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a b s t r a c t

This paper presents novel second-order cone programming (SOCP) formulations that deter-

mine a linear multi-class predictor using support vector machines (SVMs). We first extend

the ideas of OvO (One-versus-One) and OvA (One-versus-All) SVM formulations to SOCP-SVM,

providing two interesting alternatives to the standard SVM formulations. Additionally, we pro-

pose a novel approach (MC-SOCP) that simultaneously constructs all required hyperplanes for

multi-class classification, based on the multi-class SVM formulation (MC-SVM). The use of

conic constraints for each pair of training patterns in a single optimization problem provides

an adequate framework for a balanced and effective prediction.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Second-order cone programming (SOCP) formulations have recently been proposed as an alternative optimization scheme

for SVMs [1,2]. These formulations consider the worst-case setting for class-conditional densities with a given mean and covari-

ance matrix, avoiding making assumptions about the distribution of these class-conditional densities. The SOCP formulations

also provide a cost-sensitive framework for intuitively handling uneven misclassification costs in binary classification, since the

methods are designed to construct a maximum margin classifier such that the false positive and false negative error rates do

not exceed a predefined value [2]. SOCP problems are a special class of non-linear convex optimization problems which can be

solved efficiently by interior point methods [3,4].

While SOCP-SVM has been successfully applied for binary classification, it has not yet been formalized for multi-category

classification in this context, to the best of our knowledge. The only reference provided in the literature in the context of SOCP

for multi-class classification is Zhong and Fukushima [5]. The method presented was used to study the problem of classification

with noisy data (i.e. instances with measurement errors, see [6,7] for binary case), which is a completely different approach from

the one used in this paper.

This paper is structured as follows. Section 2 introduces multi-class SVMs for classification. The proposed SOCP-SVM ap-

proaches are presented in Section 3. Section 4 provides experimental results using real-world and artificially-generated datasets.

A summary of this paper can be found in Section 5, where we provide its main conclusions and address future developments.
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2. Multi-class support vector machines

In this section we briefly describe the mathematical derivation of SVMs for multi-class classification (OvO, OvA and MC-SVM),

which are closely related to our proposals and will be used as alternative methods in our experiments.

2.1. One-versus-All approach

This is the simplest and probably the earliest implementation for multi-class SVM [8]. This approach constructs K binary SVM

classifiers, each one of which aims at separating one class from the remaining ones. Formally, for m training tuples of the form

(x1, y1), . . . , (xm, ym), where xi ∈ �n represents the ith sample and yi ∈ {1, 2, . . . , K} is the class label of xi, the kth SVM solves

the following quadratic problem:

min
wk,bk,ξ

k

1

2
‖wk‖2 + C

m∑
i=1

ξ k
i

s.t. ỹi(w�
k · xi + bi) ≥ 1 − ξ k

i ,

ξ k
i ≥ 0, i = 1, . . . , m, (1)

where ỹi = 1 means the object belongs to the target class (yi = k), while ỹi = −1 represents the opposite case (instance i belongs

to a class different from k). Once all K hyperplanes are constructed, the decision function is given by fk(x) = w�
k

· x + bk. Then,

a new sample x is classified in the class with the greatest value of fk(x), that is, x is assigned to the k∗th class when fk∗(x) =
max{ fk(x) : k = 1, . . . , K}. Note that in the binary case (when K = 2), Problem (1) reduces to the classical SVM problem [9].

The OvA approach has proven to be successful and competitive compared with other multi-class approaches, according to

various papers in the literature [10,11], but in some cases may lead to poor performance when the class distribution is skewed

[12].

2.2. One-versus-One approach

A well-known classification approach is known as One-versus-One (OvO) SVM [13]. This method constructs K(K − 1)/2 binary

SVM classifiers, one for each pair of classes. Considering training points from the kth and the lth classes (k < l), OvO SVM solves

the following quadratic formulation:

min
wkl ,bkl ,ξ

kl

1

2
‖wkl‖2 + C

∑
r

ξ kl
r

s.t. w�
kl · xr + bkl ≥ 1 − ξ kl

r , if yr = k,

− (w�
kl · xr + bkl) ≥ 1 − ξ kl

r , if yr = l,

ξ kl
r ≥ 0, r = 1, . . . , mk + ml . (2)

Once all K(K − 1)/2 hyperplanes are constructed, the decision function for a new sample x is given by fkl(x) = w�
kl

· x + bkl .

Then, the Max-Wins voting strategy is used [14] in which each classifier assigns the data instances to one of the two classes,

increasing the vote by one for the assigned class. The class with the majority of votes determines the classification of each data

point.

2.3. MC-SVM approach

An “all-together” approach for multi-class SVMs by solving one single optimization problem was proposed in [15]. This ap-

proach constructs K binary classifiers simultaneously. The formulation of this approach is:

min
wk,bk,ξ

k

1

2

K∑
k=1

‖wk‖2 + C

n∑
i=1

K∑
k=1,k �=yi

ξ k
i

s.t. (w�
yi

· xi + byi
) − (w�

k · xi + bk) ≥ 2 − ξ k
i ,

ξ k
i ≥ 0, i = 1, . . . , m, k ∈ {1, . . . , K} \ yi. (3)

The decision function is similar to that of the OvA SVM formulation, that is, a new sample x belongs to the class k∗ iff k∗ =
argmaxk=1,...,K{w�

k
· x + bk}. Different variations of this approach have been proposed in the literature. For instance, in [16] the

SMO decomposition algorithm based on the dual formulation of SVM is extended to multi-class classification, leading to a fast

and efficient kernel machine. An alternative multi-class formulation to MC-SVM can be found in [17].
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3. Novel SOCP-SVM formulations for multi-class classification

In this section we formalize the proposed multi-class formulations using second-order cones. We first present the One-

versus-All extension to multi-class SOCP-SVM classification. Second, the One-versus-One SOCP-SVM formulation is formalized.

Finally, an “all-together” approach for multi-class SVM by using second-order cones is presented.

3.1. The One-versus-All SOCP-SVM approach

An extension of the OvA-SVM described in Section 2.1 can be derived from the SOCP-SVM formulation for binary classification.

Let Xk be a random variable that generates samples of class k, with mean and covariance matrix given by (μk, �k); and let Xc
k

be a random variable that generates samples of the remaining classes, having (μc
k
,�c

k
), where �k,�

c
k

∈ �n×n are symmetric

positive semidefinite matrices. Let us denote a family of distributions which have a common mean and covariance by X ∼ (μ, �).

Subsequently, for each class k = 1, . . . , K, we consider the following quadratic chance-constrained programming problem:

min
wk,bk

1

2
‖wk‖2

s.t. inf
Xk∼(μk,�k)

Prob{wk
� · Xk ≥ bk + 1} ≥ ηk,

inf
Xc

k
∼(μc

k
,�c

k
)
Prob{wk

� · Xc
k ≤ bk − 1} ≥ ηc

k, (4)

where ηk, η
c
k

∈ (0, 1) is a predefined parameter that controls the misclassification rates for each class [2]. Formulation (4) can

be rewritten as an SOCP problem thanks to the multivariate generalization of the Chebyshev–Cantelli inequality. This theorem

suggests that a probabilistic approach such as the one presented in Formulation 4 can be cast into a deterministic problem since

this inequality holds even for the distribution corresponding to the worst-case. The Chebyshev–Cantelli inequality follows:

Theorem 3.1. [18, Lemma 1] Let X be a n-dimensional random variable with mean and covariance (μ, �), where � is a positive

semidefinite symmetric matrix. Given a ∈ �n, b ∈ � and η ∈ (0, 1), the condition

inf
X∼(μ,�)

Prob{a�X − b ≥ 0} ≥ η,

holds if and only if

a�μ − b ≥ κ
√

a��a,

where κ =
√

η
1−η .

Applying Theorem 3.1 to the chance-constrained programming problem presented in Formulation 4 results in the following

SOCP quadratic problem (OvA-SOCP):

min
wk,bk

1

2
‖wk‖2

s.t. w�
k · μk − bk ≥ 1 + κk‖S�

k wk‖,

bk − w�
k · μc

k ≥ 1 + κ c
k‖Sc

k
�

wk‖, (5)

with �k = SkS�
k
, and κk =

√
ηk

1−ηk
(resp. κc

k
=

√
ηc

k
1−ηc

k

).

By introducing a new variable tk and a constraint ‖wk‖ ≤ tk, Formulation (5) can be cast as the following problem:

min
wk,bk,tk

tk

s.t. ‖wk‖ ≤ tk

w�
k · μk − bk ≥ 1 + κk‖S�

k wk‖,

bk − w�
k · μc

k ≥ 1 + κ c
k‖Sc

k
�

wk‖. (6)

This new problem is a convex formulation with a linear objective function and second-order cone (SOC) constraints [3]. An

SOC constraint on the variable x ∈ �n is of the form

‖Ax + b‖ ≤ c� · x + d,

where d ∈ �, c ∈ �n, b ∈ �m, A ∈ �m × n are given. Thus, Formulation (6) can be considered as a linear second-order cone pro-

gramming (SOCP) problem. This approach solves K linear SOCP problems with three SOC constraints.

The decision function is similar to the one used for the standard OvA-SVM formulation; that is, a new data point x belongs to

the class k∗ iff k∗ = arg maxk=1,...,K{w�
k

x − bk}.
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Note that for the binary case (when K = 2), Problems (4) and (5) are equivalent to the formulations proposed in [2]. As

reported in [19], we used the OvA version for SOCP-SVM (Formulation (5)) to classify fish schools, although the method was not

formalized in the form of Formulations (4) and (5).

Since Formulation (5) solves K binary problems, we can deduce the corresponding dual formulation for each problem by

following the ideas presented in [1,2], as follows:

min
z1,z2

1

2
‖z1 − z2‖2

s.t. z1 ∈ B1(μk, Sk, κk), z2 ∈ B2(μ
c
k, Sc

k, κ
c
k), (7)

where

B1(μk, Sk, κk) = {z : z = μk − κkSkuk,‖uk‖ ≤ 1},
B2(μ

c
k, Sc

k, κ
c
k) = {z : z = μc

k + κ c
k Sc

kuc
k,‖uc

k‖ ≤ 1}.
3.2. The One-versus-One approach

Similar to the OvA-SOCP formulation, let Xk be a random variable that generates samples of class k, with mean and covariance

matrix given by (μk, �k) for k = 1, . . . , K, where �k ∈ �n × n are symmetric positive semidefinite matrices. Based on the idea of

OvO-SVM described in Section 2.2, we can formulate an OvO version for SOCP-SVM. More precisely, for training examples from

the kth and the lth classes (k < l), we solve the following quadratic chance-constrained programming problem:

min
wkl ,bkl

1

2
‖wkl‖2

s.t. inf
Xk∼(μk,�k)

Prob{wkl
� · Xk ≥ bkl + 1} ≥ ηkl,

inf
Xl∼(μl ,�l)

Prob{wkl
� · Xl ≤ bkl − 1} ≥ ηlk, (8)

where ηkl, ηlk ∈ (0, 1). Again, thanks to an appropriate application of the multivariate Chebyshev–Cantelli inequality (see

Theorem 3.1), Formulation (8) can be rewritten as the following quadratic SOCP problem (OvO-SOCP):

min
wkl ,bkl

1

2
‖wkl‖2

s.t. w�
kl · μk − bkl ≥ 1 + κkl‖S�

k wkl‖,

bkl − w�
kl · μl ≥ 1 + κlk‖Sl

�wkl‖, (9)

with �k = SkS�
k
, and κkl =

√
ηkl

1−ηkl
(resp. κlk =

√
ηlk

1−ηlk
). Similarly to OvO-SVM, this method constructs K(K − 1)/2 binary classi-

fiers by solving a linear SOCP problem (one for each pair of classes) with three SOC constraints.

The decision function is given by fkl(x) = w�
kl

· x − bkl , and the prediction of a new point x is done by the Max-Wins voting

strategy (see Section 2.2).

Again, since Formulation (9) solves K(K − 1)/2 binary problems, we can deduce the corresponding dual formulation for each

problem by following the ideas presented in [1,2], as follows:

min
z1,z2

1

2
‖z1 − z2‖2

s.t. z1 ∈ B1(μk, Sk, κkl), z2 ∈ B2(μl, Sl, κlk), (10)

where

B1(μk, Sk, κkl) = {z : z = μk − κklSkuk,‖uk‖ ≤ 1},
B2(μl, Sl, κlk) = {z : z = μl + κlkSlul,‖ul‖ ≤ 1}.

3.3. MC-SOCP, a novel k-class SOCP-SVM formulation

We present a novel multi-class SVM formulation using second-order cones, for which all classifiers are constructed via a

single optimization problem. For each training point i, let Ai be a set of points in the n-dimensional space �n with cardinality

mi, for i = 1, . . . , K. Let Ai be an mi × n matrix whose rows are the points in Ai. Denote by ei the vector of ones of dimension mi.

For each i, let wi be a vector in �n and bi be a real number. We will assume that the sets Ai, i = 1, . . . , K, are piecewise-linearly

separable [17], that is, that there exist wi and bi, i = 1, . . . , K, such that

Aiwi − bie
i > Aiw j − bje

i, i, j = 1, . . . , K, i �= j.

Let Xi be random vector variables that generate the samples Ai, with a mean vector and a covariance matrix given by (μi,

� ) for i = 1, . . . , K, where � ∈ �n × n are symmetric positive semidefinite matrices. In order to construct a maximum margin
i i



332 J. López, S. Maldonado / Information Sciences 330 (2016) 328–341

Fig. 1. Piecewise-linear separator with margins and random variables for three classes.
of separation between the classes i and j, such that the probability that the random variable Xi lies on the correct side of the

piecewise-linear separator is greater than ηij ∈ (0, 1], i, j = 1, . . . , K, i �= j, we suggest considering the following quadratic chance-

constrained programming problem:

min
wi,bi

1

2

K∑
i=1

i−1∑
j=1

‖wi − w j‖2 + 1

2

K∑
i=1

‖wi‖2

s.t. Prob{(wi − w j)
� · Xi − (bi − bj) − 1 ≥ 0} ≥ ηi j,

i, j = 1, . . . , K, i �= j. (11)

In this case, we want to be able to classify correctly, up to the rate ηij, the instances that have common mean and covariance

Xi ∼ (μi, �i), even for the worst distribution of the data [20]. The worst distribution refers to the distribution corresponding to

the worst case regarding the Chebyshev inequality [18]. This inequality provides a bound that holds for a family of distributions

having the same second order moments, and the worst case occurs when equality is attained for this bound [21]. For this purpose,

the probabilistic constraints in (11) are replaced by their robust counterparts:

inf
Xi∼(μi,�i)

Prob{(wi − w j)
� · Xi − (bi − bj) − 1 ≥ 0} ≥ ηi j

Again, thanks to an appropriate application of the multivariate Chebyshev–Cantelli inequality (see Theorem 3.1), this worst

distribution approach leads to the following deterministic problem:

min
wi,bi

1

2

K∑
i=1

i−1∑
j=1

‖wi − w j‖2 + 1

2

K∑
i=1

‖wi‖2

s.t. (wi − w j)
� · μi − (bi − bj) ≥ 1 + κi j‖S�

i (wi − w j)‖,

i, j = 1, . . . , K, i �= j. (12)

where �i = SiS
�
i

(for instance, Cholesky factorization) and κi j =
√

ηi j

1−ηi j
, for i, j = 1, . . . , K, i �= j. We named this formulation

Multi-class SOCP-SVM (MC-SOCP). Fig. 1 presents a graphic representation of MC-SOCP for three classes:

Remark 1. Supposing that each training pattern Xi is normally distributed, i.e. Xi ∼ N (μi,�i), then κ ij can be redefined as

κi j = �−1(ηi j), where � denotes the cumulative distribution function.

The decision rule follows: A new point x ∈ �n belongs to the class i∗, iff

i∗ = arg max
i=1,...,K

fi(x) = arg max
i=1,...,K

{x� · wi − bi}.
In the next steps, we rewrite Formulation (12) in the form of a linear SOCP problem. Let us denote by:

w = [(w1)
�, (w2)

�, . . . , (wK)
�]� ∈ �nK ,

b = [b1, b2, . . . , bK]� ∈ �K ,

Q = (K + 1)InK − J ∈ �nK×nK ,

with

J =

⎡
⎢⎢⎣

In In · · · In
In In · · · In
...

...
. . .

...
In In · · · In

⎤
⎥⎥⎦ ∈ �nK×nK ,
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where In and InK denote the identity matrix of size n and nK, respectively.

Note that the matrix Q is symmetric positive definite [see 22, Proposition 3.3]. Then, the objective function of problem (12)

can be expressed as:

1

2
w�Qw = 1

2
‖Q1/2w‖2, (13)

where

Q1/2 =
√

K + 1InK −
√

K + 1 − 1

K
J .

Let Hij be the n × nK matrix with all blocks being n × n zero matrices, except for the ith block being In, and the jth block being

−In, that is,

Hi j = [0, . . . , 0, In, 0, . . . , 0,−In, 0, . . . , 0], i, j = 1, . . . , K, i �= j.

Then

wi − w j = Hi jw. (14)

Let rij be the K-dimensional vector with all components being zero, except for the ith component being 1 and the jth compo-

nent being −1, that is,

ri j = [0, . . . , 0, 1, 0, . . . , 0,−1, 0, . . . , 0]�.

Thus,

bi − bj = (ri j)� · b. (15)

By (13)–(15), Problem (12) can be rewritten as follows:

min
w,b

1

2
‖Q1/2w‖2

s.t. κi j‖S�
i Hi jw‖ ≤ (Hi jw)� · μi − (ri j)� · b − 1,

i, j = 1, . . . , K, i �= j. (16)

By introducing a new variable t and a constraint ‖Q1/2w‖ ≤ t, Formulation (16) can be cast as the following linear second-order

cone programming (SOCP) problem:

min
w,b,t

t

s.t. ‖Q1/2w‖ ≤ t

κi j‖S�
i Hi jw‖ ≤ (Hi jw)� · μi − (ri j)� · b − 1,

i, j = 1, . . . , K, i �= j. (17)

It is important to note that our approaches have several differences compared with other SOCP methods in the literature.

Debnath et al. [23], for instance, solve the standard SVM formulation via a SOCP optimization scheme. Our proposals extend

the model proposed by Nath and Bhattacharyya [2] from binary classification to multi-class, which is a completely different

formulation compared with standard SVM. Trafalis and Alwazzi [7] propose a method that deals with the issue of measurements

errors, resulting in an SOCP model in which each data sample becomes an SOC constraint, contrary to our proposals. Our work is

based on a robust setting that results in formulations in which each class becomes an SOC constraint.

Dual formulation of MC-SOCP and geometric interpretation

In the following steps we construct the dual formulation of MC-SOCP and provide a geometric interpretation of the solution

obtained by this method. The Lagrangian function associated with problem (16) is given by:

L(w, b, αi j) = 1

2
‖Q1/2w‖2 +

K∑
i, j=1

j �=i

αi j(κi j‖S�
i Hi jw‖ − (Hi jw)�μi + ri j�b + 1).

Since the relationship ‖u‖2 = max‖v‖≤1 u� · v holds for any u ∈ �n, we can modify the Lagrangian as follows:

L1(w, b, αi j, ui j) = 1

2
‖Q1/2w‖2 +

K∑
i, j=1

j �=i

αi j(κi j(S�
i Hi jw)�ui j − (Hi jw)�μi + ri j�b + 1). (18)

Then

L(w, b, αi j) = max
ui j

{L1(w, b, αi j, ui j) : ‖ui j‖ ≤ 1, i, j = 1, . . . , K, i �= j}.
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Thus, Problem (16) can be written equivalently as:

min
w,b

max
αi j ,ui j

{L1(w, b, αi j, ui j) : ‖ui j‖ ≤ 1, αi j ≥ 0, i, j = 1, . . . , K, i �= j}.

Hence, the dual problem of (16) is given by:

max
αi j ,ui j

min
w,b

{L1(w, b, αi j, ui j) : ‖ui j‖ ≤ 1, αi j ≥ 0, i, j = 1, . . . , K, i �= j}.

The above expression now enables us to eliminate the primal variables to obtain the dual formulation of the problem. Com-

puting the gradient of L1 with respect to w and b yields:

∇wL1 = Qw +
K∑

i, j=1

j �=i

αi j(κi jH
i j�Siu

i j − Hi j�μi),

∇bL1 =
K∑

i, j=1

j �=i

αi jr
i j.

Then, according to the Karush–Kuhn–Tucker conditions, we make the gradients of L1 equals to zero, which gives:

Qw =
K∑

i, j=1

j �=i

αi jH
i j�(μi − κi jSiu

i j), (19)

K∑
j=1

j �=i

(αi j − α ji) = 0, i = 1, . . . , K. (20)

Substituting the above expression in (18) subject to the relevant constraints yields the dual stated as follows:

max
αi j ,ui j

K∑
i, j=1

j �=i

αi j − 1

2
‖Q−1/2

K∑
i, j=1

j �=i

αi jH
i j�(μi − κi jSiu

i j)‖2

s.t. ‖ui j‖ ≤ 1, i, j = 1, . . . , K, i �= j,

K∑
j=1

j �=i

(αi j − α ji) = 0, i = 1, . . . , K,

αi j ≥ 0. (21)

Since Q−1/2 = 1√
K+1

InK +
√

K+1−1
K

√
K+1

J [see 22, Proposition 3.4] and JHi j� = 0, one has:

Q−1/2Hi j� = 1√
K + 1

Hi j�. (22)

Let

α = [α12, α13, . . . , α1K , . . . , αK1, αK2, . . . , αK K−1]� ∈ �K(K−1),

and

Ē = [E�
1 E�

2 . . . E�
K ]� ∈ �K(K−1)×K ,

with

Ei =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1 · · · 0 1 0 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · −1 1 0 · · · 0
0 · · · 0 1 −1 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · 0 1 0 · · · −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ �K−1×K .

Then, the equality constraint in Formulation (21) can be rewritten as

Ē�α = 0. (23)



J. López, S. Maldonado / Information Sciences 330 (2016) 328–341 335
Denote by

� = [��
1 ��

2 . . . ��
K ]� ∈ �K(K−1)×nK ,

where

�i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−μ�
i

· · · 0 μ�
i

0 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · −μ�
i

μ�
i

0 · · · 0
0 · · · 0 μ�

i
−μ�

i
· · · 0

...
. . .

...
...

...
. . .

...
0 · · · 0 μ�

i
0 · · · −μ�

i

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ �K−1×nK .

Then

K∑
i, j=1

j �=i

αi jH
i j�μi = ��α. (24)

Let us denote by

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u12 0 · · · 0

0
. . .

u1K

...
. . .

...

uK1

. . .

0 · · · uK K−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ �nK(K−1)×K(K−1)

and by

� = [��
1 ��

2 . . . ��
K ]� ∈ �nK(K−1)×nK ,

with

�i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−κ�
i1

S�
i

· · · 0 κi1S�
i

0 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · −κi i−1S�
i

κi i−1S�
i

0 · · · 0
0 · · · 0 κi i+1S�

i
−κi i+1S�

i
· · · 0

...
. . .

...
...

...
. . .

...
0 · · · 0 κiKS�

i
0 · · · −κiKS�

i

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ �n(K−1)×nK .

Then

K∑
i, j=1

j �=i

αi jκi jH
i j�Siu

i j = ��Uα, (25)

Hence, by using (22)–(25), we can express the dual problem (21) more compactly as follows:

max
α,u

e�α − 1

2(K + 1)
‖��α − ��Uα‖2

s.t. ‖ui j‖ ≤ 1, i, j = 1, . . . , K, i �= j,

Ē�α = 0,

α ≥ 0, (26)

where e denotes a vector of ones of dimension K(K − 1) and

u = [(u12)�, · · · , (u1K)�, . . . , (uK1)�, · · · , (uK K−1)�]� ∈ �nK(K−1).
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Remark 2. Let us denote by zi j = μi − κi jSiu
i j, for i, j = 1, . . . , K, i �= j. Then, taking (24) and (25) into account, Problem (26) can

be written as:

max
αi j ,zi j

K∑
i, j=1

j �=i

αi j − 1

2(K + 1)
‖

K∑
i, j=1

j �=i

αi jH
i j�zi j‖2

s.t. zi j ∈ Bi j(μi, Si, κi j), i, j = 1, . . . , K, i �= j,

K∑
j=1

j �=i

(αi j − α ji) = 0, i = 1, . . . , K,

αi j ≥ 0, (27)

where B(μ, S, κ) is given by:

B(μ, S, κ) = {z ∈ �n : z = μ − κSu, ‖u‖ ≤ 1}.
The set B(μ, S, κ) denotes an ellipsoid centered at μ whose shape is determined by S and size by κ . This means that, for a fixed

zij, Problem (26) maximizes a quadratic concave function, at variable α (see Proposition Appendix A.1), over the intersection of

an affine linear space with the nonnegative orthant, and, for a fixed α, Problem (26) maximizes a quadratic concave function, at

variable zij (see Proposition Appendix A.1), over the Cartesian product of ellipsoids.

Remark 3. Taking K = 2, Formulation (27) is reduced to

max
α,z1,z2

2α − α2

3
‖z1 − z2‖2

s.t. zi ∈ Bi(μi, Si, κi), i = 1, 2,

α ≥ 0.

Note that the objective function of this problem is maximized when α = 3
‖z1−z2‖2 , and its maximum value is 3

‖z1−z2‖2 . Then,

the above formulation can be rewritten as:

min
z1,z2

1

3
‖z1 − z2‖2

s.t. zi ∈ Bi(μi, Si, κi), i = 1, 2.

This formulation can be interpreted as finding the minimum distance between two ellipsoids (see [2]).

Remark 4. From (19), (22), (24) and (25), we obtain:

w = 1

K + 1
(�� − ��U)α = 1

K + 1

K∑
i, j=1

j �=i

αi jH
i j�(μi − κi jSiu

i j).

Then,

wi = 1

K + 1

K∑
j=1

j �=i

[
(αi jμi − α jiμ j) − (αi jκi jSiu

i j − α jiκ jiS ju
ji)

]
, i = 1, . . . , K.

Hence, the decision functions are given by

fi(x) = 1

K + 1

K∑
j=1

j �=i

[
(αi jx

� · μi − α jix
� · μ j)

− (αi jκi jx
� · Siu

i j − α jiκ jix
� · S ju

ji)
]

− bi, i = 1, . . . , K.

4. Experimental results

We applied the proposed SOCP-SVM approaches (MC-SOCP, OvO-SOCP, and OvA-SOCP) to eight benchmark data sets for

multi-class classification. We also studied their original versions based on standard SVM (MC-SVM, OvO-SVM, and OvA-SVM) for

comparison purposes.

We provide a description of the data sets in Section 4.1, while Section 4.2 presents a summary of the performance obtained

for all the proposed and alternative approaches.
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Table 1

Number of examples, number of variables and number of classes for

all data sets.

Dataset #examples #variables #classes

IRIS 150 4 3

WINE 178 13 3

GLASS 214 13 6

FISH 762 12 3

SEGMENT 2310 19 7

WAVEFORM 5000 21 3

HAYES-ROTH 160 4 3

LED7DIGIT 500 7 10

Table 2

Performance summary for different classification approaches. All datasets.

Iris Wine Glass Fish Segm Wave Hayes Led7

MC-SVM 93.3∗∗ 98.6 53.1∗∗ 69.7∗∗ 88.2∗∗ 87.2 57.9∗∗ 75.1

OVA-SVM 94.7 98.2 60.5∗∗ 74.4 92.7∗∗ 87.0 61.5∗∗ 72.1

OVO-SVM 96.7 98.6 66.1∗ 80.0 95.5 87.0 64.9 74.3

MC-SOCP 96.7 99.0 73.4 76.1 94.4 86.6 71.6 75.4

OVA-SOCP 96.7 99.0 61.4∗∗ 67.3∗∗ 90.2∗∗ 86.6 66.5 75.7

OVO-SOCP 96.7 99.0 72.6 77.2 96.9 87.1 62.5∗ 75.0
4.1. Datasets and experimental settings

In this section we briefly describe the data sets used for benchmark and provide the classification results using different

feature selection methods. These sets have already been used for benchmarks in feature selection (see, for example [10]).

We studied five real-world datasets from the UCI Machine Learning Repository [24]: Iris, Wine, Glass, Segment, and Wave-

form; one dataset used in a previous research project for classification of fish schools (Fish, see [19] for more details); and two

artificially-generated datasets, Hayes-Roth and LED Display Domain (LED7digit), also available from the UCI Repository. Table 1

summarizes the relevant information for each benchmark data set:

For model evaluation we chose a nested cross-validation (CV) strategy (also referred as repeated double CV, see e.g. [25]):

training and test subsets are obtained using a 10-fold CV (outer loop), and the training subset is further split in training and

validation subsets in order to find the right hyperparameter setting (parameters C). The average of the 100 outcomes of the model

evaluations is used to select the best model configuration. The final classification is then performed with the full training subsets

from the outer loop and for the best configuration of parameters. The average of the 10 outcomes of the model evaluations is

used as predictor of the performance metric. The classification performance is computed by averaging the 10 test results, whose

samples remains unseen during the hyperparameter selection procedure. We limited ourselves to linear classifiers.

For this work we studied balanced accuracy as the main performance metric to assess predictive performance. The balanced

accuracy corresponds to the Recall for each class, averaged over the number of classes. The Recall for a given class k is computed

from the number of correct class k matches divided by the total number of actual class k cases.

A grid search was performed to study the influence of the parameters C for soft-margin models and η for SOCP ap-

proaches. We studied the following values of ηkl ∈ {0.2, 0.4, 0.6, 0.8} (MC-SOCP and One-versus-One SOCP-SVM), and ηk, ηc
k

∈
{0.2, 0.4, 0.6, 0.8} (One-versus-All classification). For standard SVM approaches, we used the following set of values for parame-

ter C: {2−7, 2−6, . . . , 20, . . . , 26, 27}.
For the above procedure, we used the Spider Toolbox for Matlab [26] for standard SVM approaches, and the SeDuMi Matlab

Toolbox for SOCP-based classifiers [27].

4.2. Classification performance summary

Table 2 summarizes the results obtained from the model selection procedure for each classification approach and for all data

sets. We select the best combination of parameter C for standard SVM approaches and parameter η for SOCP-SVM approaches

using balanced accuracy. The best performance among all methods in terms of this metric is highlighted in bold type. We also

indicate with one asterisk where the performance is significantly lower than the best method at a 10% significance level, and

with two asterisks at a 5% significance level. A t-test is used to make pairwise comparisons between the mean of each approach

and the best method for a given dataset.

In Table 2 it can be seen that no method outperformed others in all experiments, although MC-SOCP and OvO-SOCP achieve

notably better results on the Glass and Segment datasets, respectively, and their performance is never significantly lower than

the best method. For the other datasets the differences are not conclusive. We also observe that SOCP methods performed better

in general, achieving best results in six out of eight datasets.
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Fig. 2. Sum of accuracy ratios for all methods.
We used the robustness analysis procedure proposed in [28] to assess the overall performance of our approaches. The relative

performance of a given method on a dataset is represented by the ratio between its balanced accuracy and the highest among all

the compared strategies. Formally, the (balanced) accuracy ratio for method a and dataset i is:

AccRatioi(a) = bAcc(a)

maxj bAcc( j)
, (28)

where bAcc(j) is the balanced accuracy for method j when trained over dataset i. The larger the value of AccRatioi(a), the better

the performance of a in dataset i. The best method a∗ will have AccRatioi(a∗) = 1 for dataset i. The measure �iAccRatioi(a)

represents a good measure of robustness and overall performance for an algorithm a, and the larger its value, the better the

overall performance and robustness. Fig. 2 presents the distribution of AccRatioi(a) for all six methods and all datasets.

In Fig. 2 we observe that MC-SOCP has the best average performance, being very close to the optimal performance measure

of 8. Comparing the different types of classification strategies (MC, OvA and OvO), standard SVM approaches always have lower

overall performance than their robust counterparts. The most remarkable improvement is achieved for the “all-together” ap-

proaches, since MC-SVM has the lowest overall performance, while MC-SOCP has the best. We conclude that all three proposed

approaches contribute to improving the performance of SVM multi-class classifiers.

4.3. Complexity and running times

The proposed approaches are based on SOCP formulations, which are known to be more time-consuming than standard SVM

and therefore, in general, less suitable for machine learning. Table 3 provides a comparison for one run of each method (the

average running time for one fold using 10-fold cross-validation). The experiments were performed on an HP Envy dv6 with 16

GB RAM, 750 GB SSD, an i7-2620M processor with 2.70 GHz, and using Microsoft Windows 8.1 Operating System (64-bits). We

used the SeDuMI solver for Matlab 7.12 for the proposed SOCP approaches, and the spider toolbox [26] and LIBSVM [29] were

used for the multi-class SVM approaches to solve the quadratic optimization problem.
Table 3

Average running times, in seconds, for all datasets.

Iris Wine Glass Fish Segm Wave Hayes Led7

MC-SVM 0”.48 0”.56 6”.33 14627”.13 6323”.20 23”.85 441”.73 0”.48

OVA-SVM 0”.37 0”.43 1”.16 59”.77 14”.78 0”.58 0”.82 0”.38

OVO-SVM 0”.20 0”.25 0”.90 9”.15 5”.22 0”.37 4”.66 0”.25

MC-SVM 0”.41 0”.42 0”.99 6”.76 1”.85 0”.84 0”.997 0”.28

OVA-SVM 0”.73 0”.76 1”.57 3”.36 1”.94 1”.04 1”.85 0”.63

OVO-SVM 0”.27 0”.66 3”.02 5”.63 1”.64 0”.98 7”.43 0”.47
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It is important to notice that, for the proposed approaches, all running times are tractable and reasonable (all running times

less than 10 s). Our approaches are relatively similar to the alternative approaches OVA-SVM and OVO-SVM in terms of running

times. In contrast, MC-SVM has prohibitive running times under the implementation used in this work (Spider Toolbox).

Regarding complexity, the OvA approach solves K SOCP problems with three SOC constraints each; the OvO approach solves

K(K − 1)/2 SOCP problems with three SOC constraints each; and the proposed all-together approach solves a single SOCP prob-

lem with K(K − 1)/2 + 1 SOC constraints. In this context, the complexity of OvO-SOCP and MC-SOCP is similar, while the OvA

approach is the most efficient one (although it is the one with the worst performance among the three methods).

5. Conclusions

In this work, we present three multi-class SVM methods based on second-order cone programming formulations. Our work

extends the ideas of One-versus-One, One-versus-All, and MC-SVM to second-order cones, conferring robustness to the methods,

given the ability of SOCP-SVM to generalize the class patterns better by following a robust optimization approach. The SOCP-

SVM method also has a balanced design since each constraint corresponds to a particular training pattern that must be correctly

classified up to a rate of η, assuring adequate classification performance for all available classes. Empirically, we observed that

the proposed approaches achieve better overall results on eight benchmark data sets. The gain is particularly important in the

two most overlapped datasets (Glass and Hayes-Roth), where MC-SOCP achieves an improvement of 7% compared with other

SVM methods.

Our main contribution is the development of the MC-SOCP approach for the simultaneous classification of all classes in one

single SOCP problem. The OvO-SOCP and OvA-SOCP methods are novel formulations with interesting advantages, such as more

accurate results than the traditional versions and greater simplicity than the “all-together” approach. Their derivation, however, is

relatively straightforward, given the state-of-the-art. For MC-SOCP, on the other hand, the construction of one single optimization

problem that includes all comparisons between training patterns, and the proof that this formulation can be written in a linear

SOCP problem, presented a more challenging task.

We identified the following research opportunities for future work:

• There is a pressing need for more efficient implementations of second-order cone programming formulations. Faster SOCP

implementations that exploit the structure of the SVM problem are needed for them to become real alternatives to traditional

SVM for large scale datasets. Recently, a very fast multi-class SVM implementation based on parallel programming has been

proposed [30], and similar extensions can be made to our proposals.
• The extension of these approaches to kernel approaches may lead to better performance, thanks to their ability to construct

non-linear classifiers.
• Second-order cone programming formulations have interesting properties for class-imbalanced classification. Since the pa-

rameter η controls Type I/II errors, a differentiated value of this parameter may help to construct better classification func-

tions that help to achieve accurate results in under-represented classes. This is particularly relevant in multi-class domains,

where it is relatively common to find skewed class distributions, and classifiers tend to favor the better-represented classes

and produce classifiers with poorly balanced performance [31]. Recently, we proposed a novel SOCP methodology to exploit

this virtue for binary classification [32], and we are currently working on its extension to multi-class SOCP.
• One-versus-One and the proposed “all-together” strategy required the construction of several classifiers (one for each pair of

classes), and therefore the running times and complexity grow quadratically with the number of classes. Although finding

applications with more than 10 classes is unlikely, reducing the complexity of such approaches is an interesting challenge.

Recently, the OvO-SVM method has been adapted to filter out non-competent classifiers [33]. Such extensions could make

the proposed approaches faster and scalable to multi-class problems with several categories.
• Multi-class classification via SVM has strong potential in several domains. One example is credit scoring, where multi-class

SVM have been used to deal with two types of defaulters: those who cannot pay because of cash flow problems, and those

that lack of willingness to pay [34]. We strongly believe that practitioners can benefit from the performance of the proposed

SOCP-based methods, and we consider their application in different domains as future work.
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Appendix A. Concavity of the objective function of problem (26)

Proposition A.1. Let f : �K(K−1) × �nK(K−1) → � be a function defined by f (α, u) = e�α − 1
2(K+1)

‖��α − ��Uα‖2. Then, the func-

tions f(α, ·) and f( ·, u) are concave.
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Proof. On the one hand, the gradient and the Hessian of f( ·, u), with respect to α, are given by:

∇α f = e − 1

K + 1
(� − U��)(�� − ��U)α

and

∇2
αα f = − 1

K + 1
(� − U��)(� − U�)�,

respectively. On the other hand, the gradient and the Hessian of f(α, ·), with respect to u, are given by

∇u f = 1

K + 1
	�

α �(��α − ��	αu)

and

∇2
uu f = − 1

K + 1
	�

α ���	α,

respectively, where

	α =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α12In 0 · · · 0

0
. . .

α1KIn
...

. . .
...

αK1In
. . .

0 · · · αK K−1In

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ �nK(K−1)×nK(K−1).

Clearly, both Hessian matrices are negative semi-definite symmetric. Therefore, functions f(α, ·) and f( ·, u) are concave. �
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