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Abstract Second-order cone programming (SOCP) formu-
lations have received increasing attention as robust opti-
mization schemes for Support Vector Machine (SVM) clas-
sification. These formulations study the worst-case setting
for class-conditional densities, leading to potentially more
effective classifiers in terms of performance compared to
the standard SVM formulation. In this work we propose
an SOCP extension for Twin SVM, a recently developed
classification approach that constructs two nonparallel clas-
sifiers. The linear and kernel-based SOCP formulations for
Twin SVM are derived, while the duality analysis provides
interesting geometrical properties of the proposed method.
Experiments on benchmark datasets demonstrate the virtues
of our approach in terms of classification performance
compared to alternative SVM methods.
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1 Introduction

Twin SVM [14] has gained popularity in the pattern analy-
sis community due to its superior classification performance
and its interesting geometrical properties [25, 29]. This
method aims at constructing two classifiers in such a way
that each one is close to one of the two training patterns, and
as far as possible from the other. The method is potentially
faster than SVM since it divides the original problem into
two smaller subproblems, and may achieve better empirical
results [14].

Second-order cone programming has received increased
interest in recent years within the SVM community [10, 18,
32]. In this paper we use the SOCP-SVM formulation pro-
posed by Nath and Bhattacharyya [24], which provides a
robust setting in which a maximum margin classifier is con-
structed in such a way that the true positive and true negative
rates should be above a predefined value.

It is important to note this method differs from the SOCP
formulations for SVM proposed by Goldfarb and Iyengar
[12] and Zhong and Fukushima [34], which study the prob-
lem of classification with noisy data (i.e. instances with
measurement errors). The SOCP methods by Goldfarb and
Iyengar [12] and Zhong and Fukushima [34] have as many
constraints as training samples, resulting in models that are
computationally very expensive in terms of running times.
In contrast, the SOCP-SVM method by Nath and Bhat-
tacharyya [24] has two chance constraints, one for each
training pattern, resulting in a much more efficient training.

Several improvements have been made to the original
Twin SVM version by Jayadeva et al. [14] (TWSVM). One
extension of TWSVM, namely the Twin bounded SVM
(TBSVM) formulation [28], represents the base formulation
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of our analysis. The aim of this work is to develop a new
classification approach combining the ideas of Twin SVM
and SOCP-SVM. On one hand, our proposal constructs two
nonparallel classifiers so that each hyperplane is closer to
one of the training patterns and as far as possible from the
other (Twin SVM principle) while, on the other hand, each
training pattern is represented by an ellipsoid characterized
by the mean and covariance of each class. The proposal is
transposed into two SOCP models, which can be solved effi-
ciently by interior point algorithms [1, 2]. This proposal is
also extended to nonlinear classification via kernel methods.

To the best of our knowledge, the only reference that
combines SOCP-SVM and Twin SVM is the work proposed
by Qi et al. [26]. In this work, the authors extend the SOCP-
based SVM formulation by Goldfarb and Iyengar [12] and
Zhong and Fukushima [34] to Twin SVM.

This paper is structured as follows: Section 2 introduces
SVM for binary classification and the relevant extensions
for this work: Twin SVM and SOCP-SVM. The proposed
SOCP-SVM approach is presented in Section 3. Section 4
provides experimental results using benchmark datasets.
A summary of this work can be found in Section 5,
where we provide its main conclusions and address future
developments.

2 Prior work in support vector machines

In this section, we describe the SVM formulations for binary
classification developed by Cortes and Vapnik [8]. Subse-
quently, the Twin SVM formulation [14, 28] is presented.
Finally, the SVM based on second-order cone programming
[6, 24] is described.

2.1 Soft margin SVM

Given a set of instances with their respective labels (xi , yi),
where xi ∈ �n, i = 1, . . . , m and yi ∈ {−1, +1}, the
soft-margin SVM is aimed at finding a hyperplane of the
form f (x) = w�x + b by solving the following quadratic
programming problem (QPP):

min
w,b,ξ

1

2
‖w‖2 + C

m∑

i=1

ξi

s.t.yi(w�xi + b) ≥ 1 − ξi, ξi ≥ 0, i = 1, . . . , m, (1)

where ξi is the soft margin error of the i-th training point
and C > 0 is a regularization parameter.

A non-linear classifier can be obtained via the Kernel
Trick. The dual of Formulation (1) allows the use of kernel
functions, which define an inner product in a higher dimen-
sional Hilbert space, where a hyperplane with maximal

margin is constructed. The kernel-based SVM formulation
follows [27]:

max
α

m∑

i=1

αi − 1

2

m∑

i,s=1

αiαsyiysK(xi , xs)

s.t.
m∑

i=1

αiyi = 0, 0 ≤ αi ≤ C, i = 1, . . . , m, (2)

where α are the dual variables corresponding to the con-
straints in (1), and K : �n × �n → � is a kernel function
satisfying the Mercer’s condition (see [23]). A common
choice is the Gaussian kernel, which has the following form:

K(xi , xs) = exp

(
−||xi − xs ||2

2σ 2

)
, (3)

where σ is a positive parameter that controls the width of
the kernel [27].

2.2 Twin support vector machine

The Twin SVM is a binary classification method that
performs classification using two nonparallel hyperplanes
instead of the single hyperplane used in the classical SVM
[14]. These two hyperplanes are obtained by solving two
smaller-sized QPPs.

Let us denote the number of elements of the positive and
negative class by m1 and m2 respectively, by A ∈ �m1×n

a data matrix for the positive class (i.e. for yi = +1), and
by B ∈ �m2×n a data matrix for the negative class (i.e. for
yi = −1).

The linear Twin SVM formulation finds two non-parallel
hyperplanes in �n of the form

w�
1 x + b1 = 0, w�

2 x + b2 = 0, (4)

in such a way that each hyperplane is closer to data points of
one of the two classes, and is as far as possible from those
of the other class. A new point is assigned to class +1 (k =
1) or −1 (k = 2) depending on its proximity to the two
non-parallel hyperplanes.

Formally, the linear Twin SVM method solves the fol-
lowing two QPPs:

min
w1,b1,ξ2

1

2
‖Aw1 + e1b1‖2 + c3

2

(
‖w1‖2 + b2

1

)
+ c1e�

2 ξ2

s.t. − (Bw1 + e2b1) ≥ e2 − ξ2, ξ2 ≥ 0, (5)

and

min
w2,b2,ξ1

1

2
‖Bw2 + e2b2‖2 + c4

2

(
‖w2‖2 + b2

2

)
+ c2e�

1 ξ1

s.t.(Aw2 + e1b2) ≥ e1 − ξ1, ξ1 ≥ 0, (6)

where c1, c2, c3, and c4 are positive parameters, and e1

and e2 are vectors of ones of appropriate dimensions. Here,
c1 and c2 determine the tradeoff between the respective
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model fit (the first term of the objective function of prob-
lems (5) and (6) is the sum of the squared distances from
the hyperplane to instances of this studied class), and the
sum of the slack variables (thus attempting to minimize
misclassification).

Parameters c3 and c4 relate the second term of the objec-
tive function of problems (5) and (6) to the first and third
ones described above, and act as a regularization term in the
dual of these formulations to avoid possible ill-conditioning
at inverting matrices. Let H = [A e1] ∈ �m1×(n+1) and
G = [B e2] ∈ �m2×(n+1). Since the symmetric matrices
H�H + c3I and G�G + c4I are positive definite for any
c3, c4 > 0, the Wolfe dual [22] of the problems (5) and (6)
are given by:

max
α

α�e2 − 1

2
α�G(H�H + c3I )−1G�α

s.t.0 ≤ α ≤ c1e2, (7)

and

max
γ

γ �e1 − 1

2
γ �H(G�G + c4I )−1H�γ

s.t.0 ≤ γ ≤ c2e1, (8)

respectively. The nonparallel hyperplanes (4) are obtained
from the solution α and γ of (7) and (8) by

v1 = −(H�H+c3I )−1G�α, v2 = (G�G+c4I )−1H�γ ,

where vk = [w�
k , bk]� ∈ �n+1, for k = 1, 2.

Notice that Formulation (5)–(6) corresponds to the Twin-
Bounded SVM formulation (TBSVM) given by Shao et al.
[28], which extends the original Twin SVM (TWSVM) pro-

posed by Jayadeva et al. [14]. Both problems are equivalent
when setting c3 = c4 = ε, with ε > 0 a fixed small
parameter.

A new sample x belongs to the class k∗ iff

k∗ = argmin
k=1,2

{
dk(x) := |w�

k x + bk|
‖wk‖

}
, (9)

where dk is the perpendicular distance of the point x from
the hyperplane w�

k x + bk = 0, k = 1, 2.
Figure 1 presents the geometrical interpretation of For-

mulation (5)–(6) in a two-dimensional toy dataset:
In Fig. 1 we observe the two nonparallel hyperplanes

(represented by dashed lines) over the respective training
patterns, represented in the form of convex hulls [5, 8].
The solid line represents the decision function (9), which
provides the boundaries for the classification of new obser-
vations to one of each class.

A kernel-based classifier can be derived by considering
the following non-linear surfaces:

K(x,X)u1 + b1 = 0, and K(x,X)u2 + b2 = 0, (10)

where X = [A� B�] ∈ �n×m represents the matrix of both
training patterns (sorted by class), K(x,X) denotes a row
vector, which is defined by

K(x,X) = [K(x,X•1),K(x,X•2), . . . ,K(x,X•m)] , (11)

with X•j ∈ �n denoting the j -th column of the matrix X,
and K : �n × �n → � is a kernel function that satisfies
the Mercer’s condition. For these surfaces, the following
quadratic problems can be constructed (kernel-based Twin
SVM):

min
u1,b1,ξ2

1

2

∥∥∥K(A�,X)u1 + e1b1

∥∥∥
2 + c3

2

(
‖u1‖2 + b2

1

)
+ c1e�

2 ξ2

s.t. − (K(B�,X)u1 + e2b1) ≥ e2 − ξ2, ξ2 ≥ 0, (12)

Fig. 1 Geometric interpretation
for TBSVM
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and

min
u2,b2,ξ1

1

2

∥∥∥K(B�,X)u2 + e2b2

∥∥∥
2 + c4

2

(
‖u2‖2 + b2

2

)
+ c2e�

1 ξ1

s.t.(K(A�,X)u2 + e1b2) ≥ e1 − ξ1, ξ1 ≥ 0, (13)

where c1, c2, c3, and c4 are positive parameters.

2.3 Second-order cone programming SVM

Here we introduce the robust SVM version based on second-
order cones presented by Nath and Bhattacharyya [24]. Let
X1 and X2 be random vectors that generate the observations
of the positive and negative classes respectively, with means
and covariance matrices given by (μk, �k) for k = 1, 2,
where �k ∈ �n×n are symmetric positive semidefinite
matrices.

The aim of this method is to construct a maximum margin
classifier in such a way that the probability of false-negative
(resp. false-positive) errors does not exceed 1 − η1 (resp.
1 − η2) with η1, η2 ∈ (0, 1), which becomes the following
quadratic chance-constrained programming problem:

minw,b
1
2‖w‖2

s.t. Pr{w�X1 + b ≥ 1} ≥ η1,

Pr{w�X2 + b ≤ −1} ≥ η2.

(14)

Formulation (14) suggests classifying each training pat-
tern k = 1, 2 correctly, up to the rate ηk , even for the worst
data distribution. For this goal, the probability constraints
in (14) are replaced with their robust counterparts:

inf
X1∼(μ1,�1)

Pr{w�X1 + b ≥ 1} ≥ η1,

inf
X2∼(μ2,�2)

Pr{w�X2 + b ≤ −1} ≥ η2.

The application of the multivariate Chebyshev inequality
[15, Lemma 1] leads to the following (conic) constraints:

w�μ1 + b ≥ 1 + κ1

√
w��1w, −(w�μ2 + b) ≥ 1 + κ2

√
w��2w,

where κk =
√

ηk

1−ηk
, for k = 1, 2. Hence, the following

deterministic problem can be derived:

min
w,b

1
2‖w‖2

s.t. w�μ1 + b ≥ 1 + κ1‖S�
1 w‖,

−(w�μ2 + b) ≥ 1 + κ2‖S�
2 w‖, (15)

where �k = SkS
�
k , for k = 1, 2. This problem is an instance

of quadratic SOCP with two second-order cones (SOCs)
constraints [1]. An SOC constraint on the variable x ∈ �n

is of the form

‖Dx + b‖ ≤ c�x + d,

where d ∈ �, c ∈ �n, b ∈ �m, D ∈ �m×n are given.
Note that Problem (15) can be cast into a linear SOCP

with three SOCs constraints by introducing a new variable t

and an additional constraint ‖w‖ ≤ t . The solutions for both

problems are essentially the same but linear SOCP formula-
tions are required by some SOCP solvers, such as SeDuMi
Toolbox for Matlab [31].

A Kernel version can be derived for non-linear classifi-
cation [6, 24]. The weight vector w ∈ �n can be rewritten
as w = Xs + Mr, where M is a matrix whose columns
(as vectors) are orthogonal to the training data points, s, r
are vectors of combining coefficients with the appropriate
dimension, and X = [A� B�] ∈ �n×m is the data matrix
containing both training patterns.

On the other hand, the empirical estimates of the mean
μk and covariance �k are given by:

μ̂1 = 1

m1
A�

1 e1, μ̂2 = 1

m2
B�

2 e2, �̂k = SkS
�
k , k = 1, 2, (16)

where

S1 = 1√
m1

(A� − μ̂1e
�
1 ), S2 = 1√

m2
(B� − μ̂2e

�
2 ). (17)

Thus, for each class k, we have

w�μk = s�gk, w��kw = s�	ks, k = 1, 2,

where

gk = 1

mk

[
K1kek

K2kek

]
, 	k = 1

mk

[
K1k

K2k

](
Imk

− 1

mk

eke�
k

)[
K�

1k K�
2k

]
,

with K11 = AA�, K12 = K�
21 = BA�, K22 = BB� matri-

ces whose elements are inner products of data points. For
instance, the entry (l, s) for the matrix Kkk′ is the following
(Kkk′)ls = (xk

l )
�xk′

s . Using a kernel function, this quantity

becomes: (Kkk′)ls = K(xk
l , x

k′
s ).

Finally, the non-linear formulation is given by:

min
s,b

1

2
s�Ks

s.t. s�g1 − b ≥ 1 + κ1

√
s�	1s

b − s�g2 ≥ 1 + κ2

√
s�	2s, (18)

where K = [K11,K12;K21,K22] ∈ �m×m.

3 Twin SOCP-SVM, a robust Twin SVM classifier

In this section, we present a novel approach for binary clas-
sification using second-order cones and non-parallel hyper-
planes. This formulation extends the ideas of the TBSVM
approach [28] to SOCP-SVM.

The reasoning behind this approach is developing two
nonparallel classifiers in such a way that each hyperplane is
closest to one of the two classes and as far as possible from
the other class. However, ellipsoids are used to characterize
each training pattern instead of the convex hulls, following
the ideas of SOCP-SVM.
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The linear formulation of Twin SOCP-SVM is presented
in Section 3.1. The dual form of Twin SOCP-SVM is
derived in Section 3.2, providing the geometrical interpre-
tation of the method. The kernel-based version of Twin
SOCP-SVM is described in Section 3.3.

3.1 Linear Twin SOCP-SVM formulation

Let us consider the following quadratic chance-constrained
programming problems:

min
w1,b1

1
2 ‖Aw1 + e1b1‖2 + θ1

2

(‖w1‖2 + b2
1

)

s.t. inf
X2∼(μ2,�2)

Pr{w1
�X2 + b1 ≤ −1} ≥ η2,

and

min
w2,b2

1
2 ‖Bw2 + e2b2‖2 + θ2

2

(‖w2‖2 + b2
2

)

s.t. inf
X1∼(μ1,�1)

Pr{w2
�X1 + b2 ≥ 1} ≥ η1,

where θ1, θ2 > 0. The parameters η1 and η2 have a similar
interpretation compared with the SOCP-SVM formulation,
with values in (0, 1).

Thanks to an appropriate application of the multivariate
Chebyshev inequality, the above problems can now be stated
as the following quadratic SOCP problems (Twin SOCP-
SVM formulation):

min
w1,b1

1

2
‖Aw1 + e1b1‖2 + θ1

2

(
‖w1‖2 + b2

1

)

s.t. − w�
1 μ2 − b1 ≥ 1 + κ2‖S�

2 w1‖, (19)

and

min
w2,b2

1

2
‖Bw2 + e2b2‖2 + θ2

2

(
‖w2‖2 + b2

2

)

s.t. w�
2 μ1 + b2 ≥ 1 + κ1‖S�

1 w2‖, (20)

where �k = SkS
�
k and κk =

√
ηk

1−ηk
for k = 1, 2.

Remark 1 Note that the objective functions of problems
(19)–(20) can be written compactly as

1

2
‖Aw1+e1b1‖2+θ1

2

(
‖w1‖2+b2

1

)
= 1

2
v�

1 (H�H+θ1I )v1,

(21)

and

1

2
‖Bw2+e2b2‖2+θ2

2

(
‖w2‖2 + b2

2

)
= 1

2
v�

2 (G�G+θ2I )v2,

(22)

respectively, where vk = [w�
k , bk]� ∈ �n+1,

H = [A e1] ∈ �m1×(n+1), G = [B e2] ∈ �m2×(n+1).

(23)

Then, by introducing the new variables t1, t2, and the con-
straints

‖(H�H + θ1I )1/2v1‖ ≤ t1, ‖(G�G + θ2I )1/2v2‖ ≤ t2,

the problems (19) and (20) can be cast into linear SOCP
problems with two SOC constraints each.

The decision function is similar to the one used for the
TBSVM method; that is, a new sample x belongs to the class

k∗ iff k∗ = argmink=1,2

{
|w�

k x+bk |
‖wk‖

}
.

It is important to note that the proposed formulation (19)-
(20) differs from the one proposed by Qi et al. [26] in several
aspects, such as the model structure and their goals. Specifi-
cally, the Robust Twin SVM (R-TWSVM) formulation [26]
consists of solving the following quadratic SOCP problems:

min
w1,b1,ξ2,t1

1

2
‖Aw1 + e1b1‖2 + 1

2
t2
1 + c1e�

2 ξ2

s.t. − (Bw1 + e2b1) − t1r1 ≥ e2 − ξ2, ξ2 ≥ 0,

‖ w1 ‖≤ t1, (24)

and

min
w2,b2,ξ1,t2

1

2
‖Bw2 + e2b2‖2 + 1

2
t2
2 + c2e�

1 ξ1

s.t. (Aw2 + e1b2) − t2r2 ≥ e1 − ξ1, ξ1 ≥ 0,

w2 ≤ t2, (25)

where ri is a vector whose components correspond to the
radius of the ball around each training data, and represents
a bound for the noise in each example. In our model we
assume that the training samples are observed values gener-
ated by a random variable, which have a mean vector and a
covariance matrix. This model leads to a formulation based
on two quadratic optimization problems with one conic con-
straint each (Formulation (19)-(20)). Geometrically, this can
be interpreted as separating two ellipsoids by a hyperplane
which is obtained by constructing two non-parallel hyper-
planes (see Section 3.2 and Fig. 2 for details). Conversely,
the R-TWSVM method assumes that training data has mea-
surement errors, which also leads to a SOC formulation but
with additional linear constraints. Geometrically, this can be
interpreted as separating two sets of spheres whose cardinal-
ities are congruent with the sample sizes of each class (see
[26, §1] for details).

3.2 Dual formulation of Twin SOCP-SVM and
geometric interpretation

In this section we present the dual formulation of Twin
SOCP-SVM (Formulations (19) and (20)), and provide
geometrical insights for the method.
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Fig. 2 Geometric interpretation
for Twin SOCP-SVM
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The following theorem gives the dual formulation of
problems (19)–(20).

Theorem 1 The duals of the problems (19)–(20) are given
by

min
z,u

1

2

(
z� 1

)
(H�H + θ1I )−1

(
z
1

)

s.t. z ∈ B(μ2, S2, κ2), (26)

and

min
p,u

1

2

(
p� 1

)
(G�G + θ2I )−1

(
p
1

)

s.t. p ∈ B(μ1, S1, κ1), (27)

where

B(μ, S, κ) = {z ∈ �n : z = μ + κSu, ‖u‖ ≤ 1}, (28)

which denotes an ellipsoid centered at μ whose shape is
determined by S, and size by κ .

The proof of Theorem 1 is presented in the Appendix
A.1.

The previous result is important since we can link the
proposed formulation to the geometrical interpretation: the
ellipsoids B(μ, S, κ) define the two hyperplanes, and sub-
sequently the classification rule. Figure 2 illustrates the
geometrical interpretation of the proposed approach.

The following remark relates the primal and dual vari-
ables of the Twin SOCP-SVM formulation, which is rel-
evant since we can solve the dual formulations and then
obtain both non-parallel hyperplanes. The weights wk pro-

vide interesting insight into the solution found, since we can
assess the importance of each attribute in the final solution
[4, 21].

Remark 2 Note that if z∗ ∈ �n is an optimal solution of
Problem (26), then by using (A.7) and (A.5), the solution
v∗

1 = [w∗
1
�, b∗

1]� of Problem (19) can be computed by:

v∗
1 = −1

ẑ�
(H�H + θ1I )−1ẑ

(H�H +θ1I )−1ẑ, ẑ = [z∗�
, 1]�.

(29)

Moreover, given an optimal solution p∗ ∈ �n of the prob-
lem (27), one can compute the solution v∗

2 = [w∗
2
�, b∗

2]� of
Problem (20) by:

v∗
2 = 1

p̂�
(G�G + θ2I )−1p̂

(G�G+θ2I )−1p̂, p̂ = [p∗�
, 1]�.

(30)

The use of properties of Schur complement [13] of the
matrices (H�H+θ1I ) and (G�G+θ2I ) allows us to rewrite
the formulations (26)–(27) as follows:

Proposition 1 The formulations (26)–(27) can be written
equivalently as

min
z,u

1

2

∥∥∥∥Cs(θ1)
−1/2

(
z − m1

m1 + θ1
μ̂1

)∥∥∥∥
2

s.t. z ∈ B(μ2, S2, κ2), (31)

and

min
z,u

1

2

∥∥∥∥Cs(θ2)
−1/2

(
z − m2

m2 + θ2
μ̂2

)∥∥∥∥
2

s.t. z ∈ B(μ1, S1, κ1). (32)
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Table 1 The metadata for all
data sets Dataset #features #examples %class(min.,maj.) IR

AUS 14 690 (55.5,44.5) 1.2

WBC 30 569 (62.7,37.3) 1.7

LIVER 6 345 (58.0,42.0) 1.4

GER 24 1000 (70.0,30.0) 2.3

DIA 8 768 (65.1,34.9) 1.9

HEART 13 270 (55.6,44.4) 1.25

IONO 34 351 (64.1,35.9) 1.8

When θ1 = θ2 = 0 and the symmetric matrices
H�H,G�G are positive definite, the above problems are
reduced to

min
z,u

1

2

∥∥∥�̂
−1/2
1 (z − μ̂1)

∥∥∥
2

s.t. z ∈ B(μ2, S2, κ2), (33)

and

min
z,u

1

2

∥∥∥�̂
−1/2
2 (z − μ̂2)

∥∥∥
2

s.t. z ∈ B(μ1, S1, κ1). (34)

The proof of Proposition 1 can be found in the
Appendix A.2.

Formulation (33) (resp. (34)) can be interpreted as the
problem of minimizing the Mahalanobis distance [9] on
B(μ2, S2, κ2) (resp. B(μ1, S1, κ1)).

3.3 Kernel-based Twin SOCP-SVM formulation

In this section we extend Twin SOCP-SVM to Kernel func-
tions to obtain non-linear classifiers. Following the notation
introduced in Section 2.3, the weight vectors for each one
of the twin hyperplanes can be written as wk = Xsk + Mrk ,
where X and M are equivalent to the matrices described
in Section 2.3, and sk , rk are vectors with appropriate
dimension. For each problem we have:

w�
k μk = s�k gk, w�

k �kwk = s�k 	ksk, k = 1, 2,

and

Aw1 =[K11 K12]s1 =K1•s1, Bw2 =[K21 K22]s2 = K2•s2,

where gk , 	k , and Kkk′ have a similar form compared to
the notation presented in Section 2.3. Hence, in order to

obtain a Kernel formulation for the problems (19) and (20),
we replace the inner product that appears in the expressions
Kkk′ with any function K : �n × �n → � satisfying Mer-
cer’s condition (see [23]), obtaining the following problems
(kernel-based Twin SOCP-SVM):

min
s1,b1

1

2
‖K1•s1 + e1b1‖2 + θ1

2

(
‖s1‖2 + b2

1

)

s.t. − s�1 g2 − b1 ≥ 1 + κ2‖��
2 s1‖, (35)

and

min
s2,b2

1

2
‖K2•s2 + e2b2‖2 + θ2

2

(
‖s2‖2 + b2

2

)

s.t. s�2 g1 + b2 ≥ 1 + κ1‖��
1 s2‖, (36)

where 	k = �k�
�
k , for k = 1, 2. Then, the solutions of

problems (35) and (36) generate the following kernel-based
surfaces:

K(x,X)s1 + b1 = 0, K(x,X)s2 + b2 = 0, (37)

where the row vector K(x,X) is defined in (11).
According to this, a new point x ∈ �n belongs to the

class k∗ iff

k∗ = argmin
k=1,2

|K(x,X)sk + bk|√
s�k Ksk

, (38)

where K = [K11,K12;K21,K22] ∈ �m×m.

4 Experimental results

We applied the proposed and alternative approaches to
the following seven well-known benchmark data sets from
the UCI Repository [3]: Australian Credit (AUS), Wiscon-
sin Breast Cancer (WBC), BUPA Liver (LIVER), German

Table 2 Predictive
performance summary for all
linear approaches and for all
datasets

AUS WBC LIVER GER DIA HEART IONO

SVMl 86.2 97.3 51.5 69.4 72.1 50.8 93.2

TBSVMl 86.7 96.8 65.9 72.2 73.4 85.0 85.2

SOCP-SVMl 86.8 96.5 63.9 72.2 74.9 84.7 86.1

Twin SOCP-SVMl 87.0 98.0 68.1 72.9 76.1 85.5 81.4
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Credit (GER), Pima Indians Diabetes (DIA), Heart/Statlog
(HEART), and Ionosphere (IONO). Table 1 summarizes the
relevant information for each benchmark data set, includ-
ing the number of variables, the sample size, the percentage
of observations in each class, and the imbalance ratio (IR).
More information on these datasets can be found in the UCI
Repository [3].

The following classification approaches are studied and
reported:

– Standard SVM, linear (SVMl , Formulation (1)) and
kernel-based version (SVMK , Formulation (2)).

– Twin-Bounded SVM, linear (TBSVMl , Formulation
(5)–(6)) and kernel-based version (TBSVMK , Formu-
lation (12)–(13)).

– SOCP-SVM, linear (SOCP-SVMl , Formulation (15))
and kernel-based version (SOCP-SVMK , Formulation
(18)).

– The proposed Twin SOCP-SVM method, linear (Twin
SOCP-SVMl , Formulation (19)–(20)) and kernel-based
version (Twin SOCP-SVMK , Formulation (35)–(36)).

The following model selection procedure was performed:
training and test subsets were constructed using 10-fold
cross-validation for all the datasets. We used the metric
area under the curve (AUC) as the main performance mea-
sure,which is arguably the most commonly used metric for
model comparison in the machine learning community [30].

A grid search was performed for SVM parameters C and
σ ; Twin SVM parameter ci, i = {1, 2, 3, 4}; SOCP param-
eters ηk; and parameter θk used in the proposed approach.
We studied the following values of ηk ∈ {0.2, 0.4, 0.6, 0.8}.
We used the following set of values for parameters C, ci , θk

and σ :

C, ci, θi, σ ∈ {2−7, 2−6, 2−5, 2−4, . . . , 23, 24, 25, 26, 27}.

For this procedure, we used LIBSVM for Matlab [7] for
standard SVM approaches, the SeDuMi Matlab Toolbox for
SOCP-based classifiers [31], and the codes provided by
Yuan-Hai Shao, author of Twin-Bounded SVM [28], which
are publicly available in http://www.optimal-group.org/.

Tables 2 and 3 summarize the best performance (in terms
of AUC) of all the techniques. In Table 2, we present the
results of the linear approaches for all seven data sets, while
the results of the kernel-based methods are presented in

Table 3. For each table, the best method is emphasized in
bold type.

In Table 2 we observe that the best predictive results were
achieved using the proposed Twin SOCP-SVM in six out of
seven datasets, while standard SVM had better AUC in one
dataset (Ionosphere). The methods TBSVM, SOCP-SVM,
and Twin SOCP-SVM have relatively similar performances
in all datasets, outperforming standard SVM in LIVER and
HEART. In such data, standard SVM fails at finding an
adequate classifier, leading to poor predictive performance.

It can be seen in Table 3 that no method outperformed
the others in all the experiments, although the proposed
method performs better on four out of seven datasets. The
differences in terms of AUC are not conclusive in most
cases.

We used the robustness analysis procedure proposed in
[11] to assess the overall performance of our approach. The
relative performance of a given method on a dataset is repre-
sented by the ratio between its AUC and the highest among
all the compared strategies. Formally, the AUC ratio for
method M and dataset i is:

AUCRatioi(M) = AUC(M)

maxj AUC(j)
, (39)

where AUC(j) is the AUC for method j when trained on
dataset i. The larger the value of AUCRatioi(M), the better
the performance of M in dataset i. The best method M∗
will have AUCRatioi(M

∗) = 1 for dataset i. The value
of

∑
i AUCRatioi(M) represents a measure of robustness

and overall performance for an algorithm M , and the larger
its value, the better the overall performance and robustness
[11]. Figure 3 presents the distribution of AUCRatioi(a)

for the four methods and all datasets. For each method we
selected the best performance in terms of AUC between its
linear and kernel-based versions.

In Figure 3 we observe that Twin SOCP-SVM has the
best overall performance, being very close to the optimal
performance measure of 7 (6.98). Comparing the different
classification strategies (SVM, TBSVM, SOCP-SVM, and
Twin SOCP-SVM), standard SVM has the lowest overall
performance. We conclude that the proposed method rep-
resents an excellent alternative for the classification task,
since it achieves best overall performance while reduc-
ing the size of a SOCP problem by splitting it into two

Table 3 Predictive
performance summary for all
kernel-based approaches and
for all datasets

AUS WBC LIVER GER DIA HEART IONO

SVMK 86.2 97.1 73.3 68.8 72.1 79.4 94.1

TBSVMK 87.6 97.0 65.0 72.4 75.6 62.3 95.4

SOCP-SVMK 86.9 97.4 72.9 72.2 76.3 79.5 95.2

Twin SOCP-SVMK 87.3 97.7 72.4 73.1 76.5 76.3 95.4

http://www.optimal-group.org/
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Fig. 3 Sum of AUC ratios for
all methods
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smaller SOCP problems, instead of one, and creating two
non-parallel hyperplanes, one for each training pattern.

5 Conclusions

In this paper, we present a novel classification approach,
which extends the ideas of Twin SVM [14, 28] to second-
order cones. The method is presented as a linear classifier,
and subsequently extended to a kernel-based method. The
dual form of the method is also computed, and some
interesting geometrical properties are discussed.

SOCP formulations for SVM have the ability of gener-
alizing training patterns effectively by considering a robust
setting for data distribution [19, 24]. The design benefits the
correct prediction of both classes. This fact is demonstrated
empirically on seven benchmark datasets, where best over-
all results in terms of AUC are achieved by the proposed
method. Additionally, the proposal represents an improve-
ment on the state-of-the-art of SOCP formulations for SVM,
since it reduces the size of the original model by splitting it
into two smaller problems, leading to a reduction in terms of
computational times, and providing the opportunity to solve
larger SOCP problems. This is an important point since
the complexity of SOCP formulations is higher than QP

formulations [17], and there are no efficient solvers
designed for SOCP-SVM, in contrast to standard SVM
(LIBSVM [7], for example).

We identified the following opportunities for future
research:

– There is a need for more efficient implementations
for SOCP-based SVM formulations. Although several
techniques have been suggested for solving SVM effi-
ciently [16], none of these methods has been adapted
for SOCP-based SVM. Such implementations would
allow the construction of classifiers in large scale
datasets. SOCP-based SVM formulations will become
a real alternative to traditional SVM when this can be
achieved. This work presents an interesting step in that
direction, dividing the original formulation into two
smaller problems. The previously developed r-SOCP-
SVM method [19] also follows the same path, on which
one of the three SOC constraints is removed, reducing
the running times compared to the original SOCP-SVM
formulation.

– The proposal can be extended to multi-class classifica-
tion, exploiting some of the properties of multi-category
Twin SVM [33]. Although some efforts have already
been made to extend SOCP-SVM to multi-class (see
e.g. [6]), there are interesting research opportunities for
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multi-class formulations due to their vast application
domains.

– The SOCP-SVM method has a balanced design since
each constraint corresponds to a particular training pat-
tern that should be correctly classified up to a rate η,
making it especially suitable for class-imbalanced clas-
sification [20]. A previous work extends SOCP-SVM
method for this task, and the Twin SOCP-SVM can also
be extended to deal with skewed labels.

Appendix: A Dual formulation for twin
SOCP-SVM

A.1 Proof of Theorem 1

Proof The Lagrangian function associated with Problem
(19) is given by

L(w1, b1, λ) = 1

2
‖Aw1 + e1b1‖2 + θ1

2

(
‖w1‖2 + b2

1

)

+λ(w�
1 μ2 + b1 + 1 + κ2‖S�

2 w1‖),
where λ ≥ 0. Since ‖v‖ = max‖u‖≤1 u�v holds for any
v ∈ �n, we can rewrite the Lagrangian as follows:

L(w1, b1, λ) = max
u

{L1(w1, b1, λ,u) : ‖u‖ ≤ 1},
with L1 given by

L1(w1, b1, λ,u) = 1

2
‖Aw1 + e1b1‖2 + θ1

2

(
‖w1‖2 + b2

1

)

+λ(w�
1 μ2 + b1 + 1+κ2w�

1 S2u). (A.1)

Thus, problem (19) can be written equivalently as:

min
w1,b1

max
u,λ

{L1(w1, b1, λ,u) : ‖u‖ ≤ 1, λ ≥ 0}.

Hence, the dual problem of (19) is given by:

max
u,λ

min
w1,b1

{L1(w1, b1, λ,u) : ‖u‖ ≤ 1, λ ≥ 0}. (A.2)

The above expression allows the construction of the dual
formulation. The detailed description of this procedure can
be found in [22]. The computation of the first order con-
dition for the inner optimization task (the minimization
problem) yields to

∇w1L1 = A�(Aw1 + e1b1) + θ1w1 + λ(μ2 + κ2S2u) = 0, (A.3)

∇b1L1 = e�
1 (Aw1 + e1b1) + θ1b1 + λ = 0. (A.4)

Let us denote by ẑ = [z�, 1]� ∈ �n+1, with z = μ2 +
κ2S2u ∈ �n. Then the relations (A.3)–(A.4) can be written
compactly as

(H�H + θ1I )v1 + λẑ = 0.

Since the symmetric matrix (H�H + θ1I ) is positive defi-
nite, for any θ1 > 0, one has

v1 = −λ(H�H + θ1I )−1ẑ. (A.5)

On the other hand, by replacing (A.3)–(A.4) in (A.1) and
using the relations (21) and (A.5), the dual problem can be
stated as follows:

maxz,u,λ − 1
2λ2ẑ�

(H�H + θ1I )−1ẑ + λ

s.t. z = μ2 + κ2S2u, ‖u‖ ≤ 1,

λ ≥ 0.

(A.6)

Notice that the objective function of the dual prob-
lem (A.6) is concave with respect to λ, and it attains its
maximum value at

λ∗ = 1

ẑ�
(H�H + θ1I )−1ẑ

, (A.7)

with optimal value

1

2

1

ẑ�(H�H + θ1I )−1ẑ
.

Then, by using (A.7) the dual problem of (19) can be stated
as follows:

minz,u 1
2

(
z� 1

)
(H�H + θ1I )−1

(
z
1

)

s.t. z ∈ B(μ2, S2, κ2),

(A.8)

where

B(μ, S, κ) = {z ∈ �n : z = μ + κSu, ‖u‖ ≤ 1}.
Similarly, since the symmetric matrix (G�G + θ2I ) is

positive definite, for any θ2 > 0, one can prove that the dual
of the problem (20) is given by:

minp,u
1
2

(
p� 1

)
(G�G + θ2I )−1

(
p
1

)

s.t. p ∈ B(μ1, S1, κ1).

(A.9)

A.2 Proof of Proposition 1

Proof Let us denote the objective function of Problem (26)
by

f (z) = 1

2

(
z� 1

)
(H�H + θ1I )−1

(
z
1

)
.

Since the symmetric matrix H�H + θ1I =(
A�A + θ1I A�e1

e�
1 A e�

1 e1 + θ1

)
is positive definite for

each θ1 > 0, where H = [A e1] ∈ R
m1×(n+1) (cf.

(23)), Theorem 7.7.6 of [13] implies that the matrix



A second-order cone programming formulation for twin support vector machines 275

Cs(θ1) = A�A + θ1I − 1
m1+θ1

A�e1e�
1 A is invertible, and

that

(H�H + θ1I )−1 =
(

I 0
− 1

m1+θ1
e�

1 A 1

)(
Cs(θ1)

−1 0
0 1

m1+θ1

)

×
(

I − 1
m1+θ1

A�e1
0 1

)
. (A.10)

By using the first equality of (16), and making the
product of the matrices we have that

f (z) = 1

2

((
z� − m1

m1 + θ1
μ̂

�
1

)
Cs(θ1)

−1

×
(
z − m1

m1 + θ1
μ̂1

)
+ 1

m1 + θ1

)
.

Thus, (31) follows. Formulation (32) can be derived in a
similar way.

Now, we suppose that θ1 = 0 and that H�H is positive
definite. Since

Cs(0) = A�
(

I − 1

m1
e1e�

1

)
A = A�

(
I − 1

m1
e1e�

1

)

×
(

I − 1

m1
e1e�

1

)
A = m1S1S

�
1 = m1�̂1,

where the last two equalities follow from (16) and (17), the
expression (A.10) can be written as

(H�H)−1 = 1

m1

(
I 0

−μ̂
�
1 1

) (
�̂−1

1 0
0 1

)(
I −μ̂1
0 1

)
.

Then,

f (z) = 1

2m1

(
(z� − μ̂

�
1 )�̂−1

1 (z − μ̂1) + 1
)

= 1

2m1

(
‖�̂−1/2

1 (z − μ̂1)‖2 + 1
)

.

Hence, (33) holds. Formulation (34) can be derived in a
similar way.
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