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a b s t r a c t 

In this work, a novel feature selection method for twin Support Vector Machine (SVM) is presented. The 

main idea is to combine two regularizers, namely the Euclidean and infinite norm to perform twin clas- 

sification and variable selection simultaneously. This latter task is performed in a coordinated fashion, 

enabling that the same attributes are selected in each twin classifiers. A single optimization problem is 

used to solve both subproblems, leading to a sparse final classification rule. Experiments on low- and 

high-dimensional datasets indicate that our approaches present the best average performance compared 

to well-known feature selection strategies, also achieving a synchronized feature elimination in the two 

twin classifiers. Our approaches are also able to improve the performance of the twin classifier, demon- 

strating the importance of feature selection in high-dimensional tasks. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Feature selection is an important task in knowledge-based deci-

ion systems [1] . The goal of feature selection is to construct sim-

le models based on only the attributes that are relevant for a par-

icular application, which are preferable to more complex ones ac-

ording to the principle of Occam’s razor [2] . A low dimensional

epresentation of the data leads to several advantages, such as bet-

er predictive performance thanks to the lower risk of overfitting,

etter understanding of the outcome of the modelling process for

ecision-making, and reduced storage and acquisition costs [3,4] . 

In this work, we explore feature selection methods for Support

ector Machines (SVMs) [5] . This supervised learning approach has

roved to be very successful for several reasons, such as its ability

o generalize the training patterns better thanks to the structural

isk minimization principle, and the representation being based on

nly a few data points. Unfortunately, SVM is not designed to iden-

ify the relevant variables automatically [6] . To overcome this issue,

eature selection can be embedded into the training process as a

art of the optimization problem (see e.g. [7–9] ). 

In this work, we focus on twin SVM [10] , an extension of the

raditional SVM method in which two nonparallel hyperplanes are

onstructed instead of a single one. The construction of these clas-
∗ Corresponding author. 
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ifiers is traditionally done by splitting the optimization problem

that appears in the classical SVM) into two subproblems [10,11] .

lternatively, the twin classifiers can also be obtained by solving a

ingle optimization problem; a model known as nonparallel hyper-

lane SVM (NH-SVM) [12] . 

Feature selection is more challenging in twin SVM than in stan-

ard SVM because two hyperplanes are constructed, and each one

f them can consider a different subset of variables as relevant. In

his work, we propose a novel strategy for twin SVM classification

nd synchronized feature selection, in which a group penalty func-

ion [13,14] is introduced as a second regularizer. In contrast with

ell-known regularizers for feature selection, such as the l 1 - and

 0 -norms, a group penalty function aims at jointly penalizing the

eights related to a given variable in both hyperplanes. The l ∞ 

-

orm [15] is used as a group penalty function, and the NH-SVM

odel is modified in order to solve a single optimization problem

o obtain both twin classifiers. 

The contents of the remainder of this work as follows: in

ection 2 we describe the methodological background that is rele-

ant for our proposal, which includes twin SVM formulations, and

eature selection approaches. The proposed method based on dou-

le regularization for NH-SVM is presented in Section 3 . Experi-

ental results using benchmark data sets are given in Section 4 .

inally, Section 5 provides the main conclusion and addresses fu-

ure developments. 

http://dx.doi.org/10.1016/j.knosys.2017.06.025
http://www.ScienceDirect.com
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2017.06.025&domain=pdf
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2. Literature overview 

In this section, we briefly describe the methods that are rel-

evant for our proposal: the twin SVM, the nonparallel hyperplane

SVM, feature selection strategies for SVM, and the concept of group

penalty functions. 

2.1. Twin support vector machine 

The twin SVM method [10] is designed to construct two non-

parallel hyperplanes, in contrast with traditional SVM, in which

a single hyperplane defines the classification rule. These two

“twin” classifiers are constructed independently via two different

quadratic programming (QP) problems. Given data matrices A ∈
� 

m 1 ×n and B ∈ � 

m 2 ×n for the positive and negative training pat-

terns, respectively, twin SVM constructs two classifiers of the form

w 

� 
k 

x + b k = 0 ( k = 1 , 2 ) in such a way that each function is closer

to instances of one of the two classes, and as far as possible from

those of the other class at the same time. The twin SVM formula-

tion has the following form: 

min 

w 1 ,b 1 , ξ2 

1 

2 

‖ 

A w 1 + e 1 b 1 ‖ 

2 + 

c 1 
2 

(‖ w 1 ‖ 

2 + b 2 1 ) + c 3 e 
� 
2 ξ2 

s.t. − (B w 1 + e 2 b 1 ) ≥ e 2 − ξ2 , 

ξ2 ≥ 0 , 

(1)

and 

min 

w 2 ,b 2 , ξ1 

1 

2 

‖ 

B w 2 + e 2 b 2 ‖ 

2 + 

c 2 
2 

(‖ w 2 ‖ 

2 + b 2 2 ) + c 4 e 
� 
1 ξ1 

s.t. (A w 2 + e 1 b 2 ) ≥ e 1 − ξ1 , 

ξ1 ≥ 0 , 

(2)

where c i > 0 ( i = 1 , 2 , 3 , 4 ) are trade-off parameters designed to

balance the compromise between complexity reduction (minimiza-

tion of the Euclidean norm of both weight vectors) and model fit.

The elements e 1 and e 2 are vectors of ones of appropriate dimen-

sions. As decision rule, a new observation x is assigned to class k ∗

corresponding to closest hyperplane: 

k ∗ = arg min 

k =1 , 2 

{
d k (x ) := 

| w 

� 
k x + b k | 
‖ w k ‖ 

}
, (3)

where d k is the distance of x from classifier w 

� 
k 

x + b k = 0 , k = 1 , 2 .

Formulation (1) and (2) is known as twin-bounded SVM (TB-SVM)

[11] , which is similar compared to the twin SVM (TW-SVM) for-

mulation proposed by Jayadeva et al. [10] by setting if c 1 = c 2 = ε.

This formulation can also be extended to construct nonlinear clas-

sifiers thanks to the “kernel trick” (see [10,11] for details). 

2.2. Nonparallel hyperplane SVM (NH-SVM) 

The NH-SVM method follows the same ideas as twin SVM, but

it constructs the two hyperplanes in a single optimization problem.

Formally, the following QP problem is solved: 

min 

w k ,b k , ξk 

k =1 , 2 

1 

2 

(‖ A w 1 + e 1 b 1 ‖ 

2 + ‖ B w 2 + e 2 b 2 ‖ 

2 
)

+ 

c 1 
2 

(‖ w 1 ‖ 

2 + b 2 1 + ‖ w 2 ‖ 

2 + b 2 2 

)
+ c 2 

(
e � 1 ξ1 + e � 2 ξ2 

)
s.t. A w 1 + e 1 b 1 − A w 2 − e 1 b 2 ≥ e 1 − ξ1 , 

B w 2 + e 2 b 2 − B w 1 − e 2 b 1 ≥ e 2 − ξ2 , 

ξ1 ≥ 0 , ξ2 ≥ 0 , 

(4)

where c k > 0 ( k = 1 , 2 ) are trade-off parameters [12] . The decision

rule is equivalent to twin SVM. 
Besides NH-SVM, some extensions for twin SVM have been pro-

osed in the literature. In particular, the reasoning behind twin

VM has been used in regression [16] , multi-class classification

17] , and robust classification via second-order cone programming

18] . For the latter approach, the SVM principle of maximum-

argin classification is used to construct twin hyperplanes that

orrectly classify the training patterns for specified error rates [19] .

he proposed robust setting has the ability of generalizing better

y assuming a pessimistic data distribution of the class-conditional

ensities with given mean and covariance matrices [18] . Like twin

VM, the NH-SVM method is also suitable for kernel functions

nce the kernel trick is applied to Formulation (4) . 

.3. Feature selection for SVM 

Several approaches have been proposed for feature selection in

inary SVM classification. The Fisher Score [20] , for example, mea-

ures the correlation between predictors and the target variable

y calculating the difference between the mean of both classes for

ach variable, as follows: 

 ( j) = 

∣∣∣∣ μ+ 
j 

− μ−
j 

(σ+ 
j 
) 2 + (σ−

j 
) 2 

∣∣∣∣, (5)

here μ+ 
j 

( μ−
j 

) is the mean for the j th attribute in the positive

negative) class and σ+ 
j 

( σ−
j 

) is the respective standard deviation.

ttributes can be ranked according to this measure, and SVM can

e trained subsequently using the subset of r variables with the

ighest Fisher Score. Since this method ranks attributes before ap-

lying any classification tasks, it can be used jointly with twin SVM

r NH-SVM, also allowing the use of kernel functions. 

The Recursive Feature Elimination SVM (SVM-RFE) method is an-

ther well-known strategy for feature selection for SVM [21] . In-

tead of computing a measure that is independent of the model,

VM-RFE removes those variables whose elimination leads to the

argest margin of class separation in a backward fashion. Since

he margin is inversely proportional to the Euclidean norm of the

eight vector, this value can be rewritten as follows: 

 

2 ( α) = 

m ∑ 

i,s =1 

αi αs y i y s x i · x s , (6)

here α are the dual variables of the standard SVM formula-

ion. Thus, SVM-RFE ranks the variables in terms of the measure

 W 

2 ( α) − W 

2 
(−p) 

( α) | , where W 

2 
(−p) 

( α) is equivalent to W 

2 ( α), with

he only difference being that variable p is eliminated from each

raining point [21] . Since this method can be constructed using the

ual formulation of SVM, it is suitable for the use of kernel func-

ions. 

The SVM-RFE method has been extended for twin SVM [22] .

or each attribute j , the TWSVM-RFE method computes the sum of

he absolute values of both weights, w 1 j and w 2 j , associated with

ach twin hyperplane. All weights needs to be normalized previ-

usly, i.e., the attributes are ranked according to W ( j) = w 

∗
1 j 

+ w 

∗
2 j 

,

here w 

∗
l j 

= 

| w l j | 
|| w l || 2 , for l = 1 , 2 . 

The main issue with the TWSVM-RFE method is that feature

election is not a coordinated strategy between the twin hyper-

lanes, and relevance is given simply by the average magnitude of

heir weights. Our method, in contrast, performs an embedded fea-

ure selection process that encourages sparsity in both twin prob-

ems simultaneously, aiming at finding a small set of common vari-

bles that work well in both classification functions. 

Regarding embedded methods, an important approach is the

se of the LASSO penalty or l 1 -norm instead of the Euclidean norm

or SVM regularization. The LASSO penalty finds a good compro-

ise between predictive performance and sparsity [23] . Feature se-

ection strategy is to use an approximation of the l -norm or the
0 
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ardinality of the non-zero elements of a vector. This strategy can

e applied by replacing the Euclidean norm [23] , or in combination

ith it [6,24] . 

The l 1 - and l 0 -norms can be applied to perform feature selec-

ion on twin SVM. For example, these norms can be used instead of

he Euclidean norm in each twin subproblem, resulting in two low-

imensional classifiers. This approach was suggested by Bai et al.

1] for the l 1 -norm (L 1 -TWSVM), and has the following formula-

ion: 

min 

 1 ,b 1 , ξ2 

‖ w 1 ‖ 1 + c 1 ‖ 

A w 1 + e 1 b 1 ‖ 1 + c 3 e 
� 
2 ξ2 

s.t. − (B w 1 + e 2 b 1 ) ≥ e 2 − ξ2 , 

ξ2 ≥ 0 , 

(7) 

nd 

min 

 2 ,b 2 , ξ1 

‖ w 2 ‖ 1 + c 2 ‖ 

B w 2 + e 2 b 2 ‖ 1 + c 4 e 
� 
1 ξ1 

s.t. (A w 2 + e 1 b 2 ) ≥ e 1 − ξ1 , 

ξ1 ≥ 0 . 

(8) 

The main issue with this approach is that the variables selected

n each subproblem may differ, and the combined set of selected

ttributes could be large. Although this strategy may lead to good

redictive performance, a reduced set of selected variables also en-

ances interpretability and reduces storage and variable acquisition

osts. This strategy has also been applied in a multi-class context

25] , but it has the same issue: feature selection is performed inde-

endently in each classification function, and not in a synchronized

ashion. 

In order to overcome this issue, Bai et al. [1] replaced all Eu-

lidean norms in the twin SVM formulation with the l 1 -norm,

nd introduced a feature selection matrix set E consisting of a

et of binary variables in the diagonal of this matrix that indi-

ates whether or not a variable is selected. This method, called

TSVM, has the advantage of performing a synchronized feature

election, which is also suitable for the use of kernel functions.

nfortunately, the inclusion of binary variables leads to a multi-

bjective mixed-integer programming problem, which has higher

omplexity compared with L 1 -TWSVM, and becomes intractable in

igh-dimensional settings. 

Alternatively, we propose using a group penalty function to

vercome this issue. This type of regularization functions have

een proposed for binary classification problems with grouped

ariables [26] , and subsequently extended to multi-class classifi-

ation [27] . Grouped variables are, for example, nominal attributes

ith multiple categories expressed through a set of dummy vari-

bles [26] . Since we may want to eliminate the original attribute

nstead of the dummy variables individually, we require a regular-

zer that penalizes the use of the full set of dummy variables. 

The group-lasso penalty [26] works as follows: Suppose that

ach of the n attributes are put in disjoint sets I j of dummy vari-

bles, where |I j | = p j , for j = 1 , . . . , J, and 

∑ J 
j=1 

p j = n . The group-

asso function has the following form: 

(w ) = 

J ∑ 

j=1 

√ 

p j || w 

( j) || 2 (9)

here || w 

( j) || 2 = 

√ ∑ 

l∈I j w 

2 
l 
. Another strategy for grouped vari-

bles is the l ∞ 

-norm penalty, proposed for the F ∞ 

-norm SVM

ethod [15] . The penalty function has the following form: 

(w ) = 

J ∑ 

j=1 

|| w 

( j) || ∞ 

(10)

here || w 

( j) || ∞ 

= max l∈I j {| w l |} . The F ∞ 

-norm SVM method can be

ast into a linear programming problem by introducing a set of
lack variables t j = || w 

( j) || ∞ 

, and adding new constraints | w l | ≤ t j 
or each l ∈ I j and j = 1 , . . . , J. 

. A novel SVM method for simultaneous twin feature selection

In this section, we propose a novel method for embedded fea-

ure selection and twin SVM classification. The main idea is to

dd the l ∞ 

-norm penalization in the NH-SVM method in order to

chieve a coordinated elimination of variables in both hyperplanes,

onferring sparsity to the twin SVM model. The choice of NH-SVM

s a baseline classification approach, instead of the traditional twin

VM model, is not arbitrary: since the NH-SVM method solves a

ingle optimization problem to construct the twin classifiers, we

an include the l ∞ 

-norm penalization and act in both hyperplanes

imultaneously. This is not possible to do in the twin SVM model

y Jayadeva [10] because the problem is constructed in two inde-

endent QP problems. 

The formulation that we propose is the following: 

min 

 k ,b k , ξk 

k =1 , 2 

1 

2 

(‖ A w 1 + e 1 b 1 ‖ 

2 + ‖ B w 2 + e 2 b 2 ‖ 

2 
)
+ λ

n ∑ 

j=1 

‖ w 

( j) ‖ ∞ 

+ 

c 1 
2 

(‖ w 1 ‖ 

2 + b 2 1 + ‖ w 2 ‖ 

2 + b 2 2 

)
+ c 2 

(
e � 1 ξ1 + e � 2 ξ2 

)
s.t. A w 1 + e 1 b 1 − A w 2 − e 1 b 2 ≥ e 1 − ξ1 , 

B w 2 + e 2 b 2 − B w 1 − e 2 b 1 ≥ e 2 − ξ2 , 

ξ1 ≥ 0 , ξ2 ≥ 0 , 

(11) 

here w 

( j) = (w 1 j , w 2 j ) ∈ � 

2 , and ‖ w 

( j) ‖ ∞ 

= max k =1 , 2 {| w k j |} , for

j = 1 , . . . , n . It can be seen that the above formulation corresponds

o the NH-SVM method (Formulation (4) ) with the inclusion of the

 ∞ 

-norm regularization term ( Eq. (10) ) in the objective function.

arameters c 1 , c 2 , and λ control the trade-offs among l 2 regulariza-

ion (margin maximization), model fit, and sparsity; respectively. 

The formulation (11) can be cast into a QP problem by intro-

ucing an additional variable z ∈ � 

n . The idea is to avoid using

he maximum in the objective function. Specifically, one has the

ollowing QP problem: 

min 

 k ,b k , ξk , z 
k =1 , 2 

1 

2 

(‖ A w 1 + e 1 b 1 ‖ 

2 + ‖ B w 2 + e 2 b 2 ‖ 

2 
)
+ λe � z 

+ 

c 1 
2 

(‖ w 1 ‖ 

2 + b 2 1 + ‖ w 2 ‖ 

2 + b 2 2 

)
+ c 2 

(
e � 1 ξ1 + e � 2 ξ2 

)
s.t. A w 1 + e 1 b 1 − A w 2 − e 1 b 2 ≥ e 1 − ξ1 , 

B w 2 + e 2 b 2 − B w 1 − e 2 b 1 ≥ e 2 − ξ2 , 

ξ1 ≥ 0 , ξ2 ≥ 0 , 

| w k | ≤ z , k = 1 , 2 . 

(12) 

ote that the last constraint of Formulation (12) can be replaced by

 k ≤ z and −w k ≤ z for k = 1 , 2 , leading to our final QP problem.

e refer to this formulation as the twin l 2 l ∞ 

-SVM . 

Next, we propose a simpler variation by setting c 1 = 0 . This pro-

osal is aligned with the F ∞ 

-norm SVM method, in which the l 2 
egularization is replaced by the l ∞ 

-norm, instead of using a lin-

ar combination of both regularizers. Specifically, we consider the

ollowing problem: 

min 

 k ,b k , ξk 

k =1 , 2 

1 

2 

(‖ A w 1 + e 1 b 1 ‖ 

2 + ‖ B w 2 + e 2 b 2 ‖ 

2 
)
+ λ

n ∑ 

j=1 

‖ w 

( j) ‖ ∞ 

+ c 2 
(
e � 1 ξ1 + e � 2 ξ2 

)
s.t. A w 1 + e 1 b 1 − A w 2 − e 1 b 2 ≥ e 1 − ξ1 , 

B w 2 + e 2 b 2 − B w 1 − e 2 b 1 ≥ e 2 − ξ2 , 

ξ1 ≥ 0 , ξ2 ≥ 0 . 

(13) 

e refer to Formulation (13) as the twin l ∞ 

-SVM . 
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Dual formulation of the twin l 2 l ∞ 

-SVM method 

In this section, the dual formulation of the twin l 2 l ∞ 

-SVM

method is derived. Duality is very useful for Support Vector Ma-

chine mainly for three reasons: more efficient training can be per-

formed (arguably the most popular optimization strategy for SVM

is SMO [28] which is constructed from the dual SVM formulation),

the use of the kernel trick [29] , and the geometrical interpretation

that leads the dual form of SVM [30] . 

The Lagrangian function associated with Formulation (12) is

given by 

L (w k , b k , ξk , z , r k , s k , t k , ̂  t k ) 

= 

1 

2 

(‖ A w 1 + e 1 b 1 ‖ 

2 + ‖ B w 2 + e 2 b 2 ‖ 

2 
)

+ 

c 1 
2 

(‖ w 1 ‖ 

2 + b 2 1 + ‖ w 2 ‖ 

2 + b 2 2 

)
+ c 2 e 

� 
1 ξ1 

+ c 2 e 
� 
2 ξ2 − r � 1 ξ1 − r � 2 ξ2 + λe � z 

−s � 1 (A (w 1 − w 2 ) + e 1 (b 1 − b 2 ) − e 1 + ξ1 ) 

−s � 2 (B (w 2 − w 1 ) + e 1 (b 2 − b 1 ) − e 2 + ξ2 ) 

−
2 ∑ 

k =1 

[ t � k (z + w k ) + ̂

 t � k (z − w k )] , (14)

where r k , s k ∈ � 

m k + , t k , ̂  t k ∈ � 

n + , for k = 1 , 2 . Thus, Problem (12) can

be written equivalently as 

min 

w k ,b k , ξk , z 
max 

r k , s k , t k , ̂ t k 

{ L (w k , b k , ξk , z , r k , s k , t k , ̂  t k ) : 

r k , s k , t k , ̂  t k ≥ 0 , k = 1 , 2 } , (15)

and hence the Wolfe-dual of Problem (12) (see [31] ) corresponds

to 

max 
r k , s k , t k , ̂ t k 

min 

w k ,b k , ξk , z 
{ L : ∇ w k 

L = ∇ z L = 0 , ∇ b k 
L = 0 , 

∇ ξk 
L = 0 , r k , s k , t k , ̂  t k ≥ 0 } . (16)

Computing the gradient of L with respect to w k , b k , ξk ( k = 1 , 2 ),

and z leads to the following linear system: 

(A 

� A + c 1 I) w 1 + b 1 A 

� e 1 − A 

� s 1 + B 

� s 2 − t 1 + ̂

 t 1 = 0 , (17)

(B 

� B + c 1 I) w 2 + b 2 B 

� e 2 + A 

� s 1 − B 

� s 2 − t 2 + ̂

 t 2 , = 0 , (18)

λe − (t 1 + t 2 ) − ( ̂ t 1 + ̂

 t 2 ) = 0 , (19)

e � 1 A w 1 + b 1 (c 1 + e � 1 e 1 ) − s � 1 e 1 + s � 2 e 2 = 0 , (20)

e � 2 B w 2 + b 2 (c 1 + e � 2 e 2 ) + s � 1 e 1 − s � 2 e 2 = 0 , (21)

c 2 e 1 − s 1 − r 1 = 0 , (22)

c 2 e 2 − s 2 − r 2 = 0 . (23)

Since r k , s k ≥ 0 for k = 1 , 2 , the following relation can be obtained

from (22) and (23) : 

0 ≤ s ≤ c 2 e , k = 1 , 2 . (24)
k k 
n addition, the Lagrangian (14) can be rewritten as 

 = 

1 

2 

v � 1 (H 

� H + c 1 I) v 1 + 

1 

2 

v � 2 (G 

� G + c 1 I) v 2 + ξ
� 
1 (c 2 e 1 − r 1 − s 1 ) 

+ ξ
� 
2 (c 2 e 

� 
2 − r 2 − s 2 ) + z � (λe � − t 1 − t 2 − ˆ t 1 − ˆ t 2 ) + s � 2 e 2 

+ s � 1 e 1 − s � 2 (B (w 2 − w 1 ) + e 1 (b 2 − b 1 )) − s � 1 (A (w 1 − w 2 ) 

+ e 1 (b 1 − b 2 )) −
2 ∑ 

k =1 

(t k − ˆ t k ) 
� w k , 

(25)

ith v k = [ w 

� 
k 
, b k ] 

� ∈ � 

n +1 for k = 1 , 2 , H = [ A, e 1 ] ∈ � 

m 1 ×(n +1) ,

nd G = [ B, e 2 ] ∈ � 

m 2 ×(n +1) . Then, the use of relations (19), (22) ,

nd (23) in (25) leads to the following form for the Lagrangian: 

 = 

1 

2 

v � 1 (H 

� H + c 1 I) v 1 + 

1 

2 

v � 2 (G 

� G + c 1 I) v 2 + s � 1 e 1 + s � 2 e 2 

− w 

� 
2 (t 2 − ˆ t 2 ) + v � 1 [ −H 

� G 

� ] 

(
s 1 
s 2 

)
+ v � 2 [ H 

� − G 

� ] 

(
s 1 
s 2 

)

− w 

� 
1 (t 1 − ˆ t 1 ) . 

(26)

ote also that relations (17) and (20) , and relations (18) and

21) can be written compactly as 

(H 

� H + c 1 I) v 1 + [ −H 

� G 

� ] 

(
s 1 
s 2 

)
+ 

(
−t 1 + ̂

 t 1 
0 

)
= 0 (27)

nd 

(G 

� G + c 1 I) v 2 + [ H 

� − G 

� ] 

(
s 1 
s 2 

)
+ 

(
−t 2 + ̂

 t 2 
0 

)
= 0 , (28)

espectively. From (27) and (28) , we have that relation (26) reduces

o 

 = s � 1 e 1 + s � 2 e 2 −
1 

2 

v � 1 (H 

� H + c 1 I) v 1 − 1 

2 

v � 2 (G 

� G + c 1 I) v 2 . (29)

Finally, since the symmetric matrices H 

� H + c 1 I and G 

� G + c 1 I

re definite positive, for any c 1 > 0, the dual formulation for the

win l 2 l ∞ 

-SVM method can be derived by using Eqs. (27) and

28) in Eq. (29) : 

min 

 k , t k , ̂ t k 
k =1 , 2 

1 

2 

α� (Ā 

� 
1 (H 

� H + c 1 I) 
−1 Ā 1 + Ā 

� 
2 (G 

� G + c 1 I) 
−1 Ā 2 

)
α

− s � 1 e 1 − s � 2 e 2 

s.t. 0 ≤ s k ≤ c 2 e k , t k , ̂  t k ≥ 0 , k = 1 , 2 , 

t 1 + t 2 + ̂

 t 1 + ̂

 t 2 = λe , 

(30)

here Ā 1 = [ −H 

� G 

� − ˆ I 0 ˆ I 0] , Ā 2 = [ H 

� − G 

� 0 − ˆ I 0 ˆ I ] ∈
 

n +1 ×4 n + m , with 

ˆ I = 

(
I 

0 

)
∈ � 

n +1 ×n , m = m 1 + m 2 ; and

= [ s � 
1 
, s � 

2 
, t � 

1 
, t � 

2 
, ̂  t � 

1 
, ̂  t � 

2 
] � ∈ � 

4 n + m . 

emark 1. The solution v k = [ w 

� 
k 
, b k ] 

� ( k = 1 , 2 ) to twin l 2 l ∞ 

-SVM

Formulation (12) ) can be derived by first solving Problem (30) in

rder to obtain s k , t k , and 

ˆ t k ( k = 1 , 2 ), and then by evaluating the

xpressions 

 1 = (H 

� H + c 1 I) 
−1 

(
A 

� s 1 − B 

� s 2 + t 1 − ˆ t 1 
e � 1 s 1 − e � 2 s 2 

)
(31)

nd 

 2 = (G 

� G + c 1 I) 
−1 

(
−A 

� s 1 + B 

� s 2 + t 2 − ˆ t 2 
−e � 1 s 1 + e � 2 s 2 

)
(32)

hat result from (27) and (28) . 
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Table 1 

Number of features, number of examples, and number of ex- 

amples per class (minority; majority) for all seven datasets. 

Dataset #features #examples #class(min.,maj.) 

SONAR 60 208 (97;111) 

ALON 2,0 0 0 62 (22;40) 

GRAVIER 2,905 168 (57;111) 

ALIZADEH 4,026 96 (35;61) 

POMEROY 7,128 60 (21;39) 

WEST 7,129 49 (24;25) 

SHIPP 7,129 77 (19;58) 
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Table 2 

Maximum LOO AUC over all subsets of selected attributes, in percentage, for Sonar, 

Alon, Gravier, and Alizadeh datasets. 

Method SONAR ALON GRAVIER ALIZADEH 

AUC n ∗ AUC n ∗ AUC n ∗ AUC n ∗

Fisher + SVM(l) 80.1 50 88.2 20 78.8 100 95.6 10 0 0 

SVM-RFE(l) 80.4 50 89.4 20 67.9 500 95.6 20 

Fisher + SVM(k) 81.7 50 88.1 20 78.3 100 96.3 100 

SVM-RFE(k) 82.3 30 89.4 100 75.7 500 96.3 100 

L1-SVM 80.1 50 89.4 20 76.6 50 93.3 20 

L1-TWSVM 80.7 50 92.7 20 76.2 50 96.3 20 

TWSVM-RFE 80.5 50 89.4 50 77.5 50 94.6 20 

NHSVM-RFE 80 20 88.2 20 74 50 87.8 20 

Twin l ∞ -SVM 80 20 94.0 20 79.3 20 95.6 100 

Twin l 2 l ∞ -SVM 91.0 20 94.0 20 78.4 50 98.5 50 

Table 3 

Maximum LOO AUC over all subsets of selected attributes, in per- 

centage, for Pomeroy, Westm and Shipp datasets. 

Method POMEROY WEST SHIPP 

AUC n ∗ AUC n ∗ AUC n ∗

Fisher + SVM(l) 72.0 50 89.8 20 96.5 10 0 0 

SVM-RFE(l) 67.4 20 89.8 20 96.5 10 0 0 

Fisher + SVM(k) 72.0 50 89.8 20 96.5 10 0 0 

SVM-RFE(k) 73.4 100 79.4 20 97.4 20 

L1-SVM 75.8 20 81.5 20 97.4 50 

L1-TWSVM 70.9 50 81.6 50 100 50 

TWSVM-RFE 72 50 81.7 20 100 20 

NHSVM-RFE 74.5 250 71.5 20 100 20 

Twin l ∞ -SVM 75.8 20 85.8 500 100 20 

Twin l 2 l ∞ -SVM 77.1 50 89.8 20 100 20 
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emark 2. Note that if c 1 = 0 , i.e., there is no regularization term

n the objective function of the twin l 2 l ∞ 

-SVM formulation, then it

s possible that the matrices H 

� H and G 

� G may not be well condi-

ioned. Hence, we should explicitly introduce a regularization term

I , with δ > 0 a fixed small scalar, in order to avoid the possible

ll-conditioning of the matrices H 

� H and G 

� G . In our experiments

e use δ = 10 −7 . In case the symmetric matrices H 

� H and G 

� G are

ositive definite, the dual of Problem (13) is given by 

min 

 k , t k , ̂ t k 
k =1 , 2 

1 

2 

α� (Ā 

� 
1 (H 

� H) −1 Ā 1 + Ā 

� 
2 (G 

� G ) −1 Ā 2 

)
α − s � 1 e 1 − s � 2 e 2 

s.t. 0 ≤ s k ≤ c 2 e k , t k , ̂  t k ≥ 0 , k = 1 , 2 , 

t 1 + t 2 + ̂

 t 1 + ̂

 t 2 = λe . 

(33) 

The dual of the twin l 2 l ∞ 

-SVM method has two important prop-

rties. First, the RFE algorithm described in Section 2.3 is usually

ritten in terms of the dual variables [29] , and therefore the RFE

trategy can be implemented based on Formulation (30) . Addition-

lly, kernel-based formulations are usually derived from the dual

ia the kernel trick, and Problem (11) can be useful for this task. 

. Experimental results 

The proposed twin l 2 l ∞ 

-SVM methodology and its simplified

ersion, twin l ∞ 

-SVM, were applied to one dataset from the UCI

epository [32] , the Sonar dataset, which was studied in the con-

ext of feature selection in [2] , and six microarray datasets: Alon’s

olon cancer data [33] , Gravier’s breast cancer data [34] , Alizadeh’s

ymphoma data [35] , Pomeroy’s central nervous system embryonal

umor data [36] , West’s breast cancer data [37] , and Shipp’s lym-

homa data [38] . The relevant meta-data (the number of variables,

he total sample size, and the number of observations per class) is

resented in Table 1 . 

In Table 1 , we observe that all studied datasets are high-

imensional, ranging from 60 to 7129 attributes. These datasets

lso have few examples, which make them more challenging in

erms of the modelling process, making feature selection of utmost

mportance in such cases. All the datasets are relatively balanced

n terms of the class distribution. For studies that combine feature

election and the class-imbalance problem, we refer the reader to

39] . 

.1. Data preparation and model calibration 

Together with our proposal, we show the Fisher Score method

sing standard SVM in its linear and kernel-based versions as the

aseline classifier, the SVM-RFE method using linear and kernel-

ased SVM [21] , the TWSVM-RFE strategy [22] using twin SVM and

H-SVM as baseline classifiers (we refer to the latter strategy as

HSVM-RFE), the l 1 -TWSVM method (Formulation (7) and (8) ), as

ell as the proposed twin l 2 l ∞ 

-SVM and twin l ∞ 

-SVM methods. 

The experimental setting follows: Leave-one-out cross-

alidation (LOO) was used in each dataset for model selection and
alidation purposes. The following values for parameters C (stan-

ard SVM), c i with i = 1 , . . . , 4 (Twin SVM, NH-SVM, l 1 -TWSVM,

nd the proposed method), and λ were explored before perform-

ng feature selection: C, c 1 , c 2 , c 3 , c 4 , λ ∈ { 2 −7 , 2 −6 , . . . , 2 6 , 2 7 } .
he AUC (Area Under the Curve) was used as the performance

etric. For kernel-based methods, we use the radial basis function

RBF) kernel with γ = 1 / 2 σ 2 = 1 /r, with r the number of selected

ariables. We set c 1 = c 2 for the methods Twin SVM, l 1 -TWSVM,

nd twin l 2 l ∞ 

-SVM; and c 3 = c 4 for Twin SVM, and l 1 -TWSVM to

imit the grid search to a maximum of two parameters. 

All feature selection methods are trained using all available at-

ributes, and then a feature ranking is constructed. Feature selec-

ion was performed in a backward fashion on the training set, and

he AUC was monitored for various subsets of selected variables of

ardinality n = { 20 , 50 , 100 , 250 , 500 , 1000 } , with the exception of

he Sonar dataset ( n = { 5 , 10 , 20 , 30 , 40 , 50 } ). 
.2. Results summary 

A summary of the results obtained from our experiments is pre-

ented in Tables 2–4 , in which the maximum and average leave-

ne-out AUC values among all subsets of n attributes and for all

ve microarray datasets are presented, respectively. On the one

and, the maximum performance provides the best single solution,

nd allows us to estimate its predictive power if implemented. The

verage performance, on the other hand, allows us to assess the

tability of the feature selection process [39] . The best performance

s highlighted in bold type. The value of n ∗ ∈ {20, 50, 100, 250, 500,

0 0 0} ( n ∗ ∈ {5, 10, 20, 30, 40, 50} for the Sonar dataset), the cardi-

ality of the subset of selected variables that leads to higher AUC

or each method, is also reported in Tables 2 and 3 . 

In Tables 2 and 3 , we observe that our proposed methods, ei-

her twin l ∞ 

-SVM or twin l 2 l ∞ 

-SVM, always achieves the best max-

mum performance on all the subsets of selected features. This

s an important conclusion since these models are the ones that
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Table 4 

Average LOO AUC over all subsets of selected attributes, in percentage, for all datasets. 

Method SONAR ALON GRAVIER ALIZADEH POMEROY WEST SHIPP 

Fisher + SVM(l) 71.1 86.1 73.6 93.7 62.7 72.8 92.4 

SVM-RFE(l) 70.5 87 70.7 93.5 60.5 70.1 91.5 

Fisher + SVM(k) 70.4 86.6 73.0 93.8 62.6 74.5 93 

SVM-RFE(k) 79.8 87.4 70.6 93 63.3 66.3 96.1 

L1-SVM 70.4 89.4 76.5 92.7 71.7 81.5 97.1 

L1-TWSVM 77.9 90.8 74.1 95.6 66.0 81.3 99.9 

TWSVM-RFE 77.7 88.4 75.4 69.3 67.5 68.7 96.1 

NHSVM-RFE 78.0 88.7 73.7 70.0 68.4 68.1 97.1 

Twin l ∞ -SVM 77.5 91.9 76.9 95.6 73.8 83.5 100 

Twin l 2 l ∞ -SVM 77.9 91 78 98.5 69.2 83.6 100 

Table 5 

Best combination of parameters for all feature selection methods. 

Method Parameter SONAR ALON GRAVIER ALIZADEH POMEROY SHIPP WEST 

Fisher + SVM(l) C 2 0 2 −3 2 2 2 −6 2 0 2 1 2 1 

SVM-RFE(l) C 2 4 2 −4 2 −3 2 −6 2 −1 2 −1 2 0 

Fisher + SVM(k) C 2 7 2 1 2 7 2 1 2 5 2 7 2 5 

SVM-RFE(k) C 2 7 2 1 2 7 2 1 2 3 2 7 2 0 

L1-SVM C 2 4 2 −2 2 −1 2 −2 2 0 2 1 2 −2 

L1-TWSVM c 1 = c 2 2 0 2 1 2 −1 2 −3 2 2 2 1 2 −1 

c 3 = c 4 2 3 2 1 2 −1 2 −4 2 0 2 1 2 −1 

TWSVM-RFE c 1 = c 2 2 −2 2 −4 2 −6 2 −2 2 −5 2 −1 2 −6 

c 3 = c 4 2 0 2 0 2 2 2 1 2 2 2 −1 2 −1 

NHSVM-RFE c 1 2 2 2 −4 2 −1 2 2 2 −4 2 0 2 −3 

c 2 2 0 2 −2 2 −7 2 −4 2 2 2 −1 2 −7 

Twin l ∞ -SVM λ 2 −6 2 −4 2 −4 2 0 2 7 2 −6 2 2 

c 2 2 −4 2 4 2 −7 2 0 2 7 2 0 2 −7 

Twin l 2 l ∞ -SVM λ 2 7 2 4 2 0 2 1 2 7 2 −6 2 7 

c 1 = c 2 2 0 2 −5 2 −1 2 3 2 −3 2 2 2 −5 
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are eventually implemented for decision-making. A comparison be-

tween the two proposed strategies suggests that relatively similar

performance can be obtained, and therefore the l 2 -regularization

can be omitted from the model. 

In Table 4 , we observe that the best average performance is also

achieved by our methods in all datasets, with the only exception

being the Sonar dataset, demonstrating the robustness of our strat-

egy in terms of consistently identifying the relevant variables while

achieving good predictive performance in terms of AUC. A compar-

ison between the proposed twin l ∞ 

-SVM and twin l 2 l ∞ 

-SVM also

confirms our previous result which suggested that relatively simi-

lar performance can be achieved without using the Euclidean norm

as regularizer. 

The final parameters for all feature selection methods are re-

ported in Table 5 . 

4.3. Model complexity and running times 

The proposed approaches have a similar complexity compared

with NH-SVM since the inclusion of the l ∞ 

-regularization can be

cast into a linear expression in the objective function without af-

fecting the convexity of the problem. Our model, however, includes

n decision variables (vector z ), and 2 n constraints in order to con-

struct a smooth, quadratic problem. 

A comparison in terms of running times, in seconds, is provided

in Table 6 for all the methods and datasets. For each fold of the

LOO-crossvalidation, the running time is computed for obtaining

all the solutions of different subsets of size n ∗, using the best con-

figuration of parameters for each method. Subsequently, a mean

running time is obtained by simply averaging all running times

for each fold. All experiments were performed on an HP Envy dv6

with 16 GB RAM, a i7-2620M processor with 2.70 GHz, 750GB

SSD, and using Microsoft Windows 10.1 Operating System (64-bits).

In terms of implementations, the methods l 1 -SVM, l 1 -TWSVM, and

the proposed twin l l ∞ 

-SVM and twin l ∞ 

-SVM methods were de-
2 
eloped using a generic solver (CVX, see [40] ); LIBSVM [41] was

sed for standard SVM-based methods; and the codes by Yuan-Hai

hao et al., authors of Twin-Bounded SVM [11] , were used for twin

VM and NH-SVM classifiers. These codes are publicly available at

ttp://www.optimal-group.org/ . The twin SVM and NH-SVM meth-

ds were also implemented using the CVX solver for comparison

urposes. 

It can be observed first in Table 6 that all running times are

ractable, with about one minute being the longest training time.

urthermore, there is a gap between highly optimized codes, such

s the LIBSVM toolbox and the twin implementations by Shao

t al., and the use of a generic solver such as CVX. For example,

 1 -SVM is the most efficient method in theory, but it has signif-

cantly longer running times compared with l 2 -SVM and twin l 2 -

VM approaches. In the same direction, our proposals are slower

han NHSVM-RFE and TWSVM-RFE when the implementations by

hao et al. are used (see the first set of results in Table 6 ), but

hey are roughly similar when CVX is used (see the second set of

esults in Table 6 ). As future work, the development of an efficient

ptimization strategy for our proposal to reduce running times it

s suggested, following the work by Shao et al. [11] . 

.4. Feature selection performance and synchronization 

One of the hypotheses of this work is that our proposals per-

orm a coordinated feature selection, enabling each twin classi-

er to have similar relevant variables in its functions. In contrast,

pproaches like twin SVM that construct the classification mod-

ls independently will necessarily identify different relevant vari-

bles in each twin function. In order to study this hypothesis, we

rained each method and sorted the absolute values of the weights

f both twin classifiers in a descending order for TWSVM-RFE,

HSVM-RFE, L1-TWSVM, twin l 2 l ∞ 

-SVM, and twin l ∞ 

-SVM meth-

ds. Then, we identified the n = { 20 , 50 , 100 , 250 , 500 , 1000 } ( n ∈
5, 10, 20, 30, 40, 50} for the Sonar dataset) most relevant variables

http://www.optimal-group.org/
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Table 6 

Average running times, in seconds, for all methods and datasets. 

Method SONAR ALON GRAVIER ALIZADEH POMEROY WEST SHIPP 

Fisher + SVM(l) 0 ′′ .06 0 ′′ .53 2 ′′ .61 0 ′′ .69 1 ′′ .80 1 ′′ .41 1 ′′ .05 

SVM-RFE(l) 0 ′′ .06 0 ′′ .11 0 ′′ .47 0 ′′ .13 0 ′′ .17 0 ′′ .11 0 ′′ .23 

Fisher + SVM(k) 0 ′′ .05 0 ′′ .63 2 ′′ .39 0 ′′ .98 1 ′′ .06 3 ′′ .41 1 ′′ .02 

SVM-RFE(k) 0 ′′ .16 0 ′′ .08 0 ′′ .50 0 ′′ .28 0 ′′ .22 0 ′′ .14 0 ′′ .22 

L1-SVM 6 ′′ .30 6 ′′ .81 14 ′′ .38 11 ′′ .23 8 ′′ .98 8 ′′ .91 11 ′′ .09 

L1-TWSVM 13 ′′ .45 17 ′′ .64 32 ′′ .33 24 ′′ .25 21 ′′ .88 20 ′′ .14 25 ′′ .91 

TWSVM-RFE a 0 ′′ .45 1 ′′ .94 3 ′′ .22 5 ′′ .95 18 ′′ .13 18 ′′ .20 20 ′′ .03 

NHSVM-RFE a 0 ′′ .91 1 ′′ .73 4 ′′ .30 6 ′′ .42 20 ′′ .14 20 ′′ .38 19 ′′ .86 

TWSVM-RFE b 16 ′′ .53 19 ′′ .80 22 ′′ .88 21 ′′ .05 20 ′′ .14 24 ′′ .25 23 ′′ .13 

NHSVM-RFE b 2 ′′ .84 12 ′′ .13 22 ′′ .38 15 ′′ .11 13 ′′ .83 14 ′′ .92 17 ′′ .78 

Twin l ∞ -SVM 2 ′′ .89 13 ′′ .58 72 ′′ .44 38 ′′ .42 30 ′′ .33 26 ′′ .16 37 ′′ .38 

Twin l 2 l ∞ -SVM 2 ′′ .98 12 ′′ .20 66 ′′ .19 32 ′′ .03 21 ′′ .78 20 ′′ .36 48 ′′ .63 

a Method implemented using the codes by Shao et al. 
b Method implemented using the CVX solver. 

Table 7 

Maximum Pearson’s correlation over all subset of selected attributes for all seven datasets. 

Method SONAR ALON GRAVIER ALIZADEH POMEROY WEST SHIPP 

TWSVM-RFE 0.85 0.65 0.30 0.23 0.63 0.75 0.49 

NHSVM-RFE 0.56 0.55 0.62 0.21 0.82 0.79 0.56 

L1-TWSVM 1.00 0.96 0.96 0.94 1.00 0.99 0.95 

Twin l ∞ -SVM 0.76 1.00 1.00 1.00 1.00 1.00 1.00 

Twin l 2 l ∞ -SVM 1.00 1.00 0.98 1.00 1.00 1.00 1.00 

Table 8 

Average Pearson’s correlation over all subset of selected attributes for all seven datasets. 

Method SONAR ALON GRAVIER ALIZADEH POMEROY WEST SHIPP 

TWSVM-RFE 0.58 0.59 0.23 0.20 0.58 0.69 0.42 

NHSVM-RFE 0.48 0.49 0.58 0.20 0.79 0.76 0.42 

L1-TWSVM 0.40 0.76 0.73 0.57 0.79 0.86 0.48 

Twin l ∞ -SVM 0.53 0.80 0.93 0.93 1.00 1.00 0.90 

Twin l 2 l ∞ -SVM 1.00 0.82 0.83 1.00 0.97 1.00 0.88 
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n each function (the n highest absolute values), and created two

inary variables that reflect this selection (1 if variable j is relevant

or twin classifier k = 1 , 2 ; 0 otherwise). Finally, we computed the

earson’s correlation [42] between both indicator vectors as a mea-

ure of synchronized feature selection: a higher correlation means

he two twin classifiers are identifying the same variables as rel-

vant, while a low (or negative) correlation means that both clas-

ifiers are inconsistent in terms of the variables that are useful in

he construction of the models. 

As in the previous experiments, Tables 7 and 8 present a sum-

ary of the results obtained from our experiments, in which the

aximum and average Pearson’s correlations for the different sub-

ets of attributes of cardinality n and for all datasets are presented,

espectively. 

In Tables 7 and 8 , we can observe clearly that our propos-

ls achieved a higher average and maximum Pearson’s correlation

ompared to the alternative methods, being close to one in both

etrics in all datasets. In contrast, both TWSVM-RFE and NHSVM-

FE have much lower values for this measure, with NHSVM-RFE

lightly better than TWSVM-RFE at identifying the same feature

n the twin functions. This result is to be expected since NH-

VM solves a single optimization problem while twin SVM con-

tructs both hyperplanes independently. We confirmed our hypoth-

sis, concluding that the l ∞ 

regularization is very useful for per-

orming a coordinated feature selection, identifying the same fea-

ures as relevant in each twin classifier. 

Next, we report the spinodal for all the subsets studied of n

ariables for the Alon and Alizadeh datasets. For the sake of space

nd visibility, we focus only in these two datasets, which are also

he best-known ones in the feature selection literature (see e.g.
6,24,43] ), and in the twin SVM approaches. For these two datasets,

ig. 1 illustrates the performance in terms of AUC for an increas-

ng number of selected features and for all feature selection ap-

roaches studied. 

In Fig. 1 , we observe that twin l 2 l ∞ 

-SVM is consistently bet-

er than the other methods in terms of AUC for the Alon and Al-

zadeh datasets, not being the best only when 20 attributes on

he latter dataset are used. Interestingly, predictive performance

ctually improves when using 20 attributes for the Alon dataset,

n contrast to what happens with the Alizadeh dataset. We con-

lude that twin l 2 l ∞ 

-SVM is a very effective and robust classifica-

ion approach, which leads to best predictive performance on aver-

ge compared to the alternative methods studied here, while also

chieving very stable results for an increasing number of selected

ttributes. 

Similar to those in our previous analysis, Fig. 2 (a) and (b) show

he Pearson’s correlation for an increasing number of selected fea-

ures and for all feature selection approaches studied based on

win SVM, for the Alon and Alizadeh datasets, respectively. 

In Fig. 2 , we observe that the correlation is almost 1 in both

atasets for a number of selected variables of 100 or less. The syn-

hronization improves when selecting few attributes for the Alon

ataset ( Fig. 2 (a)), while it is consistently high and close to the

nit for the Alizadeh dataset ( Fig. 2 (b)). Thus, we conclude that

his coordinated feature elimination leads to positive predictive re-

ults when using a limited number of selected variables. 

Finally, the influence of the parameters is discussed for the pro-

osed Twin l ∞ 

-SVM and l 2 l ∞ 

-SVM methods. For the Alon and Al-

zadeh datasets, the AUC is reported when parameters λ and C are

aried, when the remaining parameter is fixed at its best value.
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Fig. 1. Performance (AUC) versus n for various feature selection approaches. 

Fig. 2. Pearson’s correlation versus n for various feature selection approaches. 

Fig. 3. Sensitivity analysis for Twin l ∞ -SVM. Parameters λ and c 2 = C. 

Fig. 4. Sensitivity analysis for Twin l 2 l ∞ -SVM. Parameters λ and c 2 = c 1 = C. 
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Figs. 3 and 4 present these results for the proposed Twin l ∞ 

-SVM

and l 2 l ∞ 

-SVM methods, respectively. 

In Figs. 3 and 4 , we observe that performance remains rela-

tively stable when varying the parameters related to the Twin l ∞ 

-

SVM method, while Twin l 2 l ∞ 

-SVM presents more unstable behav-

ior, especially for the Alon dataset. It can be concluded that only a

proper grid search can guarantee positive predictive results. 
A  
. Conclusions 

In this work, we presented a novel embedded feature selection

ethod for twin SVM, where the l ∞ 

regularization is used to per-

orm a coordinated feature elimination in each twin classifier. Two

trategies were proposed to pursue this goal: the use of the l ∞ 

-

orm as a sole regularizer, and in combination with the l 2 -norm.

lthough both proposed strategies achieved best performance on
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verage compared to well-known feature selection strategies like

he Fisher Score or TWSVM-RFE, the twin l 2 l ∞ 

-SVM method was

lightly better than twin l ∞ 

-SVM in general. This result demon-

trates the importance of using both regularizers in the objective

unction of the twin SVM problem. 

From the experimental section we conclude that, besides good

redictive performance, our proposal is designed to foster the se-

ection of similar relevant variables in each twin hyperplane in or-

er to make the elimination step straightforward. This is an im-

ortant advantage compared to the RFE strategy, which measures

he contribution of an attribute as the average of its weights (in

agnitude), and therefore a variable can be relevant in one of the

unctions, but it can be removed due to its aggregated importance.

ur experiments demonstrate that this synchronization is impor-

ant in order to achieve best predictive results with consistently

ewer attributes. 

Our proposal can be applied to any binary classification task,

lthough it is designed to deal with high-dimensional datasets in

hich the interpretation of the results plays an important role. One

f the disadvantages of twin SVM classification is that the con-

truction of two hyperplanes makes the interpretation of the ef-

ect of the relevant variables trickier compared with that of linear

ethods. One of the main virtues of our work is that it enables

s to gain insight into the process that generates the data, en-

ancing interpretability. Business analytics is a very important area

n which choosing the relevant variables of a given task leads to

mportant managerial insights. Suitable analytics applications are,

or example, credit scoring [44] or churn prediction [45] . Our ap-

roach, however, is limited to linear classifiers. 

There are interesting opportunities for future research in the

ollowing directions: First, the proposal can be extended to deal

ith class-imbalance problems. In this context, twin SVM has in-

eresting properties when facing a skewed class distribution since

oth training patterns are treated independently. This issue is

resent in several analytics applications, such as credit scoring,

raud detection, and churn prediction [46] . In these cases, fea-

ure selection can be a major contribution in order to gain insight

nto the process that generated the data [39] . Secondly, our ap-

roach can also be extended to multi-class classification, where

igh-dimensional applications such as gene selection of multiple

ypes of cancer [47] can commonly be found. Twin SVM has al-

eady been extended to multi-class classification [48] , and the l ∞ 

egularization can be used to coordinate the feature selection pro-

ess of all hyperplanes that needs to be constructed. Finally, there

s a pressing need for more efficient implementation of classifi-

ation methods, especially in high-dimensional domains. Our ap-

roach can be adapted to make it more efficient computationally,

sing, for example, linear programming formulations [49] , or ef-

cient optimization strategies, such as the Frank–Wolfe algorithm

50] . 
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