6] defined a proximal distance with respect to second-order cones, made a
unified analysis of interior proximal methods for solving convex second-order cone programming
(SOCP)problems, and studied the central paths associatedwith these distance functions. InAuslender
et al. [12] studied nonmonotone projection gradient schemes based on proximal distances for solving
constrained nonconvex problems. Papa Quiroz and Oliveira [15] proposed proximal-type methods
with proximal distance to solve minimization problems with quasiconvex objective functions on the
nonnegative orthant. In [17], Sarmiento et al. studied an inexact proximal multiplier method using
proximal distances for solving convex minimization problems with a separable structure.

An important and popular non-quadratic distance is the Kullback–Leibler (KL) entropy distance
defined over the nonnegative orthant [18]. Using algebraic techniques of matrices and Euclidean
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Jordan algebra (EJA) [19], the KL entropy distance has been extended and used in order to introduce
and analyse an entropy-like proximal algorithm, and an exponential multiplier method for the
problem of minimizing a closed proper convex function subject to positive semi-definite symmetric
matrices [7] and symmetric cone constraints [20], respectively.

In addition, in the context of linear symmetric cone programming (SCP), the KL entropy distance
has been used for the study of convergence of central paths [21].

Surprisingly, in recent years, it has been established that every symmetric cone can be casted
as one of square elements of a suitable chosen EJA [19], and it serves as a unifying framework to
which the important cases of cones used in optimization, such as the non-negative orthant in R

n, the
second-order cone (SOC) and the cone of positive semi-definite symmetric matrices belong.

Using the framework of EJAs, several interior point methods (IPMs) have been successfully
extended to optimization over symmetric cones [22–30]. For instance, Faybusovich [22] extended
IPMs from semidefinite programming to the linear SCP. Gu et al. [25] generalized Roos et al.’s
algorithm for linear programming (LP) in [31] to linear SCP.Wang et al. [28] generalized the classical
primal-dual logarithmic barrier method for LP to convex quadratic optimization over symmetric
cones. Ramírez and Sossa [30] studied the asymptotic behaviour of central paths with respect to a
broad class of barrier functions for convex SCP.

Recently, Alvarez and López [32] extended the interior proximal algorithm with variable metric
proposed in [33] for SOCP to convex SCP, and used the technique of proximal bundle methods to
develop an implementable version of the proposed algorithm.

In this paper, we first focus on studying proximal distances defined over symmetric cones.
Specifically, we provide two ways to build these distances. The first approach is based on Bregman
distance, while the second one is based on Distance-like, which is studied by Pan and Chen [4] for
SOCs. For both approaches, we use the spectrally defined function of a real-valued function. To the
best of our knowledge, the only reference that defines a proximal distance over symmetric cones,
specifically the KL entropy distance, is the work proposed by Chen and Pan [20]. Taking into account
the above construction, we proceed to study interior proximal-type algorithms and primal central
paths associated with this proximal distance for convex SCP.

This paper is structured as follows; Section 2 reviews some basic notions and results on EJAs,
presents some properties about spectrally defined functions over symmetric cones, and introduces
the class of proximal distances defined on the symmetric cones. In Section 3, we provide two ways
to construct proximal distances via the compute of the spectrally defined functions of two suitable
classes of real-valued functions, and we discuss some properties of these distances. Several examples
of these classes of proximal distances are presented in Section 4. In Section 5, first we study the
convergence of the proximal-type algorithms associated with a proximal distance. Then, we describe
some results of the primal central path and its connection with the proximal-type algorithm. Finally,
concluding remarks are given in Section 6.

2. Preliminaries

In this section, we briefly describe some concepts, properties and results from EJAs and symmetric
cones that are needed in this paper; for more details, see, e.g. Faraut and Korányi [19], Schmieta and
Alizadeh [24]. Subsequently, we recall some results from spectrally defined functions over symmetric
cones and present the classical notion of essential smoothness in our context. Finally, we present the
definition of proximal distance with respect to the interior of a symmetric cone.

2.1. Euclidean Jordan algebras

A EJA is a triple (V, ◦, 〈·, ·〉V), shortly denoted by V, where (V, 〈·, ·〉V) is a finite-dimensional space
over the real field R equipped with an inner product 〈·, ·〉V, and (x, y) �→ x ◦ y : V × V → V is a
bilinear mapping satisfying: (i) x ◦ y = y ◦ x; (ii) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y), where x2 := x ◦ x; (iii)
〈x ◦ y, z〉V = 〈y, x ◦ z〉V, for all x, y, z ∈ V.
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Here, x ◦ y is called the Jordan product of x and y. In addition, we assume that there exists a
(unique) unitary element e ∈ V such that x ◦ e = x for all x ∈ V. An EJA is said to be simple if it is
not a direct sum of two EJAs.

The set K := {x2 : x ∈ V} is called the cone of squares of the EJA V, which is a symmetric cone
(see [19, Theorem III.2.1]).

The rank of V is defined as r := max{deg(x) : x ∈ V}, where deg(x) denotes the degree of x ∈ V

given by deg(x) = min{k > 0 : {e, x, x2, . . . , xk} is linearly dependent}. From now on, we assume
that V is an EJA with rank r.

An element c ∈ V is an idempotent iff c2 = c. An idempotent c is primitive iff it is nonzero
and cannot be written as a sum of two nonzero idempotents. We say that a finite set {e1, . . . , er} of
primitive idempotents in V is a Jordan frame iff ei ◦ ej = 0, for all i �= j, and

∑r
i=1 ei = e.

The following theorem gives us a spectral decomposition for the elements in an EJA (see Theorem
III.1.2 of [19]).

Theorem 2.1 (Spectral decomposition theorem): For every x ∈ V, there exists a Jordan frame
{e1(x), . . . , er(x)} and real numbers λ1(x), . . . , λr(x), arranged in the decreasing order, such that
x = ∑r

i=1 λi(x)ei(x).

The numbers λi(x) (counting multiplicities) are uniquely determined by x, and are called the
eigenvalues of x. The trace of x, denoted as tr(x), is defined by tr(x) := ∑r

i=1 λi(x); whereas the
determinant of x is defined by det (x) := ∏r

i=1 λi(x).
It is easy to show that x ∈ K (resp. int(K)) iff λi(x) ≥ 0 (resp. λi(x) > 0), for all i = 1, . . . , r.

Moreover, an element x ∈ V is invertible, if det (x) �= 0.
According to [22, Proposition III.1.5], the bilinear form 〈x, y〉 := tr(x ◦ y) is an inner product on

V and it is called the canonical (or trace) inner product on V. Furthermore, we can define the norm
induced by the inner product 〈x, y〉 on V, called Frobenius norm, by

‖x‖F := √〈x, x〉 = tr(x2) =
( r∑

i=1

λ2i (x)

)1/2

, ∀x ∈ V.

Then, in this inner product, the norm of any primitive idempotent is one. Hence, ‖e‖F = √
r.

Also, this norm satisfies the Cauchy–Schwartz inequality |〈x, y〉| ≤ ‖x‖F‖y‖F . Finally, we recall the
following technical results ([34, Theorem 23], [23, Theorem 5.13]), which will be used to investigate
some properties of the proximal distance H that will be defined in Section 2.3.

Lemma 2.2 (Von Neumann inequality): For any x, y ∈ V, one has that

〈x, y〉 = tr(x ◦ y) ≤
r∑

i=1

λi(x)λi(y).

The equality holds iff x and y have a similar joint decomposition, that is, if there exists a Jordan frame
{e1, . . . , er} such that x = ∑r

i=1 λi(x)ei and y = ∑r
i=1 λi(y)ei.

Lemma 2.3: Let x ∈ V. Then, x ∈ K iff 〈x, y〉 ≥ 0 holds for all y ∈ K. Moreover, x ∈ int(K) iff
〈x, y〉 > 0 for all y ∈ K \ {0}.
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2.2. Spectrally defined function over symmetric cones

Let φ : R → R be a scalar-valued function. Following [34,35], one can define a vector-valued
function φsc : V → V, called Löwner’s operator, by

φsc(x) :=
r∑

i=1

φ(λi(x))ei(x), if λi(x) ∈ dom(φ), (1)

where x ∈ V has the following spectral decomposition x = ∑r
i=1 λi(x)ei(x), with λ1(x) ≥ λ2(x) ≥

· · · ≥ λr(x). Then, we can consider its corresponding spectrally defined function� : V → R∪{+∞}
by

�(x) := tr(φsc(x)) =
r∑

i=1

φ(λi(x)), if λi(x) ∈ dom(φ), (2)

and +∞ otherwise. Note that if φ : R → R is a continuously differentiable function on a subset of
dom(φ), we can define the vector-valued function (φ′)sc : V → V by

(φ′)sc(x) :=
r∑

i=1

φ′(λi(x))ei(x), if λi(x) ∈ dom(φ′). (3)

The following results give us some known properties of functions� and φsc. Their proofs can be
found in [34, Theorem 38, Corollary 39, and Theorem 41] and [35, Theorem 3.2].
Lemma 2.4: If the function φ is convex (resp. strictly convex) and continuous on its domain, then its
spectrally defined function� is convex (resp. strictly convex) and continuous on its domain.
Lemma 2.5: Let φ be a continuously differentiable function on a subset of dom(φ) and x ∈ V with
its spectral decomposition x = ∑r

i=1 λi(x)ei(x). Then

(a) � is continuously differentiable on dom((φ′)sc) and

∇�(x) =
r∑

i=1

φ′(λi(x))ei(x) = (φ′)sc(x), ∀x ∈ dom((φ′)sc). (4)

(b) φsc is continuously differentiable on dom((φ′)sc), and

∇φsc(x)h =
r∑

i=1

φ′(λi(x))〈ei(x), h〉ei(x)+ 4
∑

1≤i<j≤r

[λi(x), λj(x)]φei(x) ◦ (ej(x) ◦ h), (5)

∀h ∈ V, where

[λi(x), λj(x)]φ = φ(λi(x))− φ(λj(x))
λi(x)− λj(x)

, ∀i, j = 1, . . . , r and i �= j.

In particular,

∇φsc(x)x =
r∑

i=1

φ′(λi(x))λi(x)ei(x) = (φ′)sc(x) ◦ x, ∀x ∈ dom((φ′)sc). (6)

Finally, we present the notion of essential smoothness [36], which will be used in this work. Let us
denote by �0(X) = {f : X → R ∪ {+∞} : f is convex, lsc and proper}, with X denoting a Euclidean
space.
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Definition 1: A function f ∈ �0(V) is essentially smooth iff it is differentiable on int(dom(f ))�= ∅
and ‖∇f (xk)‖ → +∞ as k → +∞, whenever {xk}k∈N ⊆ int(dom(f )) converges to boundary point
of domain of f .

2.3. Proximal distances over symmetric cones

Definition 2: An extented-valued function H : V × V → R ∪ {+∞} is called a proximal distance
with respect to int(K) iff it satisfies the following properties:

(P1) dom(H(·, ·)) = C1 × C2 with int(K)× int(K) ⊆ C1 × C2 ⊆ K × K.
(P2) H(u, v) ≥ 0 for all u, v ∈ V, and H(v, v) = 0 for all v ∈ int(K).
(P3) For each v ∈ int(K), H(·, v) is continuous and strictly convex on C1, and it is continuously

differentiable on int(K)with dom(∇1H(·, v)) = int(K), where∇1H(·, v) denotes the gradient
of H(·, v) with respect to the first variable.

(P4) For each γ ∈ R, the level set LH(v, γ ) = {u ∈ C1 : H(u, v) ≤ γ } is bounded for any v ∈ C2.
This definition was considered in [6] in the context of second-order cones,1 and it has a little

difference from the one introduced by Auslender and Teboulle (see [8, Definition 2.1]), since here
H(·, v) is required to be strictly convex over C1, for any fixed v ∈ int(K).

Let us denote by H the family of functions H satisfying (P1)–(P4). Note that by (P1) the function
H(·, ·) is proper. From (P2) it follows that H(·, v) achieves its global minimum value at v. This
implies that ∇1H(v, v) = 0, for all v ∈ int(K). Moreover, for any f ∈ �0(V), μ > 0, and x̃ ∈ int(K),
properties (P3) and (P4) are used to guarantee that the following convex optimization problem

min{f (u)+ μH(u, x̃) : u ∈ K}

admits a unique solution zμ(x̃) ∈ int(K) (see, e.g. Proposition 5.1).

3. Constructing proximal distances over symmetric cones

In this section, we provide twoways to construct a functionH in terms of some scalar-valued function
φ, and give some conditions on φ in order to show that H be a proximal distance. Additionally, we
discuss some properties of this distance.

3.1. Bregman’s pseudo-distance

For the first approach, let us consider φ ∈ �0(R) with dom(φ) ⊆ R+, and int.dom(φ)) = R++, and
suppose the following conditions:

(S.1) φ is continuous and strictly convex on its domain.
(S.2) φ is continuously differentiable on R++.
(S.3) For each γ ∈ R, the level set {t ∈ R++ : dφ(s, t) ≤ γ } is bounded for any s ∈ dom(φ).
(S.4) If {tk}k∈N ⊆ R++ is such that limk→+∞ tk = 0, then limk→+∞ φ′(tk)(s − tk) = −∞,

∀s ∈ R++,

where dφ : R × R → R ∪ {+∞} is defined by

dφ(s, t) :=
{
φ(s)− φ(t)− φ′(t)(s − t), s ∈ dom(φ), t ∈ R++,
+∞, otherwise. (7)

Remark 1: Note that from (S.1) to (S.2) and [38, Theorem 3.7(iii)], one has that the level set
{s ∈ dom(φ) : dφ(s, t) ≤ γ } is bounded for any t ∈ R++ and γ ∈ R.
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We denote by �(φ) the class of functions φ satisfying conditions (S.1)–(S.4). Given a function
φ ∈ �(φ), we define the following function H : V × V → R ∪ {+∞} by

H(x, y) :=
{
�(x)−�(y)− 〈∇�(y), x − y〉, x ∈ dom(�), y ∈ int(K),
+∞, otherwise, (8)

where the functions� and ∇� are defined by (2) and (4), respectively.
Next, we study some important properties of the functionH defined in (8). The first result extends

[20, Proposition 3.1 and 3.3] to our context.
Proposition 3.1: Given φ ∈ �(φ), let H be the function defined by (8). Then, the following results
hold:

(a) H(x, y) ≥ 0 for any (x, y) ∈ dom(�)× int(K), and H(x, y) = 0 iff x = y.
(b) H(·, ·) is continuous on dom(�) × int(K) and, for any y ∈ int(K), the function H(·, y) is

strictly convex on dom(�).
(c) For any fixed y ∈ int(K), H(·, y) is continuously differentiable on int(K), with

∇1H(x, y) = ∇�(x)− ∇�(y) = (φ′)sc(x)− (φ′)sc(y). (9)

(d) H(x, y) ≥ ∑r
i=1 dφ(λi(x), λi(y)) ≥ 0, for any (x, y) ∈ dom(�)× int(K).

(e) For all γ ≥ 0, the level sets LH(y, γ ) = {x ∈ dom(�) : H(x, y) ≤ γ } and LH(x, γ ) =
{y ∈ int(K) : H(x, y) ≤ γ } are bounded, for any fixed y ∈ int(K) and x ∈ dom(�),
respectively.

(f) For any x, y ∈ int(K) and z ∈ dom(�), the following three-points identity holds:

〈∇1H(x, y), z − x〉 = H(z, y)− H(z, x)− H(x, y). (10)

(g) For all sequence {zk}k∈N ⊆ int(K) such that limk→+∞ zk = z̄ ∈ bd(K) (boundary of K), one
has that

lim
k→+∞

〈∇�(zk), x − zk〉 = −∞, ∀x ∈ int(K). (11)

As consequence we obtain, for any fixed y ∈ int(K), that

lim
k→+∞

〈∇1H(zk, y)), x − zk〉 = −∞, ∀x ∈ int(K). (12)

Proof:

(a) This statement follows directly from the strictly convex of the function � (cf. Lemma 2.4),
and the definition of H .

(b) Since φsc(x), (φ′)sc(y), (φ′)sc(y) ◦ (x − y) are continuous functions for any x ∈ dom(φsc),
and y ∈ int(K) (by Lemma 2.4), and the trace function is also continuous, it follows that the
functionH is continuous on dom(�)× int(K). On the other hand, by using (S.1) and Lemma
2.4 one has that the function� is strictly convex on dom(�). Moreover, the linear expression
−�(y) − 〈∇�(y), . − y〉 is clearly convex on K, for any fixed y ∈ int(K). Hence, H(·, y) is
strictly convex on dom(�) for any fixed y ∈ int(K).

(c) By (S.2) and Lemma 2.5(a) it follows thatH(·, y) is continuously differentiable on int(K). The
equality (9) is obtained directly from (8) and Lemma 2.5(a).
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(d) Let x = ∑r
i=1 λi(x)ei(x) and y = ∑r

i=1 λi(y)ei(y) be the spectral decompositions of x and y,
respectively. Using the definition of H , it follows that for any (x, y) ∈ dom(�)× int(K),

H(x, y) = �(x)−�(y)− tr(∇�(y) ◦ x)+ tr(∇�(y) ◦ y)

≥ �(x)−�(y)−
r∑

i=1

φ′(λi(y))λi(x)+ tr(∇�(y) ◦ y)

=
r∑

i=1

[φ(λi(x))− φ(λi(y))− φ′(λi(y))λi(x)+ φ′(λi(y))λi(y)]

=
r∑

i=1

dφ(λi(x), λi(y)),

where the inequality follows from (4) and Von Neumann inequality (cf. Lemma 2.2), the
second equality is due to (4), Lemma 2.2, and (2), and the last one follows from (7). The
non-negativity of dφ(s, t) is due to the strict convexity of φ on its domain.

(e) For any fixed y ∈ int(K) and γ ≥ 0, from part (d) we have that LH(y, γ ) ⊆ {x ∈ dom(�) :∑r
i=1 dφ(λi(x), λi(y)) ≤ γ }. By Remark 1, it follows that the set in the right-hand side is

bounded. Then, LH(y, γ ) is bounded for all γ ≥ 0. Similarly, for fixed x ∈ dom(�), one has
that LH(x, γ ) ⊆ {y ∈ int(K) : ∑r

i=1 dφ(λi(x), λi(y)) ≤ γ }. From (S.3), we deduce that the
sets LH(x, γ ) are bounded for all γ ≥ 0.

(f) This statement can be easily verified using the definition of H .
(g) Let us suppose that zk, z̄, and x have the following spectral decompositions zk = ∑r

i=1 λi(zk)
ei(zk), z̄ = ∑r

i=1 λi(z̄)ei(z̄), and x = ∑r
i=1 λi(x)ei(x). By (4) and (3), one has that

〈∇�(zk), zk〉 =
r∑

i=1

φ′(λi(zk))λi(zk).

Then, using this equality and the Von Neumann inequality (cf. Lemma 2.2) we obtain that

〈∇�(zk), x − zk〉 ≤
r∑

i=1

φ′(λi(zk))(λi(x)− λi(zk)). (13)

On the other hand, as x ∈ int(K), and z̄ ∈ bd(K), one has that λi(x) > 0, for all i = 1, . . . , r, and
that there exists an l ∈ {1, . . . , r} such that λi(z̄) = 0, for all i = l, . . . , r, and λi(z̄) > 0, for all
i = 1, . . . , l − 1. Then, from (S.4) and the continuity of the λi values, we have that

lim
k→+∞

φ′(λi(zk))(λi(x)− λi(zk)) = −∞, ∀i = l, . . . , r. (14)

Since the expression limk→+∞ φ′(λi(zk))(λi(x)−λi(zk)) is finite, for all i = 1, . . . , l− 1, the relation
(11) follows from (13) and (14).

Finally, the equality (12) is obtained taking into account that

〈∇1H(zk, y)), x − zk〉 = 〈∇�(zk), x − zk〉 − 〈∇�(y), x − zk〉, ∀x, y ∈ int(K),

that the first term of the right-hand side of last equality goes to −∞, and the second one converges
as k → +∞.

Remark 2: A similar result to Part (g) of Proposition 3.1 can be found in [30, Lemma 3.2].
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Remark 3: By Proposition 3.1(g) and [36, Lemma 26.2] it follows that the function H(·, y) is
essentially smooth (cf. Definition 1) for any fixed y ∈ int(K) (likewise the function �). Then,
by [36, Theorem 26.1] one has that ∂xH(x, y) = ∅ for all x ∈ bd(K), and ∂xH(x, y) = {∇1H(x, y)}
for all x ∈ int(K), where ∂xH(·, y) denotes the subdifferential2 of H(·, y) with respect to the first
variable. In particular, dom(∂xH(·, y)) = int(K) for any fixed y ∈ int(K).

Proposition 3.1 and Remark 3 show that the function H defined by (8), with φ ∈ �(φ), is a
proximal distance with respect to int(K), and whose domain is dom(H) = dom(�)× int(K).

The following result is quite usefulwhenwe analyze convergence of proximal algorithms associated
with a proximal distance H .
Proposition 3.2: Let H be the function defined by (8) with φ ∈ �(φ). Consider the following
statements:

(B.1) For any {vk}k∈N ⊆ int(K) converging to y∗ ∈ K, we have that H(y∗, vk) → 0.
(B.2) For any {vk}k∈N ⊆ int(K) such that vk → v∗ ∈ dom(�), and c ∈ K, we have that H(c, vk) →

H(c, v∗).
The following implication holds: (B.1) ⇒ (B.2).

Proof: Let {vk}k∈N ⊆ int(K) be a sequence converging to v∗ ∈ dom(�), and let c ∈ K. Suppose
that v∗ ∈ bd(K), and define u = θvk + (1 − θ)v∗ with θ ∈ (0, 1). Clearly u ∈ int(K). Since ∇� is
monotone (cf. (S1) and Lemma 2.4), one has

θ〈∇�(u)− ∇�(vk), u − vk〉 ≥ 0.

Then,

θ〈∇�(u)− ∇�(vk), u − v∗〉 ≥ θ〈∇�(u)− ∇�(vk), vk − v∗〉 = 〈∇�(u)− ∇�(vk), u − v∗〉,

whence
〈∇1H(u, vk), u − v∗〉 = 〈∇�(u)− ∇�(vk), u − v∗〉 ≤ 0.

Now, by using (10) at the points z = v∗, y = vk, x = u, the above inequality implies that

H(v∗, u)+ H(u, vk) ≤ H(v∗, vk).

On the other hand, as � is essentially smooth (cf. Remark 3) from [38, Theorem 3.8] it follows that
limk→+∞ H(u, vk) = 0. Then, letting k → +∞ in the above inequality and using the assumption
(B.1), we obtain a contradiction. Hence, v∗ ∈ int(K). The result follows by the continuity of function
H(·, ·) on dom(�)× int(K) (cf. Proposition 3.1(b)).

Remark 4: We should point out that the proximal distance H , with φ ∈ �(φ) and dom(φ) = R+,
generally does not satisfy the condition (B.1) of Proposition 3.2 (see [6, Example 4.7] for K = Ln+,
and [7, Example 4.1] for K = Sn+), even if φ satisfies the following condition:

(S.5) For any {tk}k∈N ⊆ R++ such that limk→+∞ tk = t∗ ∈ R+, one has limk→+∞ dφ(t∗, tk) = 0.

Note that, in the case K = R
n+, the KL relative entropy distance satisfies (B.1) (see [10, Lemma 2.1]),

and hence, it does the same (B.2).

3.2. Distance-like functions

In this approach, we assume that V is a simple EJA. Letψ ∈ �0(R) with dom(ψ) = R+, and assume
the following conditions [4,6]:

(C.1) ψ is continuous and strictly convex on R+, and it is continuously differentiable on a subset
of dom(ψ), where dom(ψ ′) ⊆ dom(ψ) and int(dom(ψ ′)) = R++.
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(C.2) ψ is twice continuously differentiable on R++ and limt→0+ ψ ′′(t) = +∞.
(C.3) ξ(t) := ψ ′(t)t − ψ(t) is convex on dom(ψ ′), and ψ ′ is strictly concave on dom(ψ ′).
(C.4) (ψ ′)sc defined in (3) is concave with respect to K, that is, for all x, y ∈ dom((ψ ′)sc), and

β ∈ [0, 1], one has

(ψ ′)sc(βx + (1 − β)y)− β(ψ ′)sc(x)− (1 − β)(ψ ′)sc(y) ∈ K.

Remark 5: The notion of concavity with respect to symmetric cone K (cf. (C.4)) was recently
introduced in [39, Definition 1.2(b)] for a simple EJA. This notion extends [40, Definition 3.1(b)]
given for second-order cones.

In the sequel, we denote by �̂(ψ) the class of functions ψ satisfying the assumptions (C.1)–(C.4).
Given ψ ∈ �̂(ψ), let� be its spectrally defined function (cf. (2)), and ∇� be the gradient of that�
defined in (4). With such function, we can define Ĥ : V × V → R ∪ {+∞} by

Ĥ(x, y) :=
{
�(y)−�(x)− 〈∇�(x), y − x〉, x ∈ dom((ψ ′)sc), y ∈ K,
+∞, otherwise. (15)

The following result extends [6, Lemma 4.2] to our context.
Lemma 3.3: Let ψ ∈ �̂(ψ). Then
(a) The function�(x) := 〈∇�(x), x〉−�(x) = tr(ξ sc(x)), with ξ sc(x) = (ψ ′)sc(x)◦x−(ψ)sc(x),

is convex in dom((ψ ′)sc) and continuously differentiable on int(K).
(b) For any fixed y ∈ V, the function ρy(x) := 〈∇�(x), y〉 = 〈(ψ ′)sc(x), y〉 is continuously

differentiable on int(K) with ∇ρy(x) = ∇(ψ ′)sc(x)y, and moreover, it is strictly concave over
dom((ψ ′)sc) whenever y ∈ int(K).

Proof:

(a) By (C.3), ξ(t) is convex on dom(ψ ′). Then, from Lemma 2.4 one obtains that�(x) is convex
in dom((ψ ′)sc). For the other part, we note that ψ and ψ ′ are continuously differentiable on
R++ by (C.2). Then, by using Lemma 2.5(b) we obtain that (ψ)sc and (ψ ′)sc are continuously
differentiable on int(K). Hence, Lemma 2.5(a) implies the result.

(b) Clearly the function ρy(x), for any fixed y ∈ V, is continuously differentiable on int(K)
by (C.2) and Lemma 2.5(b). Moreover, by applying the chain rule for inner product of two
functions, one obtains that ∇ρy(x) = ∇(ψ ′)sc(x)y.

Now, we prove the second part. By (C.3) and Lemma 2.4, we have that the function tr((ψ ′)sc(x))
is strictly concave on dom((ψ ′)sc), that is, for any x, z ∈ dom((ψ ′)sc) with x �= z, and β ∈ (0, 1) one
has that

tr((ψ ′)sc(βx + (1 − β)z)) > βtr((ψ ′)sc(x))+ (1 − β)tr((ψ ′)sc(z)).

This implies that (ψ ′)sc(βx + (1 − β)z) − β(ψ ′)sc(x) − (1 − β)(ψ ′)sc(z) �= 0. Then, from this
relation, (C.4), and Lemma 2.3 we have that

〈(ψ ′)sc(βx + (1 − β)z)− β(ψ ′)sc(x)− (1 − β)(ψ ′)sc(z), y〉 > 0, ∀y ∈ int(K).

This shows that the function ρy(x) is strictly concave over dom((ψ ′)sc), for any fixed y ∈ int(K).
The next results present some properties of the function Ĥ . They are related to [4, Propositions

4.1 and 4.2] given for second-order cones.
Proposition 3.4: Let ψ ∈ �̂(ψ) and Ĥ be defined by (15). Then,

(a) Ĥ(x, y) ≥ 0 for any (x, y) ∈ dom((ψ ′)sc)× K, and Ĥ(x, y) = 0 iff x = y.
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(b) Ĥ(·, ·) is continuous on dom((ψ ′)sc)× K and, for any fixed y ∈ int(K), the function Ĥ(·, y) is
strictly convex on dom((ψ ′)sc).

(c) For any fixed y ∈ K, Ĥ(·, y) is continuously differentiable on int(K) with

∇1Ĥ(x, y) = ∇(ψ ′)sc(x)(x − y). (16)

(d) Ĥ(x, y) ≥ ∑r
i=1 dψ(λi(y), λi(x)) ≥ 0, for any (x, y) ∈ dom((ψ ′)sc)× K, where dψ is defined

in (7).
(e) For all γ ≥ 0, the level sets LĤ(y, γ ) = {x ∈ dom((ψ ′)sc) : Ĥ(x, y) ≤ γ } and LĤ(x, γ ) =

{y ∈ K : Ĥ(x, y) ≤ γ } are bounded, for any fixed y ∈ K and x ∈ dom((ψ ′)sc), respectively.
Proof:

(a) This statement follows directly from the strictly convex of the function� on dom((ψ ′)sc) (cf.
Lemma 2.4), and the definition of Ĥ .

(b) Sinceψ sc(y), (ψ ′)sc(x), (ψ ′)sc(x)◦ (y−x) are continuous functions for any x ∈ dom((ψ ′)sc),
and y ∈ K (by Lemma 2.4), and the trace function is also continuous, it follows that the
function Ĥ is continuous on dom((ψ ′)sc)×K. On the other hand, from Lemma 3.3 it follows
that 〈∇�(x), x〉 −�(x) is convex on dom((ψ ′)sc), and that 〈∇�(x), y〉 is strictly concave on
dom((ψ ′)sc), for any fixed y ∈ int(K). Hence, Ĥ(·, y) defined in (15) is strictly convex on
dom((ψ ′)sc), for any fixed y ∈ int(K).

(c) By (C.1) and Lemma 2.5(a) it follows that Ĥ(·, y) is continuously differentiable on int(K). The
equality (16) is obtained directly from applying the chain rule for inner product in (15), and
Lemma 3.3(b).

(d) Let x = ∑r
i=1 λi(x)ei(x) and y = ∑r

i=1 λi(y)ei(y) be the spectral decompositions of x and y,
respectively. Using the definition of Ĥ , it follows that for any (x, y) ∈ dom((ψ ′)sc)× K,

Ĥ(x, y) = �(y)−�(x)− tr(∇�(x) ◦ y)+ tr(∇�(x) ◦ x)

≥ �(y)−�(x)−
r∑

i=1

ψ ′(λi(x))λi(y)+ tr(∇�(x) ◦ x)

=
r∑

i=1

[ψ(λi(y))− ψ(λi(x))− ψ ′(λi(x))(λi(y)− λi(x))]

=
r∑

i=1

dψ(λi(y), λi(x)),

where the inequality follows from (4) and Von Neumann inequality (cf. Lemma 2.2), the
second equality is due to (2), (4) and Lemma 2.2, and the last one follows from (7). The
non-negativity of dψ(s, t) is due to the strict convexity of ψ on its domain.

(e) For any fixed y ∈ K and γ ≥ 0, from part (d) we have that LĤ(y, γ ) ⊆ {x ∈ dom((ψ ′)sc) :∑r
i=1 dψ(λi(y), λi(x)) ≤ γ }. Since the set {t ∈ dom(ψ ′) : dψ(s, t) ≤ 0} is equal to {s} or ∅,

one has that it is bounded, for any fixed s ≥ 0. Then, from the convexity of ξ(t)− ψ ′(t)s (cf.
(C.3)) and [36, Corollary 8.7.1] it follows that the level sets {t ∈ dom(ψ ′) : dψ(s, t) ≤ γ }, for
any fixed s ≥ 0, are bounded. Hence, LĤ(y, γ ) is bounded for all γ ≥ 0. Similarly, for fixed
x ∈ dom((ψ ′)sc), the sets LĤ(x, γ ) are bounded for all γ ≥ 0. �

Proposition 3.5: Suppose that ψ ∈ �̂(ψ). Then, for any fixed y ∈ int(K), the function Ĥ(·, y),
defined by (15) is essentially smooth.

Proof: Let {xk}k∈N ⊆ int(K), with xk → x ∈ bd(K). In order to show that Ĥ(·, y) is essentially
smooth we prove that ‖∇1Ĥ(xk, y))‖F → +∞, for any fixed y ∈ int(K). From (16) and (6), one has
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that
∇1Ĥ(xk, y) = (ψ ′′)sc(xk) ◦ xk − ∇(ψ ′)sc(xk)(y).

Moreover, if xk = ∑r
i=1 λi(xk)ei(xk) is the spectral decomposition of xk, the use of the relations (3)

and (5) in the above equality implies that

∇1Ĥ(xk, y) =
r∑

i=1

ψ ′′(λi(xk))(λi(xk)− 〈ei(xk), y〉)ei(xk)

+ 4
∑

1≤i<j≤r

[λi(xk), λj(xk)]ψ ′ei(xk) ◦ (ej(xk) ◦ y),

where
[λi(xk), λj(xk)]ψ ′ = ψ ′(λi(xk))− ψ ′(λj(xk))

λi(xk)− λj(xk)
, ∀i, j = 1, . . . , r and i �= j.

Let x = ∑r
i=1 λi(x)ei(x) be the spectral decomposition of x. Since x ∈ bd(K), there exists an

l ∈ {1, . . . , r} such that λi(x) = 0, for i = l, . . . , r and λi(x) > 0, for i = 1, . . . , l − 1. Then, by using
the Cauchy–Schwartz inequality it follows that

‖∇1Ĥ(xk, y))‖F ≥ |〈∇1Ĥ(xk, y)), e�(xk)〉|=|ψ ′′(λ�(xk))||λ�(xk)− 〈e�(xk), y〉|, ∀� ≥ l.

From Lemma 2.3 one has that 〈e�(xk), y〉 > 0, ∀k ∈ N. Then, as limk→+∞ λ�(xk) = λ�(x) = 0,
∀� ≥ l (by continuity of the eigenvalues), the term |λ�(xk)−〈e�(xk), y〉| converges to a finite value as
k → +∞. Since limk→+∞ ψ ′′(λ�(xk)) = +∞ (cf. condition (C.2)), one has that ‖∇1Ĥ(xk, y))‖F →
+∞ as k → +∞.

Propositions 3.4–3.5 show that the function Ĥ defined by (15), with ψ ∈ �̂(ψ), is a proximal
distance with respect to int(K), and whose domain is dom(Ĥ) = dom(�)× K.

The following result gives some properties about the distance Ĥ , which are important for proximal
algorithm associated with this distance.
Proposition 3.6: Let ψ ∈ �̂(ψ) and Ĥ be defined by (15). Then,

(a) For all x, y ∈ int(K) and z ∈ K, we have that

〈∇1Ĥ(y, x), z − y〉 ≤ Ĥ(x, z)− Ĥ(y, z). (17)

(b) If dom(ψ) = dom(ψ ′) = R+, then Ĥ satisfies the following condition:
(D) For any {vk}k∈N ⊆ int(K) converging to v∗ ∈ K, we have that Ĥ(vk, v∗) → 0.

Proof:

(a) From the definition of Ĥ ,� and ρz( · ) (defined in Lemma 3.3), we have for any x, y ∈ int(K)
and z ∈ K that

Ĥ(x, z)− Ĥ(y, z) = �(x)−�(y)+ ρz(y)− ρz(x)
≥ 〈∇�(y), x − y〉 + 〈∇ρz(y), y − x〉
= 〈∇�(y)− ∇(ψ ′)sc(y)z, x − y〉, (18)

where the inequality follows from the convexity of � and the strictly concave of ρz (see
Lemma 3.3), and the last equality is due to Lemma 3.3(b). On the other hand, first, we note
from Lemma 3.3(a) that � is the spectrally defined function of ξ , then by Lemma 2.5(a) and
(3) we obtain that

∇�(y) = (ξ ′)sc(y) = (ψ ′′)sc(y) ◦ y.
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Second, by Lemma2.5(b) one has that∇(ψ ′)sc(y)y = (ψ ′′)sc(y)◦y. Then, fromboth equalities
we have that

∇(ψ ′)sc(y)z = ∇(ψ ′)sc(y)(z − y)+ ∇(ψ ′)sc(y)y = ∇(ψ ′)sc(y)(z − y)+ ∇�(y).

Using this relation in (18) we obtain

Ĥ(x, z)− Ĥ(y, z) ≥ 〈∇(ψ ′)sc(y)(y − z), x − y〉 = 〈∇(ψ ′)sc(y)(y − x), z − y〉,

where the equality is due to symmetry of ∇(ψ ′)sc(y). Finally, the result follows using (16).
(b) By assumption, we have that dom((ψ ′)sc) = K. Then, Ĥ(·, v∗) is continuous on K by

Proposition 3.4(b). Thus, the result follows.

4. Examples of proximal distances

In this section, we present several examples of proximal distances (cf. Definition 2) taking into
account the two classes of real-valued functions considered in Section 3.

4.1. Examples of Bregman’s pseudo-distance

In the first four examples, we give an explicit expression for the proximal distance H , while the last
example presents a way to obtain functions φ satisfying conditions (S1)–(S4), and hence a proximal
distance H (this example is motivated by [41, Theorem 2]).

Example 4.1 (Entropy-like proximal distance): Let φ(t) = t ln (t)− t, if t ≥ 0 (with the convention
0 ln (0) = 0), and φ(t) = +∞, if t < 0. It is easy to check that φ ∈ �(φ) with dom(φ) = R+. Let
x = ∑r

i=1 λi(x)ei(x) be the spectral decomposition of x. Then,

ln (x) =
r∑

i=1

ln (λi(x))ei(x), ∀x ∈ int(K).

Thus, the spectrally defined function associated to φ is�(x) = tr(x ◦ ln (x)−x), if x ∈ K. By Lemma
2.5(a), we have that ∇�(x) = ln (x), for x ∈ int(K). Then, the functionH : V × V → R ∪ {+∞} is
given by

H(x, y) =
{
tr(x ◦ ln (x)− x ◦ ln (y)+ y − x), ∀x ∈ K, y ∈ int(K),
+∞, otherwise.

It follows from Proposition 3.1 and Remark 3 (see also [20, Propositions 3.1 and 4.1]) that H is a
proximal distance with C1 = K and C2 = int(K).
(a) Note that when V = R

n, K = R
n+, the function H has the form

H(x, y) =
{∑n

i=1 (xi ln (xi/yi)+ yi − xi), ∀x ∈ R
n+, y ∈ R

n++,
+∞, otherwise,

which is the so-called KL relative entropy distance [18].
(b) For V = R

n, K = Ln+, the function H has the form

H(x, y) =
{
tr(x ◦ ln (x)− x ◦ ln (y)+ y − x), ∀x ∈ Ln+, y ∈ Ln++,
+∞, otherwise.
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(c) Let Sn be the set of all n × n real symmetric matrices, and K = Sn+ be the cone of n × n
symmetric positive semi-definite matrices. In this case, the function H has the form

H(X,Y) =
{
tr(X ln (X − Y)+ Y − X), ∀X ∈ Sn+,Y ∈ Sn++,
+∞, otherwise.

Example 4.2: For p ∈ (0, 1), let us consider the family of functionsφ(t) = (pt−tp)/(1−p) if t ≥ 0,
and φ(t) = +∞ if, t < 0. It follows from [9, Example 3.1(3)] and [8, Example 3.1] that φ ∈ �(φ)

with dom(φ) = R+. Its spectrally defined function associated is�(x) = 1
1−p tr(px − xp), for x ∈ K.

By Lemma 2.5(a), we have that ∇�(x) = p
1−p (e − xp−1), for x ∈ int(K). Thus, we obtain that

H(x, y) =
{ 1

1−p tr((1 − p)yp + (pyp−1 − xp−1) ◦ x), ∀x ∈ K, y ∈ int(K),
+∞, otherwise.

From Proposition 3.1 and Remark 3, we obtain that H is a proximal distance with C1 = K and
C2 = int(K).

Note that when V = R
n and K = R

n+, the proximal distance H takes the form

H(x, y) =
{∑n

i=1 (y
p−1
i (yi + qxi)− (1 + q)xpi ), ∀x ∈ R

n+, y ∈ R
n++,

+∞, otherwise,

where q = p
1−p .

Example 4.3: Take φ(t) = ptq − qtp − (p− q) if t ≥ 0, and φ(t) = +∞, if t < 0, where 0 < p < 1,
q ≥ 1 (see [42, Example 2.1]). It is easy to show that φ ∈ �(φ) with dom(φ) = R+, and that its
spectrally defined function associated is given by �(x) = tr(pxq − qxp) − (p − q)r, for x ∈ K.
By Lemma 2.5(a) one has that ∇�(x) = pq(xq−1 − xp−1), for x ∈ int(K). Then, the function
H : V × V → R ∪ {+∞} takes the form

H(x, y) =
⎧⎨⎩
tr(p(xq + (q − 1)yq)− q(xp + (p − 1)yp)
−pqx ◦ (yq−1 − yp−1)), ∀x ∈ K, y ∈ int(K),
+∞, otherwise.

This function is a proximal distance with C1 = K and C2 = int(K) (cf. Proposition 3.1 and Remark
3). Note that when p = 1

2 and q = 1, the proximal distance takes the form

H(x, y) =
{
tr( 12y

1/2 − x1/2 + 1
2x ◦ y− 1

2 ), ∀x ∈ K, y ∈ int(K),
+∞, otherwise.

Example 4.4 (Log-barrier proximal distance): Let φ(t) = − ln (t), for t > 0. It is easy to verify that
φ ∈ �(φ) with dom(φ) = R++ (see for instance [8, Example 3.1]), and that its spectrally defined
function associated is�(x) = −tr( ln (x)) = − ln ( det (x)), for x ∈ int(K). By Lemma 2.5 it follows
that ∇�(x) = −x−1, for x ∈ int(K). Then, one has that

H(x, y) =
{
tr( ln (y)− ln (x)+ y−1 ◦ x)− r, ∀x, y ∈ int(K),
+∞, otherwise.

This function extends the log-barrier proximal distance given in [7,8,43] to our context. Moreover,
using Proposition 3.1 and Remark 3, one has that H is a proximal distance with C1 = C2 = int(K).
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Example 4.5: Let ϕ : R → R be a continuous and strictly convex function with dom(ϕ) = R+.
Assume that ϕ is continuously differentiable on R++, and that it satisfies the following condition:

lim
t↓0 tϕ

′(t) = 0, lim
t↓0 ϕ

′(t) = −∞. (19)

Then, the function φ defined by φ(t) = ϕ(t) + |t|p, with p > 1 fixed belongs to �(φ). Indeed, φ
satisfies conditions (S.1), (S.2), and (S.4). Condition (S.3) follows from [44, Proposition 2]. Therefore,
under the above assumptions, if� denotes its corresponding spectrally defined function, the function
H defined by (8) is a proximal distance with C1 = K and C2 = int(K).
Remark 6: Let φ : R → R, and let us consider the following assumption (see [44])

(K) For each s ∈ R+, there exist constants α(s) > 0, c(s) such that

dφ(s, t)+ c(s) ≥ α(s)|s − t|, ∀t ∈ R++.

If φ satisfies the conditions of Example 4.5 and the condition (K) holds, one has that φ ∈ �(φ). Some
examples of φ for which the condition (K) holds are [44]:

• φ1(t) = t ln (et − 1),
• φ2(t) = |t|p, with p > 1,
• φ3(t) = t ln (t)− t.

4.2. Examples of distance-like functions

Example 4.6: Let ψ(t) = tq+1

q+1 , if t ≥ 0, and ψ(t) = +∞, if t < 0, where q ∈ (0, 1). It is easy to
show that ψ satisfies (C.1)–(C.3) with dom(ψ) = dom(ψ ′) = R+, where ψ ′(t) = tq. Moreover,
since�(x) = 1

q+1 tr(x
q+1) and ∇�(x) = (ψ ′)sc(x) = xq, for x ∈ K, we can use the same arguments

of [40, Proposition 3.7] to prove that (C.4) holds (see also [39, Example 3.9(ii)]). Then, the function
Ĥ given by

Ĥ(x, y) =
{ 1

q+1 tr(y
q+1)+ q

q+1 tr(x
q+1)− tr(xq ◦ y), ∀x, y ∈ K,

+∞, otherwise,
is a proximal distance with C1 = C2 = K.
Example 4.7: Let ψ(t) = t ln (t)− t + 1, if t ≥ 0, and ψ(t) = +∞, if t < 0. It is easy to verify that
ψ satisfies conditions (C.1)–(C.3) with dom(ψ) = R+, and dom(ψ ′) = R++, where ψ ′(t) = ln (t).
Moreover, by [39, Example 3.9(i)] condition (C.4) also holds. Since �(x) = tr(x ◦ ln (x) − x + e),
for x ∈ K, and ∇�(x) = ln (x), for x ∈ int(K), the function Ĥ given by

Ĥ(x, y) =
{
tr(y ◦ ln (y)− y ◦ ln (x)+ x − y), ∀x ∈ int(K), y ∈ K,
+∞, otherwise,

is a proximal distance with C1 = int(K), and C2 = K.
Example 4.8: Letψ(t) = t ln (t)+(t+1) ln (t+1)+tq+1, if t ≥ 0, andψ(t) = +∞, if t < 0, where
q ∈ (0, 1). Clearly, ψ satisfies conditions (C.1)–(C.3) with dom(ψ) = R+, and dom(ψ ′) = R++,
where ψ ′(t) = ln (t)+ ln (t + 1)+ 2 + (q + 1)tq. Moreover, from [39, Example 3.9] it follows that
ψ satisfies condition (C.4). Since�(x) = tr(x ◦ ln (x)+ (x + e) ◦ ln (x + e)+ xq+1), for x ∈ K, and
∇�(x) = ln (x)+ ln (x + e)+ 2e + (q + 1)xq, for x ∈ int(K), the function Ĥ given by

Ĥ(x, y) =

⎧⎪⎨⎪⎩
tr(y ◦ ( ln (y)− ln (x))+ (y + e) ◦ ln (y + e)
−(y + e) ◦ ln (x + e)+ qxq+1 + yq+1

−2(y − x)− (1 + q)xq ◦ y), ∀x ∈ int(K), y ∈ K,
+∞, otherwise,

is a proximal distance with C1 = int(K), and C2 = K.
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Example 4.9: Let ψ1(t) = ψ(t) + ν
2 t

2 with ψ ∈ �̂(ψ) and ν > 0. Clearly, ψ1 satisfies (C.1)–
(C.4) with dom(ψ1) = dom(ψ), and dom(ψ ′

1) = dom(ψ ′). Since �1(x) = �(x) + ν
2 tr(x

2), for
x ∈ dom(�), and ∇�1(x) = ∇�(x)+ νx, for x ∈ dom((ψ ′)sc), the function Ĥν is defined by

Ĥν(x, y) = Ĥ(x, y)+ ν

2
‖x − y‖2, (20)

with Ĥ given by (15) is a proximal distance with C1 = dom((ψ ′)sc), and C2 = dom(�).
Remark 7: Note that the functions ψ considered in Examples 4.6–4.9 satisfy condition (C.4), for
any simple EJA V except for the algebra of all 3 × 3 octonion Hermitian matrices (denoted by O

3).
Two reasons why condition (C.4) fails for O

3 are explained in [39]. For instance, one of them is that
it seems impossible to embed O

3 into some Sn. Without considering this fact, the relation between
concavity with respect to K and matrix concavity cannot be used. The last fact is employed in the
proof of [39, Theorem 3.5]. Hence, Examples 4.6–4.9 are valid for any simple EJA except for O

3.

5. Study of proximal-type algorithms and primal central paths in SCP problem

We consider the following convex SCP problem

f∗ = min{f (x) : x ∈ V ∩ K}, (SCP)

where f ∈ �0(V), V = {x ∈ V : Ax = b} with A : V → R
m a surjective linear map, and b ∈ R

m.
Let us denote by A∗ the adjoint of the linear map A, by F = V ∩ K, F0 = V ∩ int(K), and
F∗ = {x ∈ F : f (x) = f∗} the feasible, the interior feasible set, and the optimal set of problem (SCP),
respectively, and by dom(f ) = {x ∈ V : f (x) < +∞} the domain of f .

In this section, first we study the convergence of proximal-type algorithms for solving problem
(SCP). Then, we define the primal central path for (SCP) and study its asymptotic behaviour.

From now on, we suppose the following assumptions on the problem (SCP):

(A1) f∗ > −∞;
(A2) dom(f ) ∩ F0 �= ∅.

5.1. Proximal-type algorithms

We consider the following interior proximal algorithm with proximal distance (IPAPD) for solving
problem (SCP): Algorithm IPAPD: Given H ∈ H, x0 ∈ F0, and scalars γk > 0, εk ≥ 0, for
k = 1, 2, . . . , we generate iteratively the sequence {xk} ⊂ F0 such that

gk ∈ ∂εk f (xk), (21)
γkgk + ∇1H(xk, xk−1) = A∗sk, (22)

for some sequence {sk} in R
m.

The following result shows that the algorithm IPAPD is well-defined. Its proof follows with the
same arguments as the ones given in the proof of [6, Proposition 3.1] (see also [8, Proposition 2.1]).
Proposition 5.1: Let H ∈ H. Then, for any xk−1 ∈ F0, γk > 0, and εk ≥ 0 ∀k ≥ 0, there exists a
unique point xk ∈ F0 satisfying (21) and (22), for some sk ∈ R

m. Moreover, for such xk one has

γkf (xk)+ H(xk, xk−1) ≤ f∗(xk−1, γk)+ ε,

where f∗(xk−1, γk) = min{γkf (x)+ H(x, xk−1) : x ∈ V}.
Let us denote byH1 (resp.H2) the family of functionsH defined by (8) (resp. (15)) with φ ∈ �(φ)

(resp. ψ ∈ �̂(ψ)). Clearly, Proposition 5.1 holds when H ∈ H1 or H ∈ H2.
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Next, we establish the convergence of the algorithm IPAPD under limit points. The proof of this
result repeats word by word the arguments in [8, Theorem 2.1].
Theorem 5.2: Let {xk} be the sequence generated by the algorithm IPAPD with H ∈ H1 or H ∈ H2,
and let σn = ∑n

k=1 γk. Then, the following results hold:

(a) f (xn)− f (x) ≤ σ−1
n (H(x, x0)+∑n

k=1 σkεk), for any x ∈ V ∩ dom(�), if H ∈ H1;
(b) f (xn)− f (x) ≤ σ−1

n (H(x0, x)+∑n
k=1 σkεk), for any x ∈ V ∩ dom((ψ ′)soc), if H ∈ H2;

(c) If σn → +∞ and εk → 0, then lim infn→+∞ f (xn) = f∗;
(d) The sequence {f (xk)} converges to f∗ whenever∑∞

k=1 εk < +∞;
(e) Suppose that F∗ �= ∅ and consider the following two cases:

(i) F∗ is bounded, and
∑∞

k=1 εk < +∞;
(ii)

∑∞
k=1 εkγk < +∞, and dom(φ) = R+ (or dom((ψ ′)) = R+).

Then, under either (i) or (ii) the sequence {xk} is bounded, and each limit point belongs to F∗.
Remark 8: Note that Theorem 5.2 holds for all Examples given in previous section. In particular,
for φ given in Example 4.1, we recover [20, Proposition 4.3].

As consequence of Theorem 5.2, the following result indicates an estimate for the global rate of
convergence for the algorithm IPAPD.
Corollary 5.3: Let {xk} be the sequence generated by the algorithm IPAPD with H ∈ H1 or H ∈ H2.
If F∗ �= ∅, dom(φ) = R+ (or dom((ψ ′)) = R+), and

∑∞
k=1 εk < +∞, then we have the estimate

f (xn)− f∗ = O(σ−1
n ).

Proof: Under the given hypothesis, Parts (a) and (b) of Theorem 5.2 hold, for any x = x∗ ∈ F∗.
Since 0 < σk ≤ σn,

∑∞
k=1 εk < +∞, the result follows.

To establish the global convergence of {xk} to an optimal solution of problem (SCP), we need
some conditions on the proximal distance H ∈ H (see, e.g. [8]):

(E.1) For any sequence bounded {vk}k∈N ⊆ int(K) and any v∗ ∈ K with H(v∗, vk) → 0, one has
vk → v∗.

(E.2) For any sequence bounded {vk}k∈N ⊆ int(K) and any v∗ ∈ K with H(vk, v∗) → 0, one has
vk → v∗.

Theorem 5.4: Let {xk} be the sequence generated by the algorithm IPAPD with H ∈ H1 or H ∈ H2,
and let σn = ∑n

k=1 γk. Suppose that F∗ �= ∅, σn → +∞,
∑∞

k=1 εk < +∞, and
∑∞

k=1 εkγk < +∞. If

(a) (B.1), (E.1) hold, and dom(φ) = R+, when H ∈ H1 , or
(b) (E.2) holds and dom(ψ) =dom((ψ ′)) = R+, when H ∈ H2,

then the sequence {xk} converges to an optimal solution of problem (SCP).

Proof: The proof of case (a) is similar to that in [8, Theorem 2.2]. For completeness, we only consider
the case (b). From (21)–(22) it follows that

γk(f (xk)− f (x)) ≤ 〈∇1H(xk, xk−1), x − xk〉 + γkεk, ∀x ∈ F .

Using (17) with y = xk, x = xk−1 and z = x, the above inequality implies that

γk(f (xk)− f (x)) ≤ H(xk−1, x)− H(xk, x)+ γkεk, ∀x ∈ F . (23)

Taking x = x∗ ∈ F∗ in (23), we get

H(xk, x∗) ≤ H(xk−1, x∗)+ γkεk. (24)
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Since
∑∞

k=1 εkγk < +∞, it follows from [8, Lemma 2.1] that the sequence {H(xk, x∗)} converges to
some l(x∗) ∈ R+. On the other hand, since the sequence {xk} is bounded (cf. Theorem 5.2(e)), there
exists a subsequence {xkj } converging to some optimal solution x∞ (cf. Theorem 5.2(e)). Then, using
Proposition 3.6(b), we have H(xkj , x∞) → 0, which implies that H(xk, x∞) → 0. Finally, by (E.2) it
follows that the sequence {xk} converges to x∞.

Remark 9: Note that it is slightly difficult to build proximal distances in our context, such that (B.1)
holds (see Remark 4). However, it is not difficult to build proximal distances such that either (E.1) or
(E.2) holds. For instance, the regularized proximal distance

Hν(x, y) = H(x, y)+ ν

2
‖x − y‖2, ν > 0,

with H ∈ H1 and dom(φ) = R+, (resp. H ∈ H2 and dom(ψ) = R+) satisfies (E.1) (resp. (E.2)).

5.2. Primal central paths with proximal distance

LetH be a proximal distance and x̄ ∈ int(K). The primal central path for problem (SCP) with respect
to H(·, x̄) is the set {x(μ) : μ > 0}, where x(μ) is solution of problem

min{f (x)+ μH(x, x̄) : x ∈ F}, μ > 0. (25)

Remark 10: Note thatwhen f is linear andH is theEntropy-like proximal distance (cf. Example 4.1),
the primal central path was studied in [21]. For f convex and continuously differentiable, in [30] the
authors studied this central path for a class spectral barrier function instead of proximal distance H .

Thenext result establishes that the primal central path iswell defined. Its proof follows immediately
from Definition 2 and [8, Proposition 2.1].
Proposition 5.5: For any H ∈ H and x̄ ∈ int(K), the primal central path {x(μ) : μ > 0} with
respect to H(·, x̄) is well defined, belong to F0, and for each μ > 0, it is the unique solution of

gμ + μ∇1H(x(μ), x̄) = A∗y(μ), (26)

for some gμ ∈ ∂f (x(μ)) and y(μ) ∈ R
m.

Remark 11: SinceA is surjectivewehave the relationship y(μ) = (AA∗)−1A(gμ−μ∇1H(x(μ), x̄)).
The following result is related to the boundedness of the primal central path (for small valued of

μ). Its proof is similar to the arguments given in Propositions 3–5 in [45].
Proposition 5.6: For any H ∈ H and x̄ ∈ int(K), the following assertions hold true:
(a) The function H(x(μ), x̄) is non-increasing in μ.
(b) The function f (x(μ)) is non-decreasing in μ.
(c) Suppose that F∗ �= ∅. If

(i) F∗ is bounded or
(ii) dom(H(·, x̄)) = K,
then the set {x(μ) : 0 < μ < μ̄} is bounded for any μ̄ > 0, and all their limit points are optimal
solutions of (SCP).

The next result shows the convergence of the primal central path, and provides a characterization
of its limit points when dom(H(·, x̄)) = K. It slightly generalizes [45, Proposition 6] to our context
(see also e.g. [30, Theorem 5.1]).
Theorem 5.7: Suppose that F∗ �= ∅. Then, for any x̄ ∈ int(K) and H ∈ H with dom(H(·, x̄)) = K,
the primal central path w.r.t. H(·, x̄) converges, when μ → 0, toward the unique optimal solution of
min{H(x, x̄) : x ∈ F∗}.
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In the following result, we present a natural extension to linear SCP of [45, Theorem 3], which
provides a connection between the proximal sequence and the primal central path.
Theorem 5.8: Suppose that f (x) = c�x with c ∈ V. Let {xk} be the sequence generated by the
algorithm IPAPD with H ∈ H, x0 ∈ F0 and εk ≡ 0, and {x(μ) : μ > 0} be the primal central path
w.r.t. H(·, x0). If
(a) H ∈ H1 and {μk} is defined as μk = (

∑k
j=1 γj)

−1, for k = 1, 2, . . ., or
(b) H ∈ H2, ∇(ψ ′)sc(x)(V) = Im(A∗) for any x ∈ int(K), and {μk} is defined as μk = γ−1

k , for
k = 1, 2, . . .,

then xk = x(μk) for k = 1, 2, . . . .Moreover, for each positive decreasing sequence {μk}, there exists a
positive sequence {γk} with∑∞

k=1 γk = +∞ such that the proximal sequence {xk}, with regularization
parameter γk, satisfies x(μk) = xk.

Proof: The proof of case (a) is similar to that in [45, Theorem 3]. For completeness, we only consider
the case (b).

From (22) and Proposition 3.4(c), we have that the sequence {xj} satisfies

γjc + ∇(ψ ′)sc(xj)(xj − xj−1) = A∗sj, (27)

for some sj ∈ R
m. Since ψ ′′(t) > 0, for all t ∈ R++ (cf. (C.1)–(C.2)), from [46, Theorem 3.2(b)] it

follows that ∇(ψ ′)sc(x) is positive definite on int(K). Then, (27) can be written as

[∇(ψ ′)sc(xj)]−1γjc + (xj − xj−1) = [∇(ψ ′)sc(xj)]−1A∗sj.

Summing this equality from j = 1 to k and making a suitable arrangement, we obtain

γkc + ∇(ψ ′)sc(xk)(xk − x0) = A∗sk + ∇(ψ ′)sc(xk)
k−1∑
j=1

[∇(ψ ′)sc(xj)]−1(A∗sj − γjc).

Takingμk = γ−1
k and using the fact that∇(ψ ′)sc(xj)(V) = Im(A∗), the above equality it reduced to

A∗yk = c + μk∇(ψ ′)sc(xk)(xk − x0) = c + μk∇1H(xk, x0),

for some yk ∈ R
m. Thus, from this equality and (26) we deduce that xk = x(μk). Now, let {x(μ) :

μ > 0} be the primal central path w.r.t H(·, x0) and let {y(μ) : μ > 0} be given in Remark 11. Take a
positive decreasing sequence {μk} and define the sequences xk = x(μk), yk = y(μk). It follows from
(26), Proposition 3.4(c), and positive definiteness of ∇(ψ ′)sc( · ) on int(K) that

[∇(ψ ′)sc(xk)]−1cμ−1
k + (xk − x0) = [∇(ψ ′)sc(xk)]−1A∗(ykμ−1

k ).

From this equality, we have that

[∇(ψ ′)sc(xk)]−1(cμ−1
k −A∗(ykμ−1

k ))+ (xk −xk−1) = [∇(ψ ′)sc(xk−1)]−1(cμ−1
k−1−A∗(yk−1μ−1

k−1)),

whence

cμ−1
k + ∇(ψ ′)sc(xk)(xk − xk−1) = A∗(ykμ−1

k )

+∇(ψ ′)sc(xk)[∇(ψ ′)sc(xk−1)]−1(cμ−1
k−1 − A∗(yk−1μ−1

k−1)).



OPTIMIZATION 1319

Letting γk = μ−1
k and using the fact that∇(ψ ′)sc(xj)(V) = Im(A∗), from the last equality we obtain

that
A∗sk = cγk + ∇(ψ ′)sc(xk)(xk − xk−1) = cγk + ∇1H(xk, xk−1), (28)

for some sk ∈ R
m. Since {γk} is a positive increasing sequence, it satisfies

∑∞
k=1 γk = +∞. Then,

from (28), we deduce that {xk} is the proximal sequence generated by the algorithm IPAPD with
H ∈ H2.

6. Conclusions

In this paper, we have provided two ways to construct a proximal distance with respect to the interior
of the symmetric cone K of the EJA. This distance has been generated by a real-valued function, and
under somemild assumptions, we have showed that it is a proximal one. In addition, several examples
and properties of this distance have been presented. As application of this proximal distance, we have
studied the convergence of proximal-type algorithms for solving convex SCP problems. Moreover,
we have analysed the asymptotic behaviour of the primal central path in this context. Finally, for
linear SCP, we have established the relations between the primal central paths and the sequence
generated by the proximal algorithm IPAPD.

Notes

1. Recall that a second-order cone [37] is defined by the set Ln+ := {x = (x1, x̄) ∈ R × R
n−1 : ‖x̄‖ ≤ x1}.

2. Recall that the ε-subdifferential of a f ∈ �0(V) at x is defined by ∂ε f (x) = {g ∈ V : f (x) + 〈g , z − x〉 − ε ≤
f (z), ∀z ∈ V}, for some ε ≥ 0, and the subdifferential by ∂f = ∂0f .
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