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Abstract Multiclass classification is an important task
in pattern analysis since numerous algorithms have been
devised to predict nominal variables with multiple levels
accurately. In this paper, a novel support vector machine
method for twin multiclass classification is presented. The
main contribution is the use of second-order cone program-
ming as a robust setting for twin multiclass classification,
in which the training patterns are represented by ellipsoids
instead of reduced convex hulls. A linear formulation is
derived first, while the kernel-based method is also con-
structed for nonlinear classification. Experiments on bench-
mark multiclass datasets demonstrate the virtues in terms of
predictive performance of our approach.
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1 Introduction

Support Vector Machine (SVM) [35] is a very popular
tool for multiclass learning, which has been used in var-
ious applications, such as computer vision applications
[4], medical diagnosis [30], and financial analytics [18].
The most frequently used strategies are the construction of
multiple binary SVM classifiers in one-vs.-one or a one-vs.-
rest bipartite competition framework [5], and all-together
approaches that aim at constructing all classifiers in a single
optimization problem [6, 9, 39].

One of these numerous SVM multiclass approaches is
twin support vector machine (Twin-KSVC) [42], which
extends the ideas of twin SVM [17] for predicting nom-
inal output variables with multiple levels. Twin SVM for
binary classification constructs two nonparallel hyperplanes
in such a way that each one is close to one of the two
classes, and as far as possible from the other. The main
advantage of this approach is the gain in efficiency since
the original problem is split into two smaller sub-problems,
leading to better running times. Additionally, the method
may lead to better predictive results as well [17]. The Twin-
KSVC method relies on a one-vs.-one-vs.-rest competition
scheme, which means that each of the twin hyperplanes pro-
vides a three-label output, indicating whether the sample
belongs to either class “+1”, or class “-1”, or to none of them
(class “0”). Twin SVM has been successfully used in sev-
eral applications, such as medical diagnosis [34], software
fault prediction [1], and image processing [43].

Robust optimization has been used successfully for mul-
ticlass SVM classification [22, 46]. Here we distinguish
two strategies. On the one hand, data may contain noise
in the form of measurement errors, for example, and
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some research papers report attempts to model this issue
via second-order cone programming [15, 46]. For these
approaches, a conic constraint is added for every noisy
instance. On the other hand, a robust setting was proposed
by Nath and Bhattacharyya [28], in which the traditional
maximum margin approach for SVM is adapted by replac-
ing the reduced convex hulls by ellipsoids. This strategy
provides a framework that assures the right classification
of each training pattern up to predefined rates, even for the
worst possible data distribution.

In our work we extend the ideas described in [28] to
the Twin-KSVC for both linear and kernel-based classifica-
tion, providing a geometrical interpretation of the approach
and an empirical comparison with the best-known SVM
approaches for multiclass classification using benchmark
datasets. Regarding novelty and previous works, the paper
by Qi et al. [29] also reports combining robust optimization
and twin SVM, but they follow the first strategy (modelling
measurement errors), which is, again, a completely different
approach compared to ours.

This work is structured as follows: Section 2 provides
a brief description of developments for multiclass SVM
classification. The proposed robust twin SVM method for
multiclass classification is presented in Section 3. Section 4
describes our results using benchmark datasets. A summary
of this paper can be found in Section 5, where we provide
its main conclusions and address future developments.

2 Prior work in multiclass SVM classification

In this section, we describe the most commonly used multi-
class SVM formulations (OVA-SVM, OVO-SVM, and MC-
SVM), which were used as alternative methods in our
experiments. Additionally, we present the following exten-
sions to twin SVM: the OVA-TWSVM and Twin-KSVC
methods, where the last method is closely related to our
proposal.

2.1 One-versus-all approach

The One-vs.-All (OVA) SVM strategy aims at constructing
K binary SVM classifiers independently, separating a given
class from the others as a group [35]. Formally, for m train-
ing tuples (x1, y1), . . . , (xm, ym), where xi ∈ �n is the i-th
sample and yi ∈ {1, 2, . . . , K} its respective class label, the
k-th model built by of OVA-SVM has the following form:

minwk,bk,ξk

1
2‖wk‖2 + c

∑m
i=1 ξk

i

s.t. ỹi (w�
k xi + bk) ≥ 1 − ξk

i , i = 1, . . . , m,

ξk
i ≥ 0, i = 1, . . . , m,

(1)

where ỹi = 1 means the sample i has label k (yi = k), while
ỹi = −1 corresponds to the opposite case: object i belongs
to a category different from k, and c > 0. The decision
function for OVA-SVM is given by fk(x) = w�

k x+bk , and a
new sample x is assigned to the class with the highest value
of fk(x) (i.e. fk∗(x) = max{fk(x) : k = 1, . . . , K}).

2.2 One-versus-one approach

Another well-known SVM variation is the One-versus-One
(OVO) SVM [19], which constructs K(K − 1)/2 binary
SVM classifiers, one for each pair of categories. Given
training points from classes k and l, OVO-SVM solves the
following problem:

minwkl ,bkl ,ξ
kl

1
2‖wkl‖2 + c

∑
r ξ kl

r

s.t. w�
klxr + bkl ≥ 1 − ξkl

r , if yr = k,

−(w�
klxr + bkl) ≥ 1 − ξkl

r , if yr = l,

ξ kl
r ≥ 0, r = 1, . . . , mk + ml,

(2)

where mk and ml are the cardinality of the sets of training
points of classes k and l, respectively. The decision function
for a new instance x is given by fkl(x) = w�

klx + bkl . A
max-wins voting strategy is used, in which each classifica-
tion function assigns its respective data objects to one of the
two categories, increasing by one the vote for the assigned
class [13]. The category with most votes determines the
classification of each new object.

2.3 “All-together” SVM approaches

Several multi-class (MC) SVM approaches that solve one
single optimization problem have been proposed in the liter-
ature [2, 6, 9, 39]. For instance, in [39] the authors extends
the ideas of OVA-SVM by constructing K binary classifiers
simultaneously. The MC-SVM formulation follows:

minwk ,bk ,ξ
k
i

1
2

∑K
k=1 ‖wk‖2 + c

∑n
i=1

∑K
k=1,k �=yi

ξ k
i

s.t. (w�
yi
xi + byi

) − (w�
k xi + bk) ≥ 2 − ξk

i ,

ξ k
i ≥ 0, i = 1, . . . , m, k ∈ {1, . . . , K} \ yi ,

(3)

where wk, bk , for k = 1, . . . , K , represent all the hyper-
planes constructed by this approach. The decision rule
is equivalent to that of the OVA-SVM formulation, in
which a new sample x belongs to the class k∗ iff k∗ =
argmaxk=1,...,K{w�

k x + bk}. Another “all-together” SVM
formulation was the proposed in [9], in which K hyper-
planes are also constructed but without a bias term.
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2.4 One-versus-all twin support vector machine

This method constructs K nonparallel hyperplanes by
solving K independent quadratic programming problems
(QPPs), one for each class [41]. Formally, One-versus-All
twin SVM (OVA-TWSVM) solves the following problem,
for each class k (k = 1, . . . , K):

minwk,bk,ξ
1
2‖Akwk + bkek‖2 + c ẽ�

k ξ

s.t. −(Ãkwk + ẽkbk) + ξ ≥ ẽk

ξ ≥ 0,

(4)

where Ak ∈ �mk×n and Ãk ∈ �m−mk×n represent the
data matrices for class k and for the remaining classes,
respectively; c is a positive parameter; and ek and ẽk

are vectors of ones of appropriate dimensions. For this
approach, a new sample x belongs to the class k∗ iff
k∗ = argmink=1,...,K{w�

k x + bk}. Another version of OVA-
TWSVM was presented in [44].

2.5 Twin multi-class classification support vector
machine

Twin multi-class classification support vector machine
(Twin-KSVC) [42] is a new approach that extends the ideas
of twin SVM [17] to a multiclass setting. This method
evaluates all training points according to a “1-vs-1-vs-rest”
framework with ternary output {−1, 0, +1}, similar to the
K-SVCR method [2]. For each pair of classes, Twin-KSVC
finds two non-parallel hyperplanes in �n of the form

w�
1 x + b1 = 0, w�

2 x + b2 = 0, (5)

in such a way that each hyperplane is close to one class,
and as far as possible from the other. The remaining sam-
ples are mapped into a region between the two non-parallel
hyperplanes.

Let us denote by A ∈ �m1×n and B ∈ �m2×n the
two data matrices from the two target classes, which are
labeled “+1” and “-1”, respectively. We also denote by
C ∈ �m3×n a data matrix representing the remaining train-
ing samples, which are labeled “0”. Formally, the linear
Twin-SVC method solves the following two QPPs [42]:

minw1,b1,ξ ,ζ
1
2 ‖Aw1 + e1b1‖2 + c1e�

2 ξ + c2e�
3 ζ

s.t. −(Bw1 + e2b1) ≥ e2 − ξ ,

−(Cw1 + e3b1) ≥ e3(1 − ε) − ζ ,

ξ , ζ ≥ 0,

(6)

and

minw2,b2,ξ
∗,ζ ∗ 1

2 ‖Bw2 + e2b2‖2 + c3e�
1 ξ∗ + c4e�

3 ζ ∗
s.t. (Aw2 + e1b2) ≥ e1 − ξ∗,

(Cw2 + e3b2) ≥ e3(1 − ε) − ζ ∗,
ξ∗, ζ ∗ ≥ 0,

(7)

where c1, c2, c3, c4, and ε are positive parameters; while
e1, e2, and e3 are vectors of ones of appropriate dimen-
sions. The set of parameters c1, c2, c3 and c4 determines the
tradeoff between model fit and complexity [42].

For a new sample x, Twin-KSVC determines its class
label by the following decision function:

f (x) =
⎧
⎨

⎩

+1 , if w�
1 x + b1 > −1 + ε,

−1 , if w�
2 x + b2 < 1 − ε,

0 , otherwise.
(8)

A kernel-based classifier can be derived by considering
the following non-linear surfaces:

K(x,X)u1 + b1 = 0, and K(x,X)u2 + b2 = 0, (9)

where X = [A� B� C�] ∈ �n×m represents the matrix
of all training patterns, and K : �n × �n → � is a kernel
function satisfying Mercer’s condition [27].

A common choice is the Gaussian kernel, which is
defined by K(u, v) = exp(−‖u − v‖2/2σ 2), where σ is a
positive parameter that controls the width of the kernel [31].

For the above surfaces, the following quadratic problems
can be constructed (kernel-based Twin-KSVC [42]):

minu1,b1,ξ ,ζ
1
2

∥
∥K(A�,X)u1 + e1b1

∥
∥2 + c1e�

2 ξ + c2e�
3 ζ

s.t. −(K(B�,X)u1 + e2b1) ≥ e2 − ξ ,

−(K(C�,X)u1 + e3b1) ≥ e3(1 − ε) − ζ ,

ξ , ζ ≥ 0,

(10)

and

minu2,b2,ξ
∗,ζ ∗ 1

2

∥
∥K(B�,X)u2+e2b2

∥
∥2+c3e�

1 ξ∗+c4e�
3 ζ ∗

s.t. (K(A�,X)u2 + e1b2) ≥ e2 − ξ∗,
(K(C�,X)u2 + e3b2) ≥ e3(1 − ε) − ζ ∗,

ξ∗, ζ ∗ ≥ 0,

(11)

where c1, c2, c3, and c4 are positive parameters. The cor-
responding decision function in the nonlinear Twin-KSVC
case is

f (x) =
⎧
⎨

⎩

+1 , if K(x,X)u1 + b1 > −1 + ε,

−1 , if K(x,X)u2 + b2 < 1 − ε,

0 , otherwise.
(12)

3 Twin-KSOCP, a robust twin multiclass SVM
classifier

In this section, we introduce a novel multiclass approach
based on second-order cones, extending the ideas of Twin-
KSVC to robust optimization. The main idea is to construct
two twin classifiers for each pair of classes according to the
“1-vs-1-vs-rest” approach, in such a way that each hyper-
plane is close to one class and far away from the other
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class, while each training pattern is represented by ellip-
soids instead of reduced convex hulls (the traditional SVM
approach). The use of ellipsoids leads to SOCP formula-
tions, conferring robustness to the solution.

The general description of the robust framework for
maximum-margin classifiers based on second-order cones
is provided in Section 3.1. The linear formulation of the pro-
posed Twin-KSOCP method is presented in Section 3.2. The
dual form of our proposal is provided in Section 3.3, where
its geometrical properties are discussed. Finally, the kernel-
based Twin-KSOCP method is described in Section 3.4.

3.1 Robust framework for maximum-margin classifiers

This section describes the robust framework based on conic
constraints presented in [28]. Let Xk be a random vector that
generates the samples of class k, with mean μk ∈ �n, and
covariance matrix �k , for k = 1, . . . , K , where �k ∈ �n×n

are symmetric positive semi-definite matrices. Let us denote
a family of distributions which have a common mean and
covariance by X ∼ (μ, �). In order to find a hyperplane
that maximizes the margin of classification given by the
moments of class conditional densities, [28] proposed the
following probabilistic constraint:

Pr{w�Xk + b ≥ 1} ≥ ηk, (13)

with ηk ∈ (0, 1) a predefined parameter that controls the
misclassification rates for each class k. We want to clas-
sify each training pattern k correctly, up to the rate ηk ,
even for the worst data distribution. To accomplish this, the
probabilistic constraint (13) can be replaced with its robust
counterpart:

inf
Xk∼(μk,�k)

Pr{w�Xk + b ≥ 1} ≥ ηk. (14)

Equation (14) can be cast into a second-order cone (SOC)
constraint1 by the application of the Chebyshev inequality
[20, Lemma 1]. Equation (14) then becomes:

w�μk + b ≥ 1 + κk‖S�
k w‖, (15)

where κk =
√

ηk

1−ηk
, �k = SkS

�
k , for k = 1, . . . , K . For

example, the Cholesky factorization can be used to compute
Sk from �k .

Originally developed for binary classification [25, 28],
this robust setting was extended to multiclass learning
in [22, 23] for the One-versus-All and One-versus-One
approaches, and two different “all-together” MC strategies.
Notice that these methods are completely different com-
pared with our twin formulation. Another difference is that

1Recall that an SOC constraint on variable x ∈ �n has the form ‖Dx+
b‖ ≤ c�x + d, where d ∈ �, c ∈ �n, b ∈ �m, D ∈ �m×n are given.

our proposal is extended as a kernel method, in contrast with
the models proposed in [22, 23].

3.2 Linear Twin-KSOCP formulation

Let X1, X2, and X3 be random vectors that generate the
samples associated with matrices A, B, and C, respectively.
Let us also denote by μk ∈ �n and �k ∈ �n×n the mean
and the covariance matrix associated with random vector
Xk for k = 1, 2, 3, where �k are symmetric positive semi-
definite matrices. In order to obtain a robust version of
the Twin-KSVC method (Formulation (6)–(7)), we consider
the following quadratic chance-constrained programming
problems:

minw1,b1
1
2 ‖Aw1 + e1b1‖2 + θ1

2 (‖w1‖2 + b2
1)

s.t. infX2∼(μ2,�2) Pr{w1
�X2 + b1 ≤ −1} ≥ η1,

infX3∼(μ3,�3) Pr{w1
�X3+ b1 ≤−(1 − ε)} ≥ η2,

and

minw2,b2
1
2 ‖Bw2 + e2b2‖2 + θ2

2 (‖w2‖2 + b2
2)

s.t. infX1∼(μ1,�1) Pr{w2
�X1 + b2 ≥ 1} ≥ η3,

infX3∼(μ3,�3) Pr{w2
�X3 + b2 ≥ (1 − ε)} ≥ η4,

where θ1, θ2, ε > 0. The parameters η1, . . . , η4 have an
interpretation similar to the SOCP-SVM formulation, with
values in (0, 1). In particular, η1 (η3) aims at classifying
the positive (negative) class correctly, while η2 and η4 aim
at mapping the remaining observations into a zone between
both hyperplanes.

Thanks to an appropriate application of the multivari-
ate Chebyshev inequality, the above problems can be stated
as the following quadratic SOCP problems (Twin-KSOCP
formulation):

minw1,b1
1
2 ‖Aw1 + e1b1‖2 + θ1

2 (‖w1‖2 + b2
1)

s.t. −w�
1 μ2 − b1 ≥ 1 + κ1‖S�

2 w1‖,
−w�

1 μ3 − b1 ≥ 1 − ε + κ2‖S�
3 w1‖,

(16)

and

minw2,b2
1
2 ‖Bw2 + e2b2‖2 + θ2

2 (‖w2‖2 + b2
2)

s.t. w�
2 μ1 + b2 ≥ 1 + κ3‖S�

1 w2‖,
w�

2 μ3 + b2 ≥ 1 − ε + κ4‖S�
3 w2‖,

(17)

where �i = SiS
�
i for i = 1, 2, 3, and κi =

√
ηi

1−ηi
for

i = 1, 2, 3, 4.

Remark 1 Note that the objective functions of problems
(16)–(17) can be written compactly as

1

2
‖Aw1 + e1b1‖2+ θ1

2
(‖w1‖2+b2

1)=
1

2
v�

1 (H�H+θ1I )v1,

(18)
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and

1

2
‖Bw2 + e2b2‖2+θ2

2
(‖w2‖2+b2

2) = 1

2
v�

2 (G�G+θ2I )v2,

(19)

respectively, where

vk = [wk; bk] ∈ �n+1, H = [A e1] ∈ �m1×(n+1),

G = [B e2] ∈ �m2×(n+1). (20)

Then, by introducing the new variables t1, t2 and the con-
straints

‖(H�H + θ1I )1/2v1‖ ≤ t1, ‖(G�G + θ2I )1/2v2‖ ≤ t2,

the problems (16) and (17) can be cast into linear SOCP
problems with three SOC constraints each.

The decision function is similar to the one used for the
Twin-KSVC method (cf. (8)).

3.3 A. Dual formulation of Twin-KSOCP and geometric
interpretation

In this section, we present the dual formulation of Twin-
KSOCP (Formulations (16) and (17)), and provide geomet-
rical insights for the method.

The following Proposition gives the dual formulation of
problems (16)–(17):

Proposition 1 Let us denote by Ĥ = H�H + θ1I , Ĝ =
G�G + θ2I , ẑi = [zi; 1] ∈ �n+1, p̂i = [pi; 1] ∈ �n+1,
for i = 1, 2. Then, the duals of the problems (16)–(17) are
given by

maxzi ,ui

1
2

h1(ẑ1,ẑ2,Ĥ )

h2(ẑ1,ẑ2,Ĥ )

s.t. z1 ∈ B(μ2, S2, κ1), z2 ∈ B(μ3, S3, κ2),
(21)

and

maxpi ,ui

1
2

h1(p̂1,p̂2,Ĝ)

h2(p̂1,p̂2,Ĝ)

s.t. p1 ∈ B(μ1, S1, κ3), p2 ∈ B(μ3, S3, κ4),
(22)

where

h1(z1, z2, H) = ‖H−1/2(z2 − (1 − ε)z1)‖2,

h2(z1, z2, H) = (‖H−1/2z1‖‖H−1/2z2‖)2 − (z�H−1
1 z2)

2,

and

B(μ, S, κ) = {z : z = μ + κSu, ‖u‖ ≤ 1}.
The set B(μ, S, κ) denotes an ellipsoid centered at μ whose
shape is determined by S, and size by κ .

The proof of Proposition 1 is presented in Appendix.
The optimization problems that result from our proposal are
fractional programming problems, and they can be solved,

for instance, by Dinkelbach-type algorithms [11]. Addi-
tionally, from this result we obtain that the dual problems
(21) and (22) can be seen as the maximization of the ratio
between two functions over two ellipsoids. These ellipsoids
define the two twin hyperplanes, and, subsequently, the
classification rule for the proposed Twin-KSOCP method.

The following remark associates the primal and dual vari-
ables of the Twin-KSOCP formulation, which is relevant
since we can solve the dual formulations and then obtain the
two hyperplanes.

Remark 2 Once the Problem (21) is resolved, we can derive
the optimal solution v∗

1 = [w∗
1; b∗

1] of Problem (16) as
follows (cf. (A.34), (A.36)):

v∗
1 = −Ĥ−1(λ1ẑ1 + λ2ẑ2), (23)

where

λ1 = ẑ�
2 Ĥ−1ẑ2 − (1 − ε)ẑ�

1 Ĥ−1ẑ2

h2(ẑ1, ẑ2, Ĥ )
,

λ2 = (1 − ε)ẑ�
1 Ĥ−1ẑ1 − ẑ�

1 Ĥ−1ẑ2

h2(ẑ1, ẑ2, Ĥ )
. (24)

Similarly, we can derive the optimal solution v∗
2 = [w∗

2; b∗
2]

of Problem (17) as follows:

v∗
2 = Ĝ−1(α1p̂1 + α2p̂2), (25)

where

α1 = p̂�
2 Ĝ−1p̂2 − (1 − ε)p̂�

1 Ĝ−1p̂2

h2(p̂1, p̂2, Ĝ)
,

α2 = (1 − ε)p̂�
1 Ĝ−1p̂1 − p̂�

1 Ĝ−1p̂2

h2(p̂1, p̂2, Ĝ)
. (26)

3.4 Kernel-based Twin SOCP-KSVC formulation

In this section, we extend the proposed Twin-KSOCP to ker-
nel functions in order to obtain non-linear classifiers. For
this, we first notice that the weight vectors for each one of
the twin hyperplanes can be written as wk = X sk + Mrk ,
where M is a matrix whose columns (as vectors) are orthog-
onal to the training data points; X = [A� B� C�] is the
data matrix defined in Section 2.5; and sk , rk are vectors of
combining coefficients with the appropriate dimensions.

On the other hand, the empirical estimates of the mean
μk and covariance �k are given by

μ̂1 = 1

m1
A�e1, μ̂2 = 1

m2
B�e2, μ̂3 = 1

m3
C�e3,

�̂j = SjS
�
j , j = 1, 2, 3,



1036 J. López et al.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

Class +1

Class 0

Class −1

w
1
’w+b

1
=−1

w
1
’w+b

1
=0

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

Class +1

Class 0

Class −1
w

2
’w+b

2
=1

w
2
’w+b

2
=0

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

Class +1

Class 0

Class −1w
2
’w+b

2
=1

w
2
’w+b

2
=0

w
1
’w+b

1
=−1

w
1
’w+b

1
=0

a b

c

Fig. 1 Geometric interpretation for Twin-KSOCP

where

S1 = 1√
m1

(A� − μ̂1e
�
1 ), S2 = 1√

m2
(B� − μ̂2e

�
2 ),

S3 = 1√
m3

(C� − μ̂3e
�
3 ).

Then,

w�
k μj = s�k gj , w�

k �jwk = s�k �j sk, k = 1, 2,

j = 1, 2, 3, j �= k,

where

gj = 1

mj

⎡

⎣
K1j ej

K2j ej

K3j ej

⎤

⎦ ,

�j = 1

mj

⎡

⎣
K1j

K2j

K3j

⎤

⎦
(

Imj
− 1

mj

eje�
j

)[
K�

1j K�
2j K�

3j

]
,

with K11 = AA�, K12 = K�
21 = AB�, K13 = K�

31 =
AC�, K22 = BB�, K23 = K�

32 = BC�, K33 = CC�
matrices whose elements are inner products of data points.
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Table 1 Number of examples, number of variables and number of
classes for all data sets

Dataset #examples #variables #classes

Iris 150 4 3

Hayes-Roth 160 4 3

Wine 178 13 3

Glass 214 13 6

Led7digit 500 7 10

Vowel 528 12 11

Fish 762 12 3

Segment 2310 19 7

Waveform 5000 21 3

For instance, the entry (l, s) for the matrix Kkk′ is the fol-
lowing (Kkk′)ls = (xk

l )
�xk′

s . Hence, in order to obtain a ker-
nel formulation for the problems (16) and (17), we replace
the inner product above by any function K : �n ×�n → �,
satisfying Mercer’s condition [27]. That is, the products
(xk

l )
�xk′

s are replaced by (Kkk′)ls = K(xk
l , x

k′
s ). Thus, we

obtain the following optimization problems (kernel-based
Twin-KSOCP):

mins1,b1
1
2 ‖K1•s1 + e1b1‖2 + θ1

2 (‖s1‖2 + b2
1)

s.t. −s�1 g2 − b1 ≥ 1 + κ1‖��
2 s1‖,

−s�1 g3 − b1 ≥ 1 − ε + κ2‖��
3 s1‖,

(27)

and

mins2,b2
1
2 ‖K2•s2 + e2b2‖2 + θ2

2 (‖s2‖2 + b2
2)

s.t. s�2 g1 + b2 ≥ 1 + κ3‖��
1 s2‖,

s�2 g3 + b2 ≥ 1 − ε + κ4‖��
3 s2‖,

(28)

where �j = �j�
�
j , for j = 1, 2, 3. Then, the solutions for

Problems (27) and (28) lead to the following kernel-based
surfaces:

K(x,X)s1 + b1 = 0, K(x,X)s2 + b2 = 0, (29)

where, for a given x ∈ �n, the row vector K(x,X) is defined
by

K(x,X) = [K(x,X•1),K(x,X•2), . . . ,K(x,X•m)],

with X•j ∈ �n denoting the j -th column of the matrix X.
The decision function is similar to (12).

4 Experimental results

We applied the proposed Twin-KSOCP approach in its
linear and kernel-based version to nine well-known bench-
mark datasets for multi-class classification. We studied
other alternative multi-class SVM formulations described
in Section 2 (MC-SVM, OVO-SVM, OVA-SVM, OVA-
TWSVM, and Twin KSVC) for comparison purposes.

In addition, we studied three highly-optimized SVM
approximations for large-scale multiclass classification:
Pegasos, Adaptive Multi-Hyperplane Machine (AMM), and
Budgeted Stochastic Gradient Descent (BSGD) [12]. The
first approach alternates stochastic sub-gradient descent
steps and projection steps iteratively for efficient SVM
training [36]. The AMM approach construct non-linear clas-
sifiers by using multiple linear hyperplanes, as presented
in [37]. The third method, BSGD, uses stochastic gradi-
ent descent to update the number of support vectors [38].
The first method is only available as a linear method, while
the remaining two are used as kernel-based approaches
[12].

This section is organized as follows: First, an illustra-
tive example is provided in Section 4.1 in order to illustrate
the functioning of our proposal with a two-dimensional toy
dataset. Next, a description of the benchmark datasets used
in this work is provided in Section 4.2. Section 4.3 presents
a summary of the performance obtained for the proposed
and alternative approaches. Finally, the running times for
each method are reported in Section 4.4.

Table 2 Performance summary for different classification approaches

Iris Hayes-Roth Wine Glass Led7digit Vowel Fish Segment Waveform

MC-SVM 96.0 57.9 99.0 57.3 75.2 72.1 69.7 88.2 87.2

OVA-SVM 94.7 61.5 98.6 60.7 74.1 56.4 74.4 92.7 87.0

OVO-SVM 98.0 64.9 98.6 66.1 74.3 90.0 80.0 95.5 87.0

OVA-TWSVM 93.3 65.4 99.0 58.7 74.0 58.3 75.1 93.2 87.0

Twin-KSVC 98.0 60.1 98.9 47.2 73.5 81.9 76.6 94.7 86.0

Twin-KSOCP 96.7 69.5 99.5 70.6 73.8 69.0 76.6 93.3 85.7

Pegasos 97.3 56.8 98.3 51.4 66.8 51.7 67.3 81.5 84.4

Linear classifiers
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Table 3 Performance summary for different classification approaches

Iris Hayes-Roth Wine Glass Led7digit Vowel Fish Segment Waveform

MC-SVM 97.3 87.8 99.0 71.4 75.9 99.0 83.2 98.3 87.0

OVA-SVM 97.3 87.2 99.5 71.8 74.2 99.6 81.6 97.5 87.2

OVO-SVM 98.0 87.7 99.0 72.2 74.7 99.6 82.6 97.4 87.0

OVA-TWSVM 98.0 87.1 98.4 71.7 71.4 98.5 87.7 96.7 86.5

Twin-KSVC 97.3 88.5 99.3 62.7 71.8 87.1 81.5 95.2 84.5

Twin-KSOCP 98.0 89.1 100.0 74.0 74.5 99.5 82.5 95.7 86.2

AMM 96.7 49.7 98.3 57.0 66.4 61.7 73.2 83.9 86.2

BSGD 96.0 53.8 96.7 73.3 60.0 98.3 62.9 95.9 85.5

Kernel-based classifiers

4.1 Illustrative example

Figure 1 illustrates the geometrical interpretation of
the proposed Twin-KSOCP method in its linear ver-
sion, using a two-dimensional toy data set with three
classes.

Figure 1a shows the solution of the first twin prob-
lem, Formulation (16). This SOCP problem aims at cor-
rectly representing Class +1, and therefore the result of
this model is a hyperplane over this class (the solid line),
and another one representing the remaining classes, Class
0 and Class -1 (the dashed line), represented by the two
ellipsoids.

Figure 1b shows the solution of the second twin problem,
Formulation (17). This model studies the relationship between
Class -1 and the remaining observations. The resulting out-
put is a first hyperplane over this class (the solid line), and
a second one representing classes 0 and +1 (the dashed
line).

Finally, Fig. 1c illustrates the four hyperplanes obtained
from both twin problems, allowing the illustration of the
three-way decision rule: a new sample is classified as Class
+1 if its evaluation using the first hyperplane is positive
enough (w�

1 x + b1 > −1 + ε, see (8)), as Class -1 if its

evaluation using the second hyperplane is negative enough
(w�

2 x + b2 < 1 − ε), or as Class 0 otherwise.

4.2 Datasets and experimental settings

We studied eight datasets from the UCI Machine Learn-
ing Repository [3]: Iris, Wine, Glass, Vowel, Hayes-Roth,
Led7Digit, Waveform, and Segment; and one dataset from
a previous project in the classification of fish schools (Fish,
see [4] for more details). Table 1 summarizes the relevant
information for each data set:

We used 10-fold cross-validation for model selection
purposes, and balanced accuracy was used as the main per-
formance metric. This measure is computed as the average
class accuracy (also known as recall) among all classes.
We explored the following values for the hyperparame-
ters C (traditional SVM approaches), ci, i = {1, 2, 3, 4}
(twin SVM classifiers), θ1 and θ2 (Twin-KSOCP), and σ

(kernel-based methods, where Gaussian kernel was used):
{2−7,2−6,2−5,2−4, 2−3, 2−2, 2−1, 20, 21, 22, 23, 24, 25, 26,

27}. We imposed c1 = c3 and c2 = c4 for twin SVM
classifiers, and θ1 = θ2 for kernel-based Twin-KSOCP. For
parameter ε we explore the following values:
{0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}.

Fig. 2 Sum of accuracy ratios
for all methods
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Table 4 Holm’s post-hoc test
for pairwise comparisons Method Mean Rank Mean AUC p value α/(k − i) Action

Twin-KSOCP 3.00 88.83 - - not reject

OVO-SVM 3.05 88.69 0.9657 0.0500 not reject

MC-SVM 3.27 88.79 0.8296 0.0250 not reject

OVA-SVM 3.44 88.43 0.7306 0.0167 not reject

OVA- TWSVM 4.11 88.86 0.3894 0.0125 not reject

Twin-KSVC 5.27 85.76 0.0777 0.0100 not reject

BSGD 7.22 80.27 0.0011 0.0083 reject

AMM 7.67 74.79 0.0003 0.0071 reject

Pegasos 7.94 72.83 0.0001 0.0062 reject

4.3 Summary of results

Next, a summary of the results is presented for all nine data
sets. Tables 2 and 3 show the best performance for each
method in terms of balanced accuracy for both linear and
kernel-based classifiers, respectively. The best strategy for
each data set is highlighted in bold type.

In Table 2, we observe that OVO-SVM and the pro-
posed method (Twin-KSOCP, linear version) are the best
approaches, achieving the best performance in four and
three of the nine data sets, respectively, while the remaining
methods perform best only once, or not at all. For the kernel-
based methods (Table 3), the proposed Twin-KSOCP has
the best overall performance, achieving the highest accu-
racy in four out of the nine data sets. It is important to
notice that the proposed Twin-KSOCP always achieves a
better performance compared to Twin-KSVC, demonstrat-
ing the effectiveness of the robust framework, especially for
the kernel-based formulation.

A comparison between linear and kernel-based classifiers
(Tables 2 and 3, respectively) leads to a noticeable con-
clusion: the kernel-based versions of each classifier lead to
important gains in terms of performance. In particular, the use
of the Gaussian kernel outperforms the linear formulation for
datasets Hayes-Roth, Glass, Vowel, and Fish. For the other

data sets the results are either close to 100%, and there-
fore there is little room for improvement (Iris and Wine),
or the gain is only marginal (Led7digit, Segment, and
Waveform).

In order to assess the overall performance among meth-
ods, we follow the strategy proposed in [14]: first, the
highest accuracy between linear and kernel-based classifiers
is computed for each method. Then, a relative performance,
called accuracy ratio, is obtained by dividing the balanced
accuracy of each technique by the highest one among all
the strategies compared. The best method in a given data set
will have an accuracy ratio of 1. Finally, the sum of all accu-
racy ratios for all data sets provides a good indicator of the
best overall performance and robustness for each method.
Figure 2 presents this measure for all the techniques used in
this work.

In Fig. 2, we observe that the proposed approach has
the best overall performance, followed closely by OVA-
TWSVM, demonstrating the virtues of our approach and
twin SVM classification for multiclass applications.

Next, we use the Holm’s test to assess statistical signifi-
cance. This test was proposed by [16], and recommended in
[10] for comparing among various machine learning meth-
ods. The idea is to compute the average rank for each
technique, and perform pairwise comparisons between each

Table 5 Average running times, in seconds, for all datasets

Iris Hayes-Roth Wine Glass Led7digit Vowel Fish Segment Waveform

MC-SVM 0”.48 0”.48 0”.56 6”.33 441”.73 390”.42 23”.85 14627”.13 6323”.20

OVA-SVM 0”.37 0”.38 0”.43 1”.16 0”.82 29”.53 0”.58 59”.77 14”.78

OVO-SVM 0”.20 0”.25 0”.25 0”.90 4”.66 3”.97 0”.37 9”.15 5”.22

OVA-TWSVM 0”.17 0”.05 0”.08 0”.35 1”.54 6”.59 2”.68 48”.81 24”.44

Twin-KSVC 2”.10 0”.72 0”.41 18”.06 73”.84 255”.52 15”.53 2357”.98 1623”.68

Twin-KSOCPl 0”.60 0”.50 0”.51 2”.61 27”.62 42”.06 2”.29 17”.77 3”.58

Twin-KSOCPk 2”.51 2”.73 2”.89 21”.55 235”.63 310”.36 33”.16 1918”.88 1889”.75

Pegasos 0”.05 0”.03 0”.04 0”.04 0”.06 0”.05 0”.07 0”.05 0”.06

AMM 0”.05 0”.05 0”.07 0”.08 0”.08 0”.11 0”.05 0”.09 0”.08

BSGD 0”.02 0”.02 0”.02 0”.08 0”.16 0”.73 0”.93 2”.68 6”.16
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approach and the one with the lowest rank. The results for
this analysis are presented in Table 4.

In Table 4, we can see that the standard and twin SVM
methods outperform the highly optimized approaches using
a significance level α = 0.05, where i = 1 (best approach,
Twin-KSOCP) and k = 2, 3, ..., 8 is the ranking of the
remaining methods. Although our proposal has the best over-
all performance, we conclude that no method outperforms the
others statistically in terms of maximum AUC among all the
subsets of variables for the six most relevant comparisons.

4.4 Running times

In Table 5, a comparison in terms of the average running
times is reported. The experiments were performed on an
HP Envy dv6 with 16 GB RAM, 750 GB SSD, a i7-2620M
processor with 2.70 GHz, and using Microsoft Windows 8.1
Operating System (64-bits). We used the SeDuMi Matlab
Toolbox [33] for the proposed method; Budgeted SVM tool-
box [12] for Pegasos, AMM, and BSGD; the codes provided
by Yuan-Hai Shao, author of Twin-Bounded SVM [32],
which are publicly available in http://www.optimal-group.
org/, for the twin SVM methods; and the spider toolbox
[40] and LIBSVM [8] were used for the standard mul-
ticlass SVM approaches. The Twin-KSVC method was
implemented by using the successive overrelaxation (SOR)
technique, as suggested in [32] for binary classification.

On Table 5 we observe that our approach in its
linear form (Twin-KSOCPl) is consistently faster than
Twin-KSVC, achieving similar running times compared
to standard SVM methods. For the kernel version (Twin-
KSOCPk), however, higher training times are obtained,
which are relatively similar compared to Twin-KSVC.

5 Conclusions

In this work, a novel second-order cone programming for-
mulation for multiclass classification is proposed. This
method extends the ideas of twin SVM for binary labels [17]
and Twin-KSVC [42] for multiclass labels to second-order
cones. The proposed method follows a one-vs.-one-vs.-rest
competition scheme [2], where data points are classified
either as class “+1”, class “-1”, or neither of them (class
“0”). Each classification problem constructs two nonparal-
lel hyperplanes in such a way that each one is close to one
of the two studied classes, and as far as possible from the
other. Instead of using the reduced convex hulls to maxi-
mize the separation margin (traditional SVM approach), the
proposed SOCP formulation constructs ellipsoids based on
the mean and covariance matrix of each training pattern
[22, 28]. Proposed as a linear classification method, Twin-
KSOCP is further extended to kernel-based formulation,

while the dual is computed in order to study its geometrical
interpretation.

The main contribution of our proposal is a robust frame-
work for multiclass classification. The probabilistic frame-
work is designed to classify all classes correctly, at least
to a predefined class recall η, even for the worst data dis-
tribution. Empirically, our proposed method achieved best
overall classification performance within tractable train-
ing times. The proposal can also be used as a kernel
method, conferring flexibility to the approach. A compari-
son between various standard SVM and twin SVM methods
for multiclass learning using nine benchmark data sets
demonstrates the virtues of our strategy, in particular when
using Gaussian kernels. Finally, duality theory provides
interesting geometrical properties.

There are interesting future developments that can be
derived from this work. First, there are various strategies
for modelling the margin maximization in SVM that can be
used for twin multiclass classification. Two examples are
the use of flexible convex hulls, and affine convex hulls
[45]. Secondly, this proposal can be further extended to
high-dimensional data sets, where feature selection is a nec-
essary step for adequate prediction [21]. Finally, another
issue that often arises with high-dimensional tasks is the
“class-imbalance problem” [7], in which one or more cate-
gories are under-represented in the data set. In this context,
the proposed framework specifies different error rates for
each training pattern, providing an interesting approach
for class-imbalance classification. Although this idea has
already been studied in binary classification [24], the pro-
posed method can be suitable for a multiclass task with
skewed label distribution.
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Appendix: Dual formulation of Twin-KSOCP
and geometric interpretation

Proof of Proposition 1

The Lagrangian function associated with Problem (16) is
given by

L(w1, b1, λ1, λ2) = 1

2
‖Aw1 + e1b1‖2 + θ1

2
(‖w1‖2 + b2

1)

+λ1(w�
1 μ2 + b1 + 1 + κ1‖S�

2 w1‖)
+λ2(w�

1 μ3+b1+1− ε+κ2‖S�
3 w1‖),

http://www.optimal-group.org/
http://www.optimal-group.org/
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where λ1, λ2 ≥ 0. Since ‖v‖ = max‖u‖≤1 u�v holds for any
v ∈ �n, we can rewrite the Lagrangian as follows:

L(w1, b1, λ1, λ2) = max
u

{L1(w1, b1, λ1, λ2, u1, u2) : ‖ui‖
≤ 1, i = 1, 2},

with L1 given by

L1(w1, b1, λ1, λ2, u1, u2) = 1
2 ‖Aw1+ e1b1‖2 + θ1

2 (‖w1‖2 + b2
1)

+λ1(w�
1 μ2 + b1 + 1 + κ1w�

1 S2u1)

+λ2(w�
1 μ3 + b1+ 1− ε + κ2w�

1 S3u2).

(A.30)

Thus, Problem (16) can be equivalently written as

min
w1,b1

max
u1,u2,λ1,λ2

{L1(w1, b1, λ1, λ2, u1, u2) : ‖ui‖
≤ 1, λi ≥ 0, i = 1, 2}.

Hence, the dual problem of (16) is given by

max
u1,u2,λ1,λ2

min
w1,b1

{L1(w1, b1, λ1, λ2, u1, u2) : ‖ui‖
≤ 1, λi ≥ 0, i = 1, 2}. (A.31)

The above expression allows the construction of the dual
formulation. A detailed description of this procedure can be
found in [26]. The computation of the first order condition
for the inner optimization task (the minimization problem)
yields to

∇w1L1 = A�(Aw1+e1b1)+θ1w1+λ1(μ2+κ1S2u1) (A.32)

+λ2(μ3+κ2S3u2)=0,

∇b1L1 = e�
1 (Aw1 + e1b1) + θ1b1 + λ1 + λ2 = 0. (A.33)

Let us denote by ẑ1 = [z1; 1], ẑ2 = [z2; 1] ∈ �n+1, with
z1 = μ2 +κ1S2u1 ∈ �n, and z2 = μ3 +κ2S3u2 ∈ �n. Then
the relations (A.33)–(A.33) can be written compactly as

(H�H + θ1I )v1 + λ1ẑ1 + λ2ẑ2 = 0,

where v1 = [w1; b1] and H = [A e1]. Since the symmetric
matrix Ĥ = H�H + θ1I ∈ �n+1×n+1 is positive definite,
for any θ1 > 0, the following relation can be obtained:

v1 = −Ĥ−1(λ1ẑ1 + λ2ẑ2). (A.34)

Then, by replacing (A.33)–(A.33) in (A.30), and using
the relations (18) and (A.34), the dual problem can be stated
as follows:

maxzi ,ui ,λi
λ1 + λ2(1 − ε) − 1

2 (λ1ẑ1 + λ2ẑ2)
�Ĥ−1(λ1ẑ1 + λ2ẑ2)

s.t. z1 = μ2 + κ1S2u1, ‖u1‖ ≤ 1,

z2 = μ3 + κ2S3u2, ‖u2‖ ≤ 1,

λ1, λ2 ≥ 0.

(A.35)

Notice that the Hessian of the objective function of the
above problem with respect to λ = [λ1; λ2] ∈ �2 is given
by

Hz =
(
ẑ�

1 Ĥ−1ẑ1 ẑ�
1 Ĥ−1ẑ2

ẑ�
1 Ĥ−1ẑ2 ẑ�

2 Ĥ−1ẑ2

)

.

Clearly, this matrix is symmetric positive definite. Then, the
objective function of the dual problem (A.35) is strictly con-
cave with respect to λ, and it attains its maximum value at
the solution of the following linear system:

Hz

(
λ∗

1
λ∗

2

)

=
(

1
1 − ε

)

.

This linear system has the following solution:

λ∗
1 = ẑ�

2 Ĥ−1ẑ2 − (1 − ε)ẑ�
1 Ĥ−1ẑ2

det(Hz)
,

λ∗
2 = (1 − ε)ẑ�

1 Ĥ−1ẑ1 − ẑ�
1 Ĥ−1ẑ2

det(Hz)
. (A.36)

Thus, the optimal value of Problem (A.35) (with respect to
λ) is given by

1

2
(1 1 − ε)(Hz)

−1
(

1
1 − ε

)

, (A.37)

where

(Hz)
−1 = 1

det(Hz)

(
ẑ�

2 Ĥ−1ẑ2 −ẑ�
1 Ĥ−1ẑ2

−ẑ�
1 Ĥ−1ẑ2 ẑ�

1 Ĥ−1ẑ1

)

.

Then, the dual problem of (16) can be stated as follows:

maxzi ,ui

1
2

‖Ĥ−1/2(ẑ2−(1−ε)ẑ1)‖2

(‖Ĥ−1/2ẑ1‖‖Ĥ−1/2ẑ2‖)2−(ẑ�1 Ĥ−1ẑ2)
2

s.t. z1 ∈ B(μ2, S2, κ1), z2 ∈ B(μ3, S3, κ2),

(A.38)

where

B(μ, S, κ) = {z : z = μ + κSu, ‖u‖ ≤ 1}. (A.39)

Similarly, since the symmetric matrix Ĝ = G�G + θ2I

is positive definite, for any θ2 > 0, we can show that the
dual of the problem (17) is given by

maxpi ,ui

1
2

‖Ĝ−1/2(p̂2−(1−ε)p̂1)‖2

(‖Ĝ−1/2p̂1‖‖Ĝ−1/2p̂2‖)2−(p̂�
1 Ĝ−1p̂2)

2

s.t. p1 ∈ B(μ1, S1, κ3), p2 ∈ B(μ3, S3, κ4),

(A.40)

where p̂i = [pi; 1] ∈ �n+1, for i = 1, 2.
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23. López J, Maldonado S, Carrasco M (2016) A novel multi-
class svm model using second-order cone constraints. Appl Intell
44(2):457–469
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