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A B S T R A C T

In this paper, we propose a profit-driven approach for classifier construction and simultaneous variable
selection based on linear Support Vector Machines. The main goal is to incorporate business-related infor-
mation such as the variable acquisition costs, the Types I and II error costs, and the profit generated by
correctly classified instances, into the modeling process. Our proposal incorporates a group penalty function
in the SVM formulation in order to penalize the variables simultaneously that belong to the same group,
assuming that companies often acquire groups of related variables for a given cost rather than acquiring
them individually. The proposed framework was studied in a credit scoring problem for a Chilean bank, and
led to superior performance with respect to business-related goals.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Classification is a very relevant task in many profit-driven appli-
cations, with credit scoring [1] being one of the most important ones.
Predicting the customers that are likely to default on loan repay-
ment via mathematical modeling has been a very important topic in
recent decades mainly because it helps companies to make profitable
financial decisions while fulfilling regulatory requirements [2].

Support Vector Machine (SVM) [3] is a powerful classification
approach that can be useful for decision support systems given its
superior performance compared to traditional strategies, like logis-
tic regression [4–6]. This method, however, is not able to identify the
most relevant features used for classifier construction [7,8].

Despite the plethora of feature selection and classification meth-
ods available in the machine learning literature, most of the work
in Analytics applies traditional, statistically grounded techniques
without using business-oriented measures. Several efforts have been
made in developing profit metrics for comparing the various classi-
fication methods [see e.g. Refs. 9,10] . To the best of our knowledge,
however, the only work that goes one step further and adapts the
idea of profit-driven metrics to the task of feature selection was
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presented in Maldonado et al. [11]. In that study, various profit-based
measures were used for backward feature elimination with SVM for
the churn prediction problem, without taking variable acquisition
costs into account.

In this work, we present an integrated framework for decision
support in credit assignment. This framework takes both the anal-
ysis of classification costs and benefits into account, and includes
the concept of variable acquisition costs. The idea is to find the
best SVM classifier by balancing the profit obtained when the model
is implemented with the cost of the variables that are included
in it. The problem of grouped variables is addressed by using the
l∞-norm penalty [12]. This function is combined with the l2 and
l1 regularization functions, leading to two SVM formulations for
classification and embedded feature selection. Two credit scoring
datasets from a Chilean bank are used. This data comes from a previ-
ously developed project that involved small loans granted to micro-
entrepreneurs [13]. Since interpretability is of utmost importance in
credit scoring due to regulatory constraints, our framework is based
on linear SVM, avoiding black-box modeling such as kernel-based
SVM.

This paper is structured as follows: in Section 2, the concept of
profit measure is described in the context of credit scoring. Previ-
ous work on feature selection and SVM classification is discussed
in Section 3. The proposed profit-based framework using SVM is
described in Section 4. In Section 5, the case study is presented, and
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experimental results are given. Finally, the main conclusions of this
study are presented in Section 6.

2. Profit-based credit scoring

In credit scoring, the first goal is to construct a vector of char-
acteristics x ∈ �n that describe the repayment behavior of a set
of borrowers {(xi, yi)}m

i=1, with yi ∈ {−1, +1} the objective variable
describing the event of default (1) or repayment (−1) after the first
year of the life of the loan. The observation window was determined
studying the number of months that pass until the bad rate for a port-
folio is deemed to reach stability. This window tends to be between
12 to 18 months for consumer lending [14].

From these inputs, a probability function s(x) = p(y = 1|x) can
be obtained, which is then used to decide whether future borrowers
are creditworthy or whether the loan should be rejected. For this, a
cutoff point t is used, so that if s(xi) > t, then the loan application
will be rejected.

Given the financial nature of credit scoring, tying profits to the
model analysis and evaluation is a natural step. In Bravo et al. [13],
this decision was tied to determining the cutoff point, extending the
widely used analysis that determined this point by using the point
where the slope of the Receiver Operator Characteristic (ROC) curve
intercepted with the proportion between the average cost of mis-
classifying a good borrower versus misclassifying a bad borrower.
This idea, of obtaining the best possible cutoff given only a fraction
of the data, has been key in model evaluation. The H-measure [15]
has already used it, defining the cutoff points that should be maximal
given the distribution of costs, and later Verbeke et al. [9] extended
it by including a more thorough profit- (not cost) based framework.
It is this version, specifically the credit scoring profit framework by
Verbraken et al. [10], that will be the base of our analyses.

Taking a continuous model, a decision can only be made if we
choose a threshold T. For any cutoff s, some cases will be accepted
and some rejected, which we will describe as F−1(s) and F1(s), the
cumulative distributions of negative and positive cases at a given
cutoff s, respectively. Additionally, most credit scoring problems are
imbalanced, since the commercial conditions of the lender, such as
the current acceptance policy, its risk appetite, the market segment
it targets, and the propensity of repayment in the market where the
lender operates influence the bad rate. In general, most retail port-
folios tend to have a significantly larger number of good loans than
bad loans. We will assume that the prior probability of being good
is given by p−1, and the one of being bad given by p1, such that
p−1 + p1 = 1.

The last step in defining the profit comes from the analysis of
(mis)classifying the cases in the dataset. There are two (potentially
stochastic) costs that are relevant for the analysis: b−1 is the benefit
of accepting a good borrower, and c1 the loss of accepting a bad bor-
rower. Under this framework, the average profit per borrower, given
a threshold t is given by Ref. [9]:

P(t; b−1, c1) = b−1p−1F−1(t) − c1p1F1(t). (1)

When b−1 and c1 are deterministic, then the maximization of this
measure leads to the Maximum Profit (MP) measure [9]. If any is
stochastic, this maximization lead to the Expected Maximum Profit
(EMP) measure [16], both of which permit evaluating the perfor-
mance of a model in a profit driven environment, once the correct
form of the cost and benefit functions has been set. In Credit Scor-
ing, both Hand [15] and Verbraken et al. [10] have detailed the most
appropriate measures for each of the functions, which are relevant to
this work.

For b−1, the benefit of accepting a good borrower, the profit
obtained throughout the life of the loan has to be normalized

considering multiple repayment periods, i.e. the Return On Invest-
ment (ROI) of the loan. The total interest [17] formulas give this
value. Considering a principal A requested at maturity (terms) T at an
interest rate given by r, the total interest I follows:

I =
AMr

1 − (1 + r)−M
− A = A

(
Mr

1 − (1 + r)−M
− 1

)
. (2)

The ROI of the loan will simply be the total interest I divided by
the principal A, i.e.

b−1 = ROI =
I
A

=
Mr

1 − (1 + r)−M
− 1. (3)

On the other hand, the cost of accepting a bad applicant will be
given by the loss that is incurred when the borrower defaults. The
Basel II Banking Regulation Accords [18] define the expected loss of
a borrower as

L = PD • LGD • EAD, (4)

where the PD is equal to the Probability of Default, which is derived
by the scoring function s(x). The EAD is the Exposure at Default, or
the amount that is outstanding when default occurs, and the LGD is
the Loss Given Default, or the percentage of the EAD that cannot be
recovered after all collection actions have been exhausted. Note that
to estimate the cost of accepting a bad borrower, the assumption is
that the borrower will default with certainty. So PD = 1, and only
the LGD and the EAD must be estimated to calculate the loss for each
case. With this, the cost of accepting a bad borrower will be given by:

c1 = LGD • EAD. (5)

To correctly calculate c1, the values of the EAD and the LGD must
be available. The Exposure at Default should already be present in the
test set, as it corresponds to the value that was in lieu of payment at
the time of default, for defaulted loans. For non-defaulted loans, this
value is zero. The LGD might not be completely available at the time
of evaluation, especially if the common practice of validating using
out-of-time recent samples is followed. Three options are available
to the modeler:

1. An incomplete workout period can be used, using as a measure
the recovery rate up to the time when the sample was created.
This practice falls in line with the recommendations given by
the banking regulation agreements, which mandate the use of
incomplete workouts for the estimation of LGD models [19].
The LGD is then calculated as 1−RRinc, with RRinc the recovery
rate at the time of observation.

2. The standard regulatory parameters can be used. The Basel
agreements [18] propose a set of standard parameters for
the LGD that should be used by all financial institutions not
implementing their own LGD models, i.e., using standard or
foundational Internal Ratings-Based (IRB) models.

3. For institutions implementing their own LGD models, their
internal estimates can be used.

In previous studies, an average loss has been computed over all
cases. We will use the value per-loan for our estimations. Considering
each sample i, we will refer to the benefit of accepting a good borrower
as b−1,i, while the cost of accepting a bad borrower will be equal to
c1,i. Each parameter will then take the following functional form:

b−1,i =
Miri

1 − (1 + ri)−Mi
− 1,

c1,i = LGDi • EADi. (6)
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One element that has been omitted so far in previous studies is
the variable acquisition cost. This cost can be relevant in credit risk
management as well as in many other disciplines.

The very diverse sources of data that any modern financial com-
pany has available is also reflected in diverse variable acquisition
costs. Some of these costs are, for example:

• Internal data management costs: No matter the data source,
there is a cost for managing the data and store it efficiently
within the systems of an organization. This cost can also
increase as the data diversity increases, as for example store a
mix of structured data, images, and text might require the use
of a Hadoop or similar data storage system, which comes with
higher human resource cost.

• Internal data creation cost: Almost all organizations create data
when evaluating a customer. Most organizations require, for
example, a form with the loan application. This data comes at a
cost, not only due to the time the credit officer needs to support
potential borrowers in their application, but also due to inter-
nal processes, such as data verification. In the UK, for example,
a survey indicated that 92% of all financial institutions had
procedures set in place to validate the income information of
borrowers [20]. It is very likely that different data sources also
come at different costs: An in-depth interview such as the ones
developed for first-time applicants some segments (notably
SME such as the one in this research) might be very expen-
sive, but an evaluation for a returning customer for whom only
historical structured data is used might be the exact opposite.

• External data creation cost: When external providers (consul-
tants or surveyors) are hired to produce primary data, organi-
zations incur external data creation costs. These costs can be
assigned to each variable evenly, for example. One example for
this type of data would be property valuation services.

• External data provider cost: Finally, structured or unstructured
data that can be purchased from providers, such as a credit
bureau. These variables need to be properly costed considering
contractual and per-case costs.

In Section 4.3, we will integrate the costs and benefits introduced
in this section with the variable cost measures originally developed
by Maldonado et al. [21].

3. Theoretical background on feature selection and SVM
classification

In this section, we introduce the soft-margin SVM formulation
for linear classification, and several well-known feature selection
strategies for SVM classification that are relevant for this study.

3.1. Soft-margin SVM

The traditional soft-margin SVM formulation [3] finds a hyper-
plane of the form w�x + b = 0 by solving the following quadratic
programming (QP) problem:

min
w,b,n

1
2

‖w‖2 + C
m∑

i=1

ni

s.t. yi(w�xi + b) ≥ 1 − ni, i = 1, . . . , m,

ni ≥ 0, i = 1, . . . , m, (7)

where C > 0 is a parameter that controls the trade-off between
margin maximization and model fit, and ni denotes a slack variable
related to each training example. This strategy for model fit is known
as hinge loss. Although non-linear classifiers can be obtained from

SVM using the kernel trick, we limit ourselves to linear classifiers
since interpretability is crucial in domains like credit scoring due to
regulatory constraints.

3.2. Feature selection for SVM

Several feature selection strategies have been proposed in the lit-
erature for SVM classification, which are divided in three families:
filter, wrapper, and embedded methods Guyon et al. [7]. The first
approach (filter methods) uses statistical properties to filter out irrel-
evant and/or redundant variables, assessing the correlation between
them and the label vector. The Fisher Score, for example, is a statistical
measure used to rank the attributes according to their contribution
before applying any classification approach [22]. This metric evalu-
ates the absolute difference, for each feature j, between the means of
the positive

(
l+

j

)
and negative class

(
l−

j

)
, divided by a joint standard

deviation
(
s+

j

)2
+

(
s−

j

)2
.

Wrapper methods score various variable subsets according to their
predictive power. Since the exhaustive search for the optimal subset
of variables is a combinatorial problem, several heuristic approaches
have been suggested, such as a greedy search or meta-heuristics
Guyon et al. [7].

The Recursive Feature Elimination SVM (RFE-SVM) [23], is a greedy
approach that first trains SVM and then eliminates those features
whose removal leads to the largest margin of class separation in an
iterative fashion. Formally, the absolute value of the weight vector
is computed, and the variable j with the smallest value of |wj| is
removed.

The RFE-SVM backward elimination algorithm was modified in
Maldonado and Weber [8] to include a holdout step. The training set
split into a holdout-training subset and a validation subset, in which
the number of misclassified instances is computed. The rationale
behind this strategy, called Holdout SVM (HOSVM), is to eliminate
those features whose removal has the least impact on the out-of-
sample classification performance given by the accuracy computed
on the validation set. This idea was further extended in Maldonado
et al. [11] for profit-based feature selection for churn prediction.
The accuracy measure was replaced by the profit obtained by a
retention campaign, considering the respective costs and benefits
(MPC and EMPC). In this work, we compare our proposal with the
HOSVM method using AUC and MPC as performance metrics on the
validation set.

There are important differences between the current proposal
and the work by Maldonado et al. [11]. First, the applications are dif-
ferent: Maldonado et al. [11] focuses on churn prediction in telco,
while the current proposal faces a credit scoring problem in a Chilean
bank, with an alternative definition of profit. There is also a method-
ological difference regarding the feature selection strategy: Unlike
HOSVM, our proposal does not perform an iterative strategy in which
attributes are discarded based on their contribution in the profit
measure. In the current paper, however, we penalize the use of
(group of) features in the SVM formulation by introducing a group
penalty function in the SVM formulation, a strategy that can be
considered an embedded method.

Embedded methods find an optimal subset of features in the pro-
cess of model construction. Embedded methods are able to capture
dependencies between variables effectively, being computationally
less demanding than wrapper methods [7]. They are, however,
conceptually more complex than filter and wrapper methods, and
modifications to SVM could affect it virtues, such as convexity and
computational efficiency.

A well-known embedded strategy for SVM classification is to
penalize the use of features by replacing the squared Euclidean norm
in Formulation (7) with a regularizer that encourages sparsity. The
most common approach is use of the LASSO penalty or l1 norm,
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which provides a good compromise between complexity reduction
and feature elimination [24].

Along the same line, a group penalty function is a regularization
strategy designed to penalize the use of a group of related variables
together in such a way that sparsity is encouraged at a group level
instead of by removing weights independently [25]. Such a strategy
has been used in binary classification with categorical attributes with
multiple levels, which are usually transformed into sets of dummy
variables. In such cases, it may be desirable to remove the full set of
dummy variables [25]. Feature selection can be performed simulta-
neously at a variable level, jointly penalizing all the weights related
to one attribute in each classification function [see e.g. Ref. 26] .

The best-known group penalty is called group-LASSO [25]; it
extends the idea of the LASSO penalty by penalizing the Euclidean
norm of the weights related to a given group. This group penalty
function has the following form:

C(w) =
J∑

j=1

√
pj ‖ w( j)‖2, (8)

where ‖ w( j)‖2 =
√∑

l∈Ij
w2

l . The measure Ij represents disjoint sets
of related features linked to a given attribute j = 1, . . . , J, where
|Ij| = pj is the total number of levels considered for each nominal
variable (one of the levels can be used as reference category for
avoiding multicollinearity issues), and

∑J
j=1 pj = n represents the

total number of estimated weights.
Next, a framework based on SVM is proposed to find an optimal

solution that balances the benefits and costs of classification with the
variable acquisition costs. Feature selection is performed by adding a
group penalty function, given the variable acquisition costs scheme.

4. Proposed profit-based framework for credit scoring using SVM

The main idea of this proposal is to provide a profit-based clas-
sification framework for SVM, performing feature selection simulta-
neously with the classifier construction. The proposed approach is
applied in the context of credit scoring, although it can be used in
any application where the benefits for correct classification, the mis-
classification costs, and the variable acquisition costs are estimated.

The proposed method is introduced in three sections: The l∞-
norm penalty function for grouped feature selection is introduced
in Section 4.1. The proposed classification models are presented in
Section 4.2. And finally, the use of profit metrics for feature and
model selection is discussed in Section 4.3.

4.1. The L-infinity norm as group penalty function

Our proposal considers n attributes that stem from various
sources with different variable acquisition costs. In order to reduce
these costs, the whole set of variables related to one source is jointly
penalized, using the l∞-norm regularizer [12]. This function has the
following form:

C(w) =
J∑

j=1

‖ w( j)‖∞ (9)

where ‖ w( j)‖∞ = maxl∈Ij
{|wl|}, i.e. the highest weight (in magni-

tude) for each source of variables j = 1, . . . , J is minimized, Ij being
the set of variables that belong to source j. The l∞-norm penalty was
originally developed for dealing with categorical variables in binary
SVM classification, under the name F∞-norm SVM. The main advan-
tage of the l∞-norm penalty of the group LASSO is that the former
can be cast easily into a smooth linear function. This strategy has not

been used for selecting attributes with different acquisition costs, to
the best of our knowledge.

4.2. The proposed models for classification and feature selection

We propose two double-regularized SVM formulations: the l2l∞-
SVM, and l1l∞-SVM approaches. They differ in the regularization
strategy used to control the complexity of the solution, according
to the Structural Risk Minimization (SRM) principle followed by
SVM [3]. The l2l∞-SVM method combines three objectives: Euclidean
norm minimization (also known as Tikhonov regularization), l∞-
norm penalization for grouped feature selection, and hinge loss
minimization to guarantee an adequate model fit. Alternatively, the
l1l∞-SVM method is equivalent to l2l∞-SVM, but uses the LASSO
penalty instead of the Euclidean norm. The l2l∞-SVM model has the
following form:

min
w,b,n

1
2

‖w‖2 + C
m∑

i=1

ni + k

J∑
j=1

‖ w( j)‖∞

s.t. yi
(
w�xi + b

) ≥ 1 − ni, i = 1, . . . , m,

ni ≥ 0, i = 1, . . . , m, (10)

where C,k > 0 are parameters that will be tuned via grid search with
cross-validation. In order to avoid using a non-smooth function in
the previous problem, we introduce a set of auxiliary variables zj ≥ 0,
and add new constraints |wl| ≤ zj for each l ∈ Ij and j = 1, . . . , J. The
quadratic programming problem solved by l2l∞-SVM becomes:

min
w,b,n,z

1
2

‖w‖2 + C
m∑

i=1

ni + k

J∑
j=1

zj

s.t. yi
(
w�xi + b

) ≥ 1 − ni, i = 1, . . . , m,

ni ≥ 0, i = 1, . . . , m,

−zj ≤ wl ≤ zj, l ∈ Ij, j = 1, . . . , J. (11)

Similarly, the l1l∞-SVM model has the following form:

min
w,b,n

‖ w‖1 + C
m∑

i=1

ni + k

J∑
j=1

∥∥∥w( j)
∥∥∥∞

s.t. yi
(
w�xi + b

) ≥ 1 − ni, i = 1, . . . , m,

ni ≥ 0, i = 1, . . . , m, (12)

with ‖ w‖1 =
∑n

i=1 |wi| denoting the l1-norm of w. Again, a set
of auxiliary variables is introduced in order to avoid a non-smooth
optimization problem, leading to the following linear programming
model:

min
w,b,n,z,u

n∑
i=1

ui + C
m∑

i=1

ni + k

J∑
j=1

zj

s.t. yi
(
w�xi + b

) ≥ 1 − ni, i = 1, . . . , m,

ni ≥ 0, i = 1, . . . , m,

−zj ≤ wl ≤ zj, l ∈ Ij, j = 1, . . . , J,

−u ≤ w ≤ u. (13)

4.3. Proposed profit metric for model and feature selection

One of the main contributions of this work is the modification
of the traditional profit measure to incorporate variable acquisition
costs. This metric is used for model selection for standard SVM
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(tuning of parameter C) and our approaches (tuning of parameters C
and k).

Let us consider the SVM classifier K = {w, b}, and a validation
subset V with samples xv

l and labels yl ∈ {−1, +1}, for l = 1, . . . , |V|.
The profit for V consists of the benefits associated to the correctly
classified non-defaulters (negative class), minus the losses associated
with the misclassified defaulters (positive class), minus the variable
acquisition costs for each source of attributes used in the classifier
construction. Formally, the profit measure is redefined as follows:

Profit(K,V) =
∑

l∈V−
b−1,l

1− sgn
(
w�xv

l + b
)

2
−

∑
l∈V+

c1,l
1− sgn

(
w�xv

l + b
)

2

− |V |
J∑

j=1

ACjIj (14)

where b−1,l represents the benefit for granting credit to a non-
defaulter l ∈ V−, c1,l is the loss for granting credit to a defaulter
l ∈ V+, and ACj is the variable acquisition cost for a source j. Addi-
tionally, V+ (V−) is the subset of positive (negative) instances in
the validation set V , |V| is the cardinality of this set, and Ij is an
indicator variable that takes the value 1 if maxl∈Ij

{|wl|} > 4. That
is to say, at least one attribute has a weight higher (in magnitude)
than 4, a sufficiently small parameter, for each source of variables
j = 1, . . . , J. Notice that this metric estimates the total profit of a solu-
tion on a validation set, rather than computing the expected profit
of a solution based on the prior probabilities of being defaulter or
non-defaulter.

Following the ideas discussed in Section 2, we assume that the
benefits and losses for granting credit depend on the applicant. We
compute b−1,l as the ROI obtained by the lender for each loan l,
while c1,l is computed as the expected loss considering that the loan
l is already in default. Note that the interest rate and the amount
granted are usually available for the customers when they apply for
the loans, but the losses that a defaulter generates are not available
at that moment. In this case, following Bravo et al. [13], it is possible
to compute the LGD as an average, based on information of previ-
ous defaulted loans for the expected loss segment, as given by the PD
of the borrower. We also assume that the variable acquisition costs
are similar for all applicants, since they can usually be estimated as
the monetary cost of purchasing certain information (e.g. from credit
bureaus), or by valuating the time an analyst requires gathering the
information from a given source.

5. Experimental results

We applied the proposed l2l∞-SVM and l1l∞-SVM approaches to
two credit scoring datasets. We also studied other alternative feature
selection methods described in Section 3.2 (Fisher Score, RFE-SVM,
and the HOSVM method using AUC and MPC as performance metrics
for the validation set) for comparison purposes.

This section is organized as follows: the credit scoring project that
provided the dataset is described in Section 5.1. The experimental
settings are described in Section 5.2. In Section 5.3, a summary of
the performance obtained for the proposed and alternative methods
is presented. Finally, the detailed feature selection performance for
various metrics and subsets of selected variables is reported in
Section 5.4.

5.1. Description of the case study

The data comes from a Chilean bank that provides loans to small
and micro-companies, loans that are repaid in monthly installments.
The information was collected in the period from 2004 to 2007. The
target variable corresponds to the usual definition of default based

on Basel II/III: one or more installments in arrears for more than 90
days during the first year of the loan [18].

The customers are divided into two datasets according to their
credit history with the bank, as follows:

• New customers (NEW): A total of 1510 customers was avail-
able, of which 629 of them were defaulters. After pre-
processing and filtering out irrelevant information, a total of 94
attributes was available.

• Returning customers (RET): A total of 5799 customers was
available, of which 872 of them were defaulters. After pre-
processing, a total of 46 attributes was available.

Besides the benefits and costs of granting loans, the variable
acquisition costs were studied with the proposed framework. Specif-
ically, the dataset includes expensive internal processes as well as
data from external sources for new customers. The different sources
of information can be modeled as groups of related variables with a
single cost for using this source in the model. In other words, if one
variable is identified as relevant and included in the final model, then
all the remaining variables of its group can be included at zero cost.
The following groups of related attributes were identified:

• Credit evaluation attributes: This set of attributes comes from
the form that each applicant fills out. This application is subse-
quently analyzed by the risk department, and then registered
into the company database. Since all applicants are required
to fill out one of these forms, the acquisition of these vari-
ables can be seen as a sunk cost. These forms are filled out by
the applicants in the company with one credit officer from the
bank; a task that takes about 1 h, on average. Thus, the esti-
mated cost per borrower is €5, assuming a monthly salary of
€1000 per credit officer. After pre-processing, a total of 32 and
31 attributes from this source of variables were available for
the new and returning customers, respectively.

• In-depth interview attributes: The bank conducts an in-depth
interview of the applicant after the evaluation process. This
interview is done during a visit to the place of work of the
applicant made by an credit officer. The estimated cost for this
set of attributes is €20 per application (four hours of an credit
officer’s time). After pre-processing, a total of 5 and 2 attributes
from this source of variables was available for the new and
returning customers, respectively. Few variables are relevant
because this source of information is mainly used as an input
for the next set of variables.

• Financial analysis attributes: Once an in-depth interview is
performed, the bank estimates the cash flow of the company,
which is usually not available. This is done by a specialist who
has an estimated monthly salary of €2000, in about two hours
per borrower. The estimated cost is then €20 per borrower.
After pre-processing, a total of 34 and 13 attributes from this
source of variables was available for the new and returning
customers, respectively.

• System-level information: In order to enrich the information
on borrowers with no credit history (new customers), the
financial institution acquired information on the borrowers’
standing debts in the financial system. This data source has a
global fixed cost of €1000. After pre-processing, a total of 9
attributes was available.

• Financial analysis attributes based on system-level informa-
tion: Some of the variables constructed during the finan-
cial analysis combined system-level information with other
sources, such as evaluation or interview data. Although this
source does not represent a new group per se, the costs of the
four previous groups need to be considered if variables of this
source are included in the solution. After pre-processing, a total
of 14 attributes was available for the new customers.
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Table 1
Predictive performance for all feature selection approaches. New customers. Profit as the performance metric.

New customers

Logit Fisher RFE-SVM HOSVMAUC HOSVMMPC l2l∞-SVM l1l∞-SVM

AUC 69.6 50.0 60.1 64.7 67.6 66.6 66.6
Accu. 70.4 58.3 64.2 66.6 68.5 68.2 68.2
n* 28.7 5 5 10 10 35.4 26.4
J* 4.8 2.9 2.5 3.4 3.3 1.1 1
Profit 36 1107 910 1742 1845 4449 4699
Benefits 8769 9965 8528 8008 7976 8342 8370
Losses 3235 5933 3745 3081 2696 3045 3078
Acq. costs 5498 2925 3873 3185 3435 849 592

Note that, unusually, more information is available in this dataset
for new customers than for returning customers. The reason for
this comes from evaluation process carried out for both segments:
the new customers do not usually have any past credit history, a
deeper (and more expensive) evaluation process was done for them,
resulting in the larger number of variables for the financial analy-
sis attribute group. For returning customers, only certain variables
were captured in these segments, and past credit history was added.
This results in a smaller overall number of variables for the returning
customers.

5.2. Experimental settings

We used 10-fold cross-validation for model selection purposes,
exploring the following values for C and k: {2−7, 2−6, . . . ,
2−1, 20, 21, . . . , 26, 27}. Our proposals perform automatic feature
selection, and different combinations of C and k lead to different
solutions in terms of performance and attributes selected. In con-
trast, the Fisher Score, RFE-SVM, and HOSVM methods are feature
ranking approaches, requiring a predefined number of attributes
as an input. For such approaches, model selection was performed
using all the attributes, and SVM was trained subsequently for sub-
sets of ranked features of size n={5,10, 20, 30, 40, 50, 60, 70, 80,
90} and n={5,10, 20, 30, 40} for the new and returning customers,
respectively.

Logistic regression is used as an additional benchmark approach
since it is the standard model for credit scoring [2]. A backward
elimination procedure is performed, removing those variables whose
coefficients are not statistically significant based on the Wald test
using a significance level of a = 5%.

A combination of undersampling and SMOTE oversampling was
performed for the returning customers to deal with the class-
imbalance problem [4,27]. We performed 200% oversampling for the
minority class, and then undersampling to perfect balance. For the
SMOTE oversampling, the nearest neighbors were set to 5, as sug-
gested in Chawla et al. [27]. Data resampling was performed only for
the training set. This resampling technique proved to be the most
effective one in terms of predictive performance in our previous
works on imbalanced data classification [see Refs. 11,28] .

The following pre-processing strategy was used to discard irrele-
vant information [see Ref. 13, for more details] :

• A first filter was applied in order to discard useless variables,
eliminating those with nominal variables with more than a 99%
concentration at a single level, numerical variables with zero
standard deviation, or more than 30% of missing values.

• The two-sample independence tests Kolmogorov-Smirnov (KS)
and w2 were applied for numerical and nominal variables,
respectively, in order to discard attributes that are statistically
independent with the target variable at a = 5% significance
level.

5.3. Result summary

Next, a summary of the results is presented. Tables 1 and 2 show
the performance of each method and of new and returning cus-
tomers, respectively, when the profit metric presented in Section 4.3
is used for model selection. For the logistic regression with the back-
ward elimination process, the cutoff is chosen to maximize the total
profit in the validation set. This is done by evaluating the profit using
the following values for the cutoff t ∈{0,0.05, 0.1, 0.15,. . . ,0.95, 1}. The
following performance measures are reported: AUC (×100), overall
accuracy (in percentage), number of selected variables n∗, number of
sources of variables selected J∗, the proposed profit metric, benefits
due to correct identification of non-defaulters, losses due to incorrect
identification of defaulters, and variable acquisition costs. All mon-
etary metrics are expressed in Euros for a group of approx. 150 and
580 applicants for new and returning customers, respectively (one
tenth of the full sample, which the average validation sample size
for the 10-fold cross-validation procedure). The best performance
among all methods in terms of profit is highlighted in bold type.

In Tables 1 and 2, we observe relatively similar results for new
and returning customers. The methods l2l∞-SVM and l1l∞-SVM tend
to use only the information from the first source of attributes (credit
evaluation), leading to the lowest variable acquisition costs and the
best performance in terms of profit. The resulting differences in
terms of profit between our proposal and the alternative methods

Table 2
Predictive performance for all feature selection approaches. Returning customers. Profit as the performance metric.

Returning customers

Logit Fisher RFE-SVM HOSVMAUC HOSVMMPC l2l∞-SVM l1l∞-SVM

AUC 67.7 62.3 56.9 66.1 65.5 63.2 63.2
Accu. 84.9 56.6 56.6 61.3 61.1 54.6 57.4
n* 28.8 20 5 20 20 31 31
J* 2.9 2.2 1.9 2 2.1 1 1
Profit 35,913 24,354 22,972 29,339 27,913 36,581 38,618
Benefits 67,282 42,881 39,193 45,401 45,080 42,419 44,874
Losses 10,372 4427 5077 3933 4053 3564 3982
Acq. costs 20,998 14,100 11,143 12,129 13,114 2274 2274
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Table 3
Predictive performance for all feature selection approaches. New customers. AUC as the performance metric.

New customers

Logit Fisher RFE-SVM HOSVMAUC HOSVMMPC l2l∞-SVM l1l∞-SVM

AUC 69.6 69.6 70.4 69.0 69.6 70.7 70.7
Accu. 70.6 70.0 70.9 69.5 70.4 71.3 71.5
n* 28.7 80 90 80 20 90.5 58.5
J* 4.8 5 5 5 4 4.3 3.9
Profit −5 −305 −40 −379 1271 1806 2541
Benefits 8018 7738 8003 7753 7991 8107 8114
Losses 2525 2287 2288 2376 2507 2342 2386
Acq. costs 5498 5756 5756 5756 4213 3960 3187

are noteworthy, mainly due to its ability to identify cheap solu-
tions in terms of variable acquisition costs, while the alternative
approaches use more than two different sources even when selecting
five attributes. Results are relatively similar in terms of benefits and
losses, except for the Fisher Score, whose best solution in terms of
profit implies grating credit to all applicants (AUC = 0.5), leading to
higher benefits but also greater losses. For this method, the bene-
fits of improving classification performance with additional variables
is not able to compensate the acquisition costs. Another exception
is the logit model, which has the best predictive performance but a
high variable acquisition cost since it cannot be tuned for removing
expensive variables.

Tables 3 and 4 show similar information compared with Tables 1
and 2, but AUC is used instead of the profit metric to select the
best model for new and returning customers, respectively. For the
logistic regression with a backward elimination process, results
based on the maximum likelihood cutoff of 0.5 are reported. Notice
that the results for the logistic regression are equivalent to tables
those shown in Tables 1 and 2 for the metrics AUC, variables
selected, sources selected, and variable acquisition costs, since the
only parameter tuned is the cutoff. The best performance among all
methods in terms of AUC is highlighted in bold type.

In Tables 3 and 4, we observe first that higher-dimensional solu-
tions are found, compared with the results presented in Tables 1 and
2, leading to an increase in AUC and accuracy, but to an important loss
in terms of profit. This occurs because the use of the additional sources
of variables leads to better classification performance, but this benefit
is not able to compensate for the high cost of performing interviews
and financial analyses. A comparison between the different feature
selection methods shows that classification performance is relatively
similar among them in terms of the highest AUC, our proposals hav-
ing best performance for the new customers. Notably, even though
the model is selected to maximize AUC, both l2l∞-SVM and l1l∞-SVM
show a higher profit than the rest of the benchmarked models. This
follows since our methods penalize the use of variables as groups,
finding solutions that are cheap in terms of variable acquisition costs,
but as accurate as the other methods studied.

At this point, it is important to highlight some characteristics
of the datasets that are rather uncommon in credit risk studies.

First, the AUC and accuracies for the returning customer (behavioral)
model are lower than the standard. This is caused mainly by the fact
that micro-entrepreneurs are more homogeneous than traditional
applicants, and some variables, like income, are not relevant for this
problem [see Ref. 13, for a detailed discussion around this topic].
Additionally, types I and II error costs are quite similar: interest
rates are very high compared to the standard due to the higher risk,
but recovery rates are also high for loans labeled as defaulted due
to effective renegotiations. This segment is profitable for the bank
mainly because of the high interest rate and the low LGD. Finally,
default rates are unusually high for the new loans when comparing
them with retail loans, which explains the high interest rates that are
charged to this segment. Our framework can help elucidate which
sets of variables are the most profitable given other default rate and
interest rate structures, where we do not expect, for example, that
using just one variable source is optimal. This follows from the com-
bination of these factors, plus the acquisition cost structure of this
particular problem.

5.4. Detailed feature selection performance

Next, the feature selection performance is detailed by plotting the
variable acquisition costs and the profit for an increasing number
of selected attributes for both datasets. Our approach is not directly
comparable with feature ranking methods like Fisher Score, RFE-
SVM, and HOSVM since it automatically identifies the optimal subset
of features during the classifier construction, leading to single solu-
tions. In order to make this comparison, we report the performance
obtained by the alternative methods for the subsets of size n dis-
cussed in Section 5.2, and compare them with various solutions of
different cardinality obtained by l2l∞-SVM and l1l∞-SVM using dif-
ferent values of C and k. In order to reflect the trends that each graph
follows, we graph, in addition to the points, the best polynomial that
adjusts to those points. These graphs are presented in Figs. 1 and
2 for the new customers, and Figs. 3 and 4 for the returning cus-
tomers. The logistic regression model is excluded from this analysis
since it provides a single subset of relevant variables, in contrast to
feature ranking methods, and there are no parameters to tune to
obtain different solutions.

Table 4
Predictive performance for all feature selection approaches. Returning customers. AUC as the performance metric.

Returning customers

Logit Fisher RFE-SVM HOSVMAUC HOSVMMPC l2l∞-SVM l1l∞-SVM

AUC 67.7 67.8 65.0 67.0 67.2 67.7 67.4
Accu. 65.1 64.0 61.7 63.3 63.4 63.8 63.8
n* 28.8 40 40 40 40 45.6 44.2
J* 2.9 3 3 3 3 2.8 2.1
Profit 23,579 21,519 19,740 21,032 21,048 23,263 30,399
Benefits 48,436 47,218 45,718 46,938 46,822 47,008 47,315
Losses 3860 3716 3995 3922 3791 3734 3802
Acq. costs 20,998 21,983 21,983 21,983 21,983 20,012 13,114
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Fig. 1. Total variable acquisition costs for an increasing number of features. New
customers.

For the new customers, it can be seen that the variable acquisition
costs decrease significantly for l2l∞-SVM and l1l∞-SVM when fewer
attributes are selected. This is in contrast to the alternative methods
(Fig. 1), leading to important differences in terms of profit (Fig. 2).

A similar analysis can be done for the returning customers:
While benefits and costs are roughly the same for all approaches,
acquisition costs are much lower in our proposal compared to the
alternative methods (Fig. 3), leading to a much higher profit (Fig. 4).
It is important to note that no solution with less than 30 attributes is
found for our method, since it tends to use all available variables from
the cheapest source, given the nature of the l∞-norm regularizer.

The best overall performance in terms of profit is achieved by
l1l∞-SVM, suggesting that the l1 regularization is more compatible
with the l∞-norm than with the Tikhonov regularization, although
the differences are very small between them in terms of perfor-
mance. In terms of complexity, we recommend l1l∞-SVM since it
can be cast into a linear programming problem, while the l2l∞-SVM
requires quadratic programming solvers.

6. Conclusions and future developments

In this study, a profit-based framework for model and feature
selection is developed. The main goal is to incorporate variable
acquisition costs in the modeling decisions, and assess the perfor-
mance of the solution taking this information into account together
with the benefits and losses caused by correct and incorrect classi-
fication, respectively. The proposal includes two formulations that
use the l∞-norm as a group penalty function, encouraging solutions
that use few sources of attributes rather than a traditional feature
selection scheme where all attributes have the same cost. In terms

Fig. 2. Total profit (benefits − losses − var.acq.costs) for an increasing number of
features. New customers.

Fig. 3. Total variable acquisition costs for an increasing number of features. Returning
customers.

of computational complexity, l2l∞-SVM and l1l∞-SVM are almost
equivalent to l2-SVM and l1-SVM, respectively. The differences are
the inclusion of variables z, one for each variable group, an extra set
of constraints for the weight vector, and the additional linear term in
the objective function.

The proposed framework was applied in a credit scoring project of
a Chilean bank, which consists of two datasets of applicants from the
micro-entrepreneur segment. A detailed cost-benefit analysis was
performed for this data, including the computation of the financial
losses for defaulters, the benefits of successfully granted loans, and
the variable acquisition costs for each source of information. Based
on this information, we compared our l2l∞-SVM and l1l∞-SVM for-
mulations with well-known feature selection strategies, such as the
HOSVM, the RFE-SVM, and the Fisher Score methods, showing the
importance of profit-based evaluation in analytics.

From our experimental results, we can conclude that our strat-
egy outperforms alternative methods in terms of profit thanks to its
ability to identify accurate solutions using few sources of variables,
in contrast to traditional feature selection methods for SVM that pri-
oritize relevance over the source of the information. The proposal
also achieves a positive performance if traditional metrics are used,
leading to the highest AUC for the new customers and a similar one
compared to that of the best method for the returning customers. In
our case study, however, some sources of attributes are too expen-
sive and the marginal benefits in terms of classification power gained
by using these sources are lower than the acquisition costs. In conse-
quence, selecting the best model based on AUC leads to an important
loss of profit in this application.

Even though our solution comes at a slightly increased computa-
tional cost, it can be applied in multiple situations. If the data sources

Fig. 4. Total profit (benefits − losses − var.acq.costs) for an increasing number of
features. Returning customers.
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are costly, or the modeler must decide between many providers,
then a profit-optimizing model will quickly offset the computational
expense. Our method can also be used as an input for a tradi-
tional model, determining the most profitable sets of variables before
estimating the final predictive model.

Important future developments can be derived from this work.
The following directions are viewed as future work:

• This work can be extended further to other analytics applica-
tions in which profit measures are relevant for model selection,
such as churn prediction and fraud detection. For example,
several sources of information can be identified in telecommu-
nication companies, such as socio-demographic variables, call
detail records, and information from external sources.

• There are interesting applications in the medical sciences for
which the proposed approach could be used. Although the esti-
mation of the classification benefits and costs can be more
challenging than in analytics, our proposal can be helpful in
identifying which sources of attributes are most relevant in
diagnosing a disease. The Electroencephalogram (EEG) and the
Electrocardiogram (ECG) are well-known sources of informa-
tion that have acquisition costs and can be used jointly with the
personal information of the patient.

• The l∞-norm penalization can be used in other classification
methods, such as logistic regression. Consequently, our frame-
work can be extended to other linear methods.
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