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ABSTRACT
This paper is devoted to the study of a bundle proximal-type algorithm
for solving the problem of minimizing a nonsmooth closed proper convex
function subject to symmetric cone constraints, which include the positive
orthant inRn, the second-order cone, and the cone of positive semidefinite
symmetric matrices. On the one hand, the algorithm extends the proximal
algorithmwith variable metric described by Alvarez et al. to our setting. We
show that the sequence generated by the proposed algorithm belongs to
the interior of the feasible set by an appropriate choice of a regularization
parameter. Also, it is proven that each limit point of the sequence generated
by the algorithm solves the problem. On the other hand, we provide
a natural extension of bundle methods for nonsmooth symmetric cone
programs. We implement and test numerically our bundle algorithm with
some instances of Euclidean Jordan algebras.
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1. Introduction

Let V = (V, ◦, ⟨·, ·⟩) be a Euclidean Jordan algebra (cf. Section 2) and consider the following
symmetric cone programming (SCP) problem:

.SCP/ f∗ = min f (x) s:t: w(x) = Ax + b ∈ K,

where f : Rn → ( − ∞,+∞] is closed proper convex, A : Rn → V is a linear application defined by
Ax = ∑n

k=1 xkak, where ak ∈ V for k = 1, . . . , n, b ∈ V, and

K := {x ◦ x : x ∈ V}

denotes the cone of square elements in V. Such a formalism covers several cones as the positive
orthant in Rn, the second-order cone, and the cone of positive semidefinite symmetric matrices. SCP
thus provides a unified framework for several classes of optimization problems such as nonlinear
programming (NLP), second-order cone programming (SOCP) and semidefinite programming
(SDP), and hence has extensive applications in engineering, economics, game theory, management
science, and other fields; see [2–6] and references therein.

In recent years, instances of SCP with linear and quadratic objective functions have attracted the
attention of some researchers for the development of interior-point methods similar to those that
exist for linear programming (see e.g. [7–12]) and quadratic programming (see e.g. [13–15]). For
instance, Gu et al. [9] generalized Roos et al.’s algorithm for linear optimization (LO) in [16] to linear
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1758 F. ALVAREZ AND J. LÓPEZ

SCP, Wang et al. [17], Wang and Bai [12] extended Darvay’s algorithm for LO in [18] to linear SDP
and SCP, respectively.

In this paper, we focus on the case where the objective function f in SCP is convex and nonsmooth.
Our approach consists in extending to convex SCP problems the interior proximal algorithm with
variablemetric (IPAVM) thatwas proposed in [1] for convex SOCP.The standard proximal algorithm
(PA) was first introduced by Martinet [19] based on previous work by Moreau [20] and it was then
further developed and studied by Rockafellar [21]. Later, several authors [22–25] generalized the PA
for convex programming with nonnegative constraints, replacing the quadratic proximal term by a
generalized distance-like function, which also plays the role of a sort of barrier that force the iterates
to stay in the interior of the feasible set (strictly feasible solutions). Following a different approach,
the IPAVM for SOCP developed in [1] uses a quadratic variable metric induced by a class of positive
definite matrices together with a regularization parameter appropriately chosen so that the iterates be
interior points. For the definition of the variable metric in the general case of SCP, the idea developed
in this paper is to replace the positive definite matrix with a positive definite operator defined on V,
by specifically using the inverse of its quadratic representation as defined in Section 2. This allows us
to propose a generic IPAVM for SCP and extend to it the theoretical analysis of [1].

We say that IPAVM is a generic algorithm in the sense that, at each iteration, it requires to solve
an auxiliary regularized strongly convex minimization problem, whose numerical resolution would
depend on the specific instance one is dealing with. As an illustration, the computational implemen-
tations and numerical experiences in [1] were developed only for smooth objective functions and
performed for special instances of Linear SOCP, that is, when the objective function f is linear. Thus,
although most theoretical results in [1] do not require differentiability on the objective function, the
actual IPAVM that was implemented there was not adapted to solve a nonsmooth convex SOCP.

The auxiliary inner problem in IPAVM may be very hard to solve when the objective function is
nonsmooth. Nonsmooth optimization problems are in general difficult to solve, even when they are
unconstrained. They arise in many fields of applications, for example, in economics, engineering and
optimal control. Among algorithms for nonsmooth optimization, we mention the subgradient,[26]
cutting planes,[27] analytic center cutting-planes [28] and proximal bundle methods.[29–31] The
latter class, which replaces the objective function with a polyhedral model involving accumulated
subgradients, is themost robust and reliable algorithmbecause theynot only stabilize the optimization
procedure but make the subproblem a well-posed one, that is, with unique solution.

For unconstrained nonsmooth problems, iterates of a proximal bundle algorithm are generated
by solving an auxiliary quadratic programming (QP) problem at each iteration. Each QP problem is
defined by means of a cutting-planes model of the objective function, stabilized by a quadratic term
centred at the best point obtained so far (which is referred to as the serious step). An important feature
of bundle methods is that the size of each QP problem can be controlled via the so-called aggregation
techniques.[29, Ch. 9] On the other hand, constrained nonsmooth problems are more complex, and
only a few practical methods can be found in the literature. Convex problems with easy constraints
(such as bound or linear constraints) can be solved either by inserting the constraints directly into
each QP problem or by projecting iterates onto the feasible set.[32,33] For convex problems with
general constraints of nonnegativity, one possibility is to solve an equivalent unconstrained problem
with an exact penalty objective function.[34,35] Another possibility is to replace the quadratic
proximal term with a Bregman-type distance, which produces interior schemes.[36,37] Some other
bundle-type approaches for this last class of constraints has been proposed in [38]. Recently, in [39]
the authors present an inexact spectral bundle method for solving a convex quadratic symmetric
conic programming problem, where at each iteration an eigenvalue minimization problem is solved
inexactly.

In this work, we use the technique of proximal bundle methods to develop an implementable
version of IPAVM. In fact, we present and develop in detail a computational implementation of a
method that replaces the original objective function with a polyhedral model involving accumulated
subgradients of the objective function. A particular technical difficulty that we are able to overcome
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OPTIMIZATION 1759

here is to ensure that the inexact bundle subiterations are interior points (strictly feasible solutions).
The resulting interior proximal bundle algorithm with variable metric (IPBAVM) is suited to address
nonsmooth convex SCP problems, including SOCP and SDP as special cases. To the best of our
knowledge, the bundle method had not been studied yet in the context of a general convex SCP.

The paper is organized as follows. Section 2 reviews some basic results on Euclidean Jordan
algebras. In Section 3, we describe our algorithm with variable metric induced by a positive definite
operator and we prove the convergence of our algorithm. In Section 4, we develop a detailed
implementation of the bundle algorithm that solves our problem. This implementation is applied to
some test problems which are described in Section 5. Indeed, these test problems cannot be solved
with the version implemented in [1] of IPAVM for convex SOCP. Finally, concluding remarks are
given in Section 6.

Notation

The following notation is used throughout this paper. For a closed proper convex function f and, for
some ε ≥ 0, ∂εf (x) = {p ∈ Rn : f (x) + ⟨p, z − x⟩ − ε ≤ f (z), ∀z ∈ Rn} denotes its ε-subdifferential
at x, ∂f = ∂0f its subdifferential.[40]

2. Preliminaries on Euclidean Jordan algebras

In this subsection, we briefly describe some concepts, properties and results from Euclidean Jordan
algebras that are needed in this paper and they have become important in the study of conic
optimization; see, e.g. Schmieta and Alizadeh [11], Faraut and Korányi [41].

A Euclidean Jordan algebra (EJA) is a triple (V, ◦, ⟨·, ·⟩), where (V, ⟨·, ·⟩) is a finite-dimensional
space over the real field R equipped with an inner product ⟨·, ·⟩, and the product (x, y) ,→ x ◦ y :
V × V → V is a bilinear mapping satisfying the following three conditions:

(i) x ◦ y = y ◦ x for all x, y ∈ V,
(ii) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) for all x, y ∈ V where x2 = x ◦ x, and
(ii) ⟨x ◦ y, z⟩ = ⟨y, x ◦ z⟩ for all x, y, z ∈ V,

and there exists a (unique) unitary element e ∈ V such that x ◦ e = x for all x ∈ V. Hence orth, we
simply say that V is a EJA and x ◦ y is called the Jordan product of x and y.

In a EJA, V is known that the set of squares K = {x2 : x ∈ V} is a symmetric cone (see [41,
Theorem III.2.1]). This means thatK is a self-dual closed and convex cone with interior int (K) ̸= ∅,
and for any two elements x, y ∈ int (K∝, there exists an invertible linear transformation T : V → V
such that T ↙K∝ = K and T (x) = y.

The rank of V is defined as r = max{deg (x) : x ∈ V}, where deg(x) is the degree of x ∈ V given
by deg (x) = min{k > 0 : {e, x, x2, . . . , xk} is linearly dependent}.

An element c ∈ V is an idempotent iff c2 = c; it is a primitive idempotent iff it is nonzero and
cannot be written as a sum of two nonzero idempotents. We say that a finite set {e1, . . . , er} of
primitive idempotents in V is a Jordan frame iff ei ◦ ej = 0 for all i ̸= j, and

∑r
i=1 ei = e. Note that

⟨ei, ej⟩ = ⟨ei ◦ ej, e⟩ = 0 whenever i ̸= j.
The following theorem gives us a spectral decomposition for the elements in a EJA (see Theorem

III.1.2 of [41]).
Theorem 2.1: [Spectral decomposition theorem] Suppose that (V, ◦, ⟨·, ·⟩) is a EJA with rank r.
Then, for every x ∈ V, there exists a Jordan frame {e1(x), . . . , er(x)} and real numbersλ1(x), . . . , λr(x),
arranged in the nonincreasing order, such that x = λ1(x)e1(x) + · · · + λr(x)er(x).

The numbers λi(x) (counting multiplicities), which are uniquely determined by x, are called the
eigenvalues of x, and we write the maximum and the minimum eigenvalue of x as λmax(x) and
λmin(x), respectively. The trace of x, denoted as tr(x), is defined by tr(x) := ∑r

j=1 λj(x).
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1760 F. ALVAREZ AND J. LÓPEZ

It is easy to show that x ∈ K (resp. int (K∝) iff every eigenvalue λi(x) of x is nonnegative (resp.
positive). Moreover, an element x ∈ V is invertible, if det (x) = $r

j=1λj(x) ̸= 0, that is, if every
eigenvalue of x is nonzero.
Example 2.1: Typical examples of Euclidean Jordan algebras are the following:

(i) Euclidean Jordan algebra of m-dimensional vectors:

V = Rm, K = Rm
+, r = m, ⟨x, y⟩ =

m∑

i=1
xiyi, x ◦ y = (x1y1, . . . , xmym).

Here, the unitary element is e = (1, . . . , 1) ∈ Rm, the spectral decomposition of any x ∈ Rm

is x = ∑m
i=1 xiei, where ei denotes a vector with 1 in the i-th entry and 0’s elsewhere, and

λmin(x) = min (x), λmax(x) = max (x).
(ii) Euclidean Jordan algebra of quadratic forms: LetLm

+ = {x = (x1, x̄) ∈ R×Rm−1 : ∥x̄∥ ≤ x1}
be the cone of squares, known as the second-order cone. Then,

V = Rm, K = Lm
+, r = 2, ⟨x, y⟩ =

m∑

i=1
xiyi, x ◦ y = (⟨x, y⟩, x1ȳ + y1x̄).

Here, the unitary element is e = (1, 0, . . . , 0) ∈ Rm, the spectral decomposition of any x ∈ Rm

associated with Lm
+ is given by x = λ1(x)u1(x) + λ2(x)u2(x), where λi(x) = x1 + ( − 1)i∥x̄∥

and ui(x) = 1
2 (1, ( − 1)i x̄

∥x̄∥ ), for i = 1, 2, which denote the eigenvalues and eigenvectors of
x, respectively. Moreover, λmin(x) = λ1(x) and λmax(x) = λ2(x).

(iii) Euclidean Jordan algebra of n-dimensional symmetric matrices: Let Sn be the set of allm × m
real symmetric matrices, and Sn

+ be the cone of m × m symmetric positive semidefinite
matrices. Then,

V = Sn, K = Sn
+, r = m, ⟨X,Y⟩ = tr(XY), X ◦ Y = (XY + YX)/2.

Here tr denotes the trace of a matrix X. In this setting, the identity matrix I ∈ Rm×m

is the unit element, and the spectral decomposition of any X ∈ Sn is given by X =∑m
i=1 λi(X)qi(X)qi(X)⊤, where λi(X) and qi(X) ∈ Rm denote the eigenvalue and eigenvector

of X, respectively.

Other examples of EJA can be found in [41,42].
For any a ∈ V, the Lyapunov transformation La : V → V and the quadratic representation

Qa : V → V of a are defined as

La(x) := a ◦ x and Qa(x) := (2L2a − La2)(x) = 2a ◦ (a ◦ x) − a2 ◦ x, ∀x ∈ V. (1)

These transformations are linear and self-adjoint on V (see [41]). The quadratic representation
is an essential concept in the theory of Jordan algebras and will play an important role in our
subsequent development. In the following example, we describe these transformations in the EJAs
defined in Example 2.1.
Example 2.2:

(i) For the EJA ofm-dimensional vectors, the above transformations are: La(x) = Diag(a)x and
Qa(x) = Diag(a2)x, whereDiag(q) denotes a diagonalmatrix of sizemwhose diagonal entries
are the entries of q.
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OPTIMIZATION 1761

(ii) For the EJA of quadratic forms, one has that

La(x) =
(
a1 ā⊤

ā a1I

)(
x1
x̄

)
, Qa(x) =

( ∥a∥2 2a1ā⊤

2a1ā (a21 − ∥ā∥2)I + 2āā⊤

)(
x1
x̄

)
.

(iii) For the EJAofm-dimensional symmetricmatrices, one has thatLA(X) = A◦X = 1
2 (AX+XA)

and QA(X) = AXA.

By Proposition III.1.5 of [7], a Jordan algebra over R with a unit element e ∈ V is Euclidean iff the
symmetric bilinear form tr(x ◦ y) is positive definite. Hence, we may define an inner product ⟨·, ·⟩ on
V by

⟨x, y⟩ := tr(x ◦ y), ∀x, y ∈ V, (2)
and its respective norm associated by

∥x∥ :=
√

⟨x, x⟩ =
√
tr(x2) =

( r∑

i=1
λ2i (x)

)1/2

, ∀x ∈ V.

We end this subsection by recalling properties that we shall employ throughout this paper. Their
proofs and more details can be found in [11,41,43].
Proposition 2.2: The following results hold:

(a) x ∈ K iff ⟨x, y⟩ ≥ 0 for all y ∈ K. Moreover, x ∈ int(K) iff ⟨x, y⟩ > 0 for all y ∈ K \ {0}.
(b) For x, y ∈ K, orthogonality condition ⟨x, y⟩ = 0 is equivalent to x ◦ y = 0.
(c) λmin(x) + λmin(y) ≤ λmin(x + y) ≤ λmin(x) + λmax(y), for any x, y ∈ V.
(d) If x is invertible, thenQx(K) = K and Qx(int(K)) = int(K). Moreover,Qx is positive definite

when x ∈ int(K).
(e) Qxk = (Qx)

k and Qx(e) = x2 for any x ∈ V invertible.

Unless otherwise stated, in the rest of this paper, the notation V = (V, ◦, ⟨·, ·⟩) represents a EJA
of rank r.

3. Interior proximal algorithmwith variable metric

Let us denote by F = {x ∈ Rn : Ax + b ∈ K} the feasible set of SCP problem, and by F0 = {x ∈
Rn : Ax + b ∈ int.K)} its interior. Recall that Ax = ∑n

k=1 xkak, where ak ∈ V.
Example 3.1: Some examples of the feasible set are:

(i) Ax + b ∈ Rm
+, with A = [a1, . . . , an] ∈ Rm×n, for V = Rm and K = Rm

+.
(ii) Ax + b ∈ Lm

+, with A = [a1, . . . , an] ∈ Rm×n, for V = Rm and K = Lm
+.

(iii) w(x) = ∑n
k=1 xkAk + A0 ∈ Sn

+, for V = Sn and K = Sn
+.

From now on we suppose that the following assumptions hold true:

(A1) f∗ > −∞.
(A2) F ⊂domf = {x : f (x) < +∞} and F0 ̸= ∅.
(A3) X ∗ (solution set of SCP problem) is nonempty and bounded.

3.1. Algorithm IPAVM

We suppose thatA is injective. Set ⟨·, ·⟩Qw(u) := ⟨A⊤Q−1
w(u)A·, ·⟩, for u ∈ Rn such thatw(u) = Au+b

be invertible, and let us define the following induced norms

∥v∥2Qw(u)
:= ⟨v, v⟩Qw(u) = ⟨Q−1

w(u)Av,Av⟩, (3)
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1762 F. ALVAREZ AND J. LÓPEZ

and
∥v∥∗2

Qw(u) := ⟨(A⊤Q−1
w(u)A)−1v, v⟩, (4)

for all v ∈ Rn.
The interior proximal algorithm with variable metric (IPAVM) for solving the SCP problem is

defined as follows:
Algorithm IPAVM: For each k = 1, 2, . . ., take εk > 0, δk > 0 and ηk > 0 with

∑∞
k=0 εk < ∞,∑∞

k=0 δk < ∞,
∑∞

k=0 ηk < ∞ and {εk} nonincreasing.

Step 0:Start with some initial point x0 ∈ F0 and g0 ∈ ∂f (x0). Set k = 0
Step 1:Given xk ∈ F0, gk ∈ ∂εk f (xk), and suitable parameter γk > 0, find (xk+1, gk+1) such that

gk+1 ∈ ∂εk+1 f
(
xk+1

)
, (5)

gk+1 + γkA⊤Q−1
w(xk)A

(
xk+1 − xk

)
= ζ k+1, (6)

where the associated error ζ k+1 satisfies the following conditions:

∥ζ k+1∥ ≤ δk, ∥ζ k+1∥max
(
∥xk+1∥, ∥xk∥

)
≤ ηk. (7)

Step 2: If xk+1 satisfies a prescribed stopping rule, then stop.

Step 3:Replace k by k + 1 and go to step 1.

Remark 1: Set Fk(x) := f (x) + γk
2 ∥x − xk∥2Qw(xk)

. Since f is a closed proper convex function, it
directly follows thatFk has bounded sublevel sets. Therefore, the optimal set of inf {Fk(x)} is nonempty
and compact and thus there exists xk+1 such that (5)–(7) hold with εk+1 = ζ k+1 = 0.

3.2. Strictly feasible iterates and convergence

The following result shows that the iterations generated by the algorithm IPAVM belong to the inte-
rior of the feasible setF , provided that γk is sufficiently large, which justifies the terminology: interior
proximal algorithm with variable metric (IPAVM). In order to avoid any misleading interpretation,
the smallest and the largest eigenvalues of the self-adjoint linear operator Qz are denoted by bold
symbols λmin(Qz) and λmax(Qz), respectively.
Proposition 3.1: Suppose that xk ∈ F0 for some k ≥ 0 and the parameter γk satisfies γk > γ̄k, where

γ̄k = ∥A−1∥λmax(Qw(xk))
1/2[∥gk∥ + δk]. (8)

Then, the iterate xk+1 generated by Step 1 of IPAVM belongs to F0.
Proof: Assume that xk ∈ F0. By remark 1, there exists xk+1 satisfying the conditions of Step 1.
From the definition of ε-subdifferential, it follows that ⟨gk+1 − gk, xk+1 − xk⟩ ≥ εk − εk+1, which
together with (6) yields to

γk⟨A⊤Q−1
w(xk)A(xk+1 − xk), xk+1 − xk⟩ ≤ ⟨gk, xk − xk+1⟩ + ⟨ζ k+1, xk+1 − xk⟩ + εk+1 − εk.

From the Cauchy–Schwarz inequality, (7) and the fact that {εk} is nonincreasing, it follows that

γk
〈
Q−1

w(xk)A(xk+1 − xk),A(xk+1 − xk)
〉
≤ ∥gk∥∥xk − xk+1∥ + ∥ζ k+1∥∥xk+1 − xk∥
≤ [∥gk∥ + δk]∥xk+1 − xk∥. (9)
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OPTIMIZATION 1763

Since Q−1/2
w(xk) is positive definite (cf. Proposition 2.2(d)), one has that

∥Q−1/2
w(xk)A

(
xk+1 − xk

)
∥ ≥ λmin

(
Q−1/2

w(xk)

)
∥A
(
xk+1 − xk

)
∥ = λmin

(
Q−1

w(xk)

)1/2
∥A
(
xk+1 − xk

)
∥.

Then,
〈
Q−1

w(xk)A(xk+1 − xk),A(xk+1 − xk)
〉
≥ λmin

(
Q−1

w(xk)

)1/2
∥A(xk+1 − xk)∥ ·

∥Q−1/2
w(xk)A(xk+1 − xk)∥.

By using this inequality in (9), it follows that

γk∥A(xk+1 − xk)∥∥Q−1/2
w(xk)(w(xk+1) − w(xk))∥ ≤ λmax(Qw(xk))

1/2[∥gk∥ + δk]∥xk+1 − xk∥. (10)

Since A is injective, we get ∥A(xk+1 − xk)∥ ≥ 1
∥A−1∥s ∥x

k+1 − xk∥, where ∥ · ∥s denotes the norm in
the sense of operators. By using this inequality in (32), we obtain that

∥Q−1/2
w(xk)(w(xk+1) − w(xk))∥ ≤ 1

γk
∥A−1∥sλmax(Qw(xk))

1/2[∥gk∥ + δk] < 1,

where we have used (8) in the last inequality. On the other hand, it holds from Proposition 2.2(e),
that Q−1/2

w(xk)w(xk) = e, which yields ∥Q−1/2
w(xk)(w(xk+1) − w(xk))∥ = ∥Q−1/2

w(xk)(x
k+1) − e∥, and from

definition of norm on V it follows that

∥Q−1/2
w(xk)(w(xk+1) − w(xk))∥ ≥ |λi(Q−1/2

w(xk)(x
k+1) − e)|, ∀i = 1, . . . , r.

Hence, |λi(Q−1/2
w(xk)(x

k+1) − e)| ≤ 1, ∀i = 1, . . . , r, which implies in particular that

−1 < λmin(Q−1/2
w(xk)(x

k+1) − e) < 1.

By using Proposition 2.2 (c), in both inequalities, we get

0 = λmin(e) − 1 < λmin(Q−1/2
w(xk)(x

k+1)) < 1 + λmax(e) = 2.

This implies that Q−1/2
w(xk)w(xk+1) ∈ int(K), that is, w(xk+1) ∈ Q1/2

w(xk)(int(K)). Therefore, by
Proposition 2.2(d), it follows that xk+1 ∈ F0. !

Let us illustrate the condition on the regularization parameter (8) in some known examples of
Euclidean Jordan algebras (see Example 2.1).
Example 3.2:

(i) Let V = Rm, K = Rm
+ and z ∈ K. Then, λmax(Qz)

1/2 = max (z), and

γ̄k = max (w(xk))[∥gk∥ + δk]/σmin(A).

(ii) Let V = Rm, K = Lm1
+ × · · · × LmJ

+ and z = (z1, . . . , zJ ) ∈ K, where m = ∑J
i=1mi. Then,

λmax(Qz)
1/2 = maxi=1,...,J {λmax(zi)}, and

γ̄k = max
i=1,...,J

{λmax(wi(xk))}[∥gk∥ + δk]/σmin(A).
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1764 F. ALVAREZ AND J. LÓPEZ

(iii) Let V = Sn, K = Sn
+ and Z ∈ Sn

+. Then,

λmax(QZ)1/2 = max
U ̸=0

∥ZU∥
∥U∥ and γ̄k = max

U ̸=0

∥w(xk)U∥
∥U∥ [∥gk∥ + δk]/σmin(A),

where A = [vec(A1), . . . ,vec(An)], with vec(A) denoting the vector obtained by writing the
columns of A one after another.

The following result is obtained in away similar to [1, Proposition 3.5 and Lemma 4.2].We include
its proof for the sake of completeness.
Proposition 3.2: Let {xk} ⊂ F0 be a sequence generated by the algorithm IPAVM under γk > γ̄k
with γ̄k given by (8) then the following hold:

(i) {f (xk)} converges and
∞∑

k=0
γk∥xk+1 − xk∥2Qw(xk)

< ∞.

(ii) The sequence {xk} is bounded.
(iii) Ifγk ≥ γ̄k+β for someβ > 0, then

∑∞
k=0 ∥xk+1−xk∥2 < ∞, and in particular, limk→+∞ ∥xk+1

− xk∥ = 0.

Proof:

(i) From (6) and since gk+1 ∈ ∂εk+1 f (xk+1)we have f (xk)+⟨ζ k+1, xk+1−xk⟩+εk+1 ≥ f (xk+1)+
γk∥xk+1 − xk∥2Qw(xk)

≥ f (xk+1). By (7), and using ⟨ζ k+1, xk+1 − xk⟩ ≤ ∥ζ k+1∥(∥xk∥ +
∥xk+1∥) ≤ 2∥ζ k+1∥max (∥xk+1∥, ∥xk∥), we obtain

f (xk+1) + γk∥xk+1 − xk∥2Qw(xk)
≤ f (xk) + 2ηk + εk+1. (11)

Thus 0 ≤ f (xk+1) − f∗ ≤ f (xk) − f∗ + 2ηk + εk+1. Hence, using [1, Lemma 3.4(i)] we deduce
that the sequence {f (xk)} converges. On the other hand, from (11) we get

∑N
k=0 γk∥xk+1 −

xk∥2Qw(xk)
≤ f (x0) − f (xN+1) + ∑N

k=0 (2ηk + εk+1) ≤ f (x0) − f∗ + ∑N+1
k=1 (2ηk + εk+1).

Letting N → +∞, we obtain the result.
(ii) Summing (11) over k = 0, . . . , l, one has f (xl+1)−f (x0) ≤ ∑l

k=0 (2ηk+εk+1). Since
∑∞

k=0 ηk
and

∑∞
k=0 εk exist, it follows that for some η̄ ≥ 0 we have f (xl+1) ≤ f (x0) + η̄ < ∞, for all

l ≥ 0. On the other hand, from assumption (A3), we deduce that f is level bounded over F .
Thus, one has that {xk} is a bounded sequence.

(iii) Since Q−1
w(xk) is positive definite (cf. Proposition 2.2(d)) and A is injective, one has

∥xk+1 − xk∥2Qw(xk)
≥ λmin(Q−1

w(xk))∥A(xk+1 − xk)∥2 ≥ 1
∥A−1∥2sλmax(Qw(xk))

∥xk+1 − xk∥2.

Now, by the boundedness of the sequence {xk}, there exists η̃ > 0 such that λmax(Qw(xk)) < η̃.
Taking, τ = β

η̃∥A−1∥2s
, we obtain that

∑∞
k=0 γk∥xk+1 −xk∥2Qw(xk)

≥ τ
∑∞

k=0 ∥xk+1 −xk∥2, and
the result follows from Part(i). !

Remark 2: When the function f is defined everywhere, it follows from the above proposition that
{gk} is bounded. Moreover, that {γk} can be chosen to be bounded.

By using the above Proposition, we can establish some partial results about of the convergence of
our algorithm.
Proposition 3.3: Suppose that f is defined in all Rn. Let {xk} ⊂ F0 be sequence generated by the
algorithm IPAVM, then

(i) If a cluster point x̃ of the sequence {xk} belongs to F0, then x̃ is optimal for SCP.
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OPTIMIZATION 1765

(ii) The dual sequence {sk+1} defined by

sk+1 := γkQ−1
w(xk)(w(xk) − w(xk+1)) (12)

is bounded and satisfies
lim

k→+∞
Q1/2

w(xk)s
k+1 = 0. (13)

(iii) Any cluster point (x̃, s̃, g̃) of {(xk, sk, gk)} satisfies

g̃ = A⊤s̃, w(x̃) ∈ K, ⟨w(x̃), s̃⟩ = 0. (14)

Proof: Parts (i) and (ii) are followed in the same way to [1, Proposition 5.3].
(iii) By construction of sequence {xk}, any cluster point x̃ ∈ Rn satisfies w(x̃) ∈ K. From (6) and

(12) it follows that A⊤s̃ = g̃ , with s̃ a limit point of the dual sequence {sk+1}, which exists by Part (ii).
Moreover, from (13) we get Q1/2

w(x̃) s̃ = 0. Then,

0 = ⟨Q1/2
w(x̃)s̃, e⟩ = ⟨s̃,Q1/2

w(x̃)e⟩ = ⟨s̃,w(x̃)⟩,

where the second equality it follows from the fact that Qx is self-adjoint, and the third one from
Proposition 2.2(e). !
Remark 3: Note that in order to verify that any cluster point (x̃, s̃, g̃) of the sequence {(xk, sk, gk)}
satisfies the Karush–Kuhn–Tucker (KKT) conditions of the problem SCP, it only remains to prove
that s̃ ∈ K. First, we suppose that w(x̃) ∈ int(K), then Q1/2

w(x̃) is positive definite (cf. Proposition
2.2(d)) and hence Q1/2

w(x̃)s̃ = 0 implies that s̃ = 0. Second, we consider the case when w(x̃) ∈
bd(K) \ {0}, with bd(K) denoting the boundary ofK. We argue by contradiction, that is, we suppose
that s̃ ∈ −int(K). By Proposition 2.2(a) we get ⟨w(x̃), s̃⟩ < 0, which is a contradiction. Hence,
s̃ /∈ −int(K). This implies that λmax(s̃) ≥ 0.

3.3. Particular cases of convergence

In this section, we present some particular cases where we have been able to establish that any cluster
point of the sequence generated by our algorithm IPAVM, satisfies the KKT conditions.

In the first case, we assume that the objective function is linear. Then, by using the similar
arguments that in [1, Proposition 5.5], given for Euclidean Jordan algebra of quadratic forms, we
obtain the following result.
Proposition 3.4: Under the assumptions and notations of Proposition 3.3, if in addition f is supposed
to be f (x) = ⟨c, x⟩, then any limit point of {xk} satisfies the KKT conditions.

Now, in the second case, we consider Euclidean Jordan algebra of m-dimensional vectors, and
w(x) = Ax with A ∈ Rm×n. Note that in this case, the relation (6) is written as

gk+1 = A⊤sk+1 + ζ k+1, sk+1 = γk[Diag(w(xk)2)]−1(w(xk) − w(xk+1)). (15)

Then, we by using the ideas from [44, Lemma 1] we get the following result.
Proposition 3.5: Any limit point (x̃, g̃ , s̃) of the sequence {(xk, gk, sk)} satisfies the KKT conditions

g̃ = A⊤s̃, Ax̃ ∈ Rm
+, s̃ ∈ Rm

+, (Ax̃)i s̃i = 0, fori = 1, . . . ,m,

where g̃ ∈ ∂f (x̃).
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1766 F. ALVAREZ AND J. LÓPEZ

Proof: Let (x̃, g̃ , s̃) be a limit point of {(xk, gk, sk)}. In order to verify that (x̃, g̃ , s̃) satisfies KKT
condition, it only remains to prove that s̃ ∈ Rm

+ (cf. Proposition 3.3). We argue by contradiction.
Suppose that there exists i such that s̃i < 0. We define the following sets

I = {i : s̃i < 0}, J = {1, . . . ,m} \ I , V = {x ∈ Rn : Ax ≥ 0, (Ax)i = 0, i ∈ I}.

Clearly x̃ ∈ V (cf. (14)). We claim that x̃ is an optimal solution of the convex problem

min{f (x) : x ∈ V}. (16)

Indeed, the KKT conditions for problem (16) are given by

g =
∑

j∈J
(Aj)⊤sj, (Ax)j ≥ 0, sj ≥ 0, (Ax)jsj = 0, ∀j ∈ J with g ∈ ∂f (x), (17)

where s ∈ R|J| and Aj denotes the j-row of A. These conditions are obviously satisfied by x̃ with
g̃ ∈ ∂f (x̃) and (s̃j)j∈J . Let

B = {(x, s) ∈ Rn × Rm : Ax ≥ 0, si < 0, i ∈ I}.

Clearly (x̃, s̃) ∈ B. Since {(xk, gk, sk)} is bounded, we can take a subsequence {(xlk , glk , slk )} such
that xlk → x̃, glk → g̃ and slk → s̃ as k → ∞, and (xlk , slk ) ∈ B for all k. Let us define

pk := max{q < lk : (xq+1, sq+1) /∈ B}, (18)

and set pk = 0 if (xq+1, sq+1) ∈ B for all q < lk. We immediately get (xq+1, sq+1) ∈ B for all
q = pk + 1, . . . , lk, that is, Axq+1 ≥ 0, sq+1

i < 0 for all q = pk + 1, . . . , lk and for all i ∈ I . Hence,
from (15) we obtain

(Axq+1)i ≥ (Axq)i, ∀q = pk + 1, . . . , lk and ∀i ∈ I.

Then, by applying the above inequality iteratively, we get

(Axlk )i ≥ (Axpk+1)i, ∀k and ∀i ∈ I.

Note that if there exists p such that pk = p for all k large enough, then

0 = (Ax̃)i = lim
k→∞

(Axlk )i ≥ lim
k→∞

(Axpk+1)i = (Axp+1)i > 0, ∀i ∈ I

(where the last inequality it follows from Proposition 3.1), obtaining a contradiction. Thus, it follows
that {pk} → ∞ and hence {xpk } is a subsequence of {xk}.

As before, we get that

0 = (Ax̃)i = lim
k→∞

(Axlk )i ≥ lim
k→∞

(Axpk+1)i ≥ 0, ∀i ∈ I ,

whence limk→∞ (Axpk+1)i = 0, ∀i ∈ I . By using Proposition 3.2(iii) one obtain that limk→∞ (Axpk )i
= 0, ∀i ∈ I . Moreover, since {(xpk , spk )} is bounded we can suppose that (xpk , spk ) → (x̂, ŝ) as
k → ∞, for some (x̂, ŝ) /∈ B (note that (xpk , spk ) /∈ B for all k and that set B is open in Rn × Rm

+).
Then, (Ax̂)i = limk→∞ (Axpk )i = 0, ∀i ∈ I , and there exists r ∈ I such that ŝr ≥ 0. We claim
that x̂ is also a solution of problem (16). Indeed, it is clear that x̂ ∈ V and f (x̂) = f (x̃) = f ∗ (cf.
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OPTIMIZATION 1767

Proposition 3.2(i)). Since x̃ minimizes f on V , we conclude that x̂ also minimizes f on V , that is,
(x̂, ŝ) satisfies (17). Also, it satisfies (Ax̂)r ≥ 0, ŝr ≥ 0 and ŝr(Ax̂)r = 0. Hence, x̂ minimizes f on
W = {x ∈ Rn : Ax ≥ 0, (Ax)i = 0, i ∈ I \ {r}}. Since x̃ ∈ V ⊂ W and f (x̂) = f (x̃), it follows that
x̃ also minimizes f onW . The KKT conditions of this problem implies in particular that s̃r ≥ 0. But
s̃r < 0 when r ∈ I , obtaining a contradiction. Therefore, s̃ ≥ 0. !

4. Interior proximal bundle algorithmwith variable metric

In this section, we describe the feasible bundle method to solve the nondifferentiable convex problem
under symmetric cone constraints.

Recall that for an arbitrary point x0 ∈ F0, the exact version of algorithm IPAVM generates
recursively the auxiliary problem

xk+1 = argmin
x∈Rn

{
f (x) + γk

2
∥x − xk∥2Qw(xk)

}
, (19)

where γk > γ̄k, with γ̄k defined in (8) and ∥ · ∥Qw(xk)
defined in (3). This problem can be difficult to

solve, whenever f is nondifferentiable. In this case, we can work with the bundle methods. At iteration
k we have at our disposal the sequence x0, x1, . . . , xk. Let Jℓ ⊆ {0, 1, . . . , ℓ} ⊂ N be a finite index set
and yj (j ∈ Jℓ) be arbitrary points (we can assume that yj = xj). With the function values f (yj) and
arbitrary gj ∈ ∂f (yj) we define for each j ∈ Jℓ the linearization of f at yj as

f̆j(x) := f (yj) + ⟨gj, x − −yj⟩

and the (nonnegative, by convexity) linearization error at xk by

ej := f (xk) − f̆j(xk) = f (xk) − (f (yj) + ⟨gj, xk − yj⟩), ∀j ∈ Jℓ.

The set Bℓ = {(yj, f (yj), gj) : j ∈ Jℓ} is called the bundle. With the bundle of past information at each
iteration a cutting-planes model of the objective function f is defined by

ϕℓ(y) = max
j∈Jℓ

f̆j(y) = max
j∈Jℓ

{f (yj) + ⟨gj, y − yj⟩}, ∀y ∈ Rn. (20)

This function is a piecewise linear approximation from below of the convex function f , that is, ϕℓ ≤ f
and is used to generate a point yℓ+1. It is worthwhile to note that

ϕℓ(yj) = f (yj), for all j ∈ Jℓ. (21)

Then, replacing f by ϕℓ in (19), we obtain the following quadratic minimization problem

min
y∈Rn

{
ϕℓ(y) + γk

2
∥y − xk∥2Qw(xk)

}
, (22)

which gives a unique optimal solution yℓ+1. Note that the bundle Bℓ is generated using a prox-center
or stability center xk with j ≤ ℓ.

With an additional variable r ∈ R the last problem can equivalently be written as

min
(r,y)∈Rn+1

{
r + γk

2 ∥y − xk∥2Qw(xk)

}

s:t: f (yj) + ⟨gj, y − yj⟩ ≤ r, ∀j ∈ Jℓ.
(23)
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1768 F. ALVAREZ AND J. LÓPEZ

Note that the dual of (22) is a convex quadratic problem of the following form

min
α∈R|Jℓ|

⎧
⎪⎪⎨

⎪⎪⎩

1
2

∥∥∥∥∥∥

∑

j∈Jℓ
αjg j

∥∥∥∥∥∥

∗2

Qw(xk)

+ γk
∑

j∈Jℓ
αjej

⎫
⎪⎪⎬

⎪⎪⎭

s:t:
∑

j∈Jℓ
αj = 1, αj ≥ 0, ∀j ∈ Jℓ,

(24)

where ∥ · ∥∗
Qw(xk)

is defined in (4).
As consequence of [29, Lemma 9.8] we have that, if the solution {αk

j : j ∈ Jℓ} of (24) is calculated,
the solution yℓ+1 of (22) can be obtained by

yℓ+1 = xk − γ −1
k (A⊤Q−1

w(xk)A)−1g̃ℓ, where g̃ℓ =
∑

j∈Jℓ
αk
j g

j ∈ ∂ϕℓ(yℓ+1). (25)

Moreover, it follows from [29, Lemma 9.8(iii)] that g̃ℓ ∈ ∂εℓ f (xk) where

εℓ = f (xk) − ϕℓ(yℓ+1) − 1
γk

∥g̃ℓ∥∗2
Qw(xk)

≥ 0,

which is called aggregate error.
We are now ready to provide the proximal bundle algorithm with variable metric for solving the

problem with symmetric cone constraints.
Algorithm IPBAVM: For each k = 1, 2, . . ., generate the sequence {xk} ⊂ F0 as follows:.

Step 0:Choose an m ∈ (0, 1). Select starting point x0 ∈ F0, g0 ∈ ∂f (x0) and suitable parameter
γ0 > 0. Set y0 = x0, J0 = {0}, e0 = 0, and set the counters ℓ = 0, k = 0.

Step 1:Find multiplier αk
j (j ∈ Jℓ) that it solves the dual problem (24). Set Ĵℓ = {j ∈ Jℓ : αk

j ̸= 0}.
Calculate

g̃ℓ =
∑

j∈Ĵℓ
αk
j g

j and εℓ =
∑

j∈Ĵℓ
αk
j ej,

and compute

δℓ = εℓ + 1
γk

∥g̃ℓ∥∗2
Qw(xk)

≥ 0. (26)

Step 2:Set yℓ+1 = xk − γ −1
k (A⊤Q−1

w(xk)A)−1g̃ℓ with γk > γ̄k , and γ̄k defined in (8).
IF (Descent test)

f (yℓ+1) ≤ f (xk) − mδℓ = f (xk) − m(f (xk) − ϕℓ(yℓ+1)),

THEN (Serious step)
set xk+1 = yℓ+1. If xk+1 satisfies a prescribed stopping rule, then stop.

Else, choose gℓ+1 ∈ ∂f (xk+1).
Linearization error update

ej = ej + f (xk+1) − f (xk) − ⟨gj, xk+1 − xk⟩, ∀j ∈ Jℓ,
eℓ+1 = 0.

Update γk+1 > 0. Replace k by k + 1.
ELSE (Null step)
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OPTIMIZATION 1769

choose gℓ+1 ∈ ∂f (yℓ+1).
Linearization error update

ej = ej, ∀j ∈ Jℓ,
eℓ+1 = f (xk) − f (yℓ+1) + ⟨gℓ+1, yℓ+1 − xk⟩,

Step 3: Jℓ+1 := Ĵℓ ∪ {ℓ + 1}, increase ℓ by 1 and go to step 1.

Remark 4: Note that ϕℓ given by (20) can be replaced with any model function satisfying the
following properties:

ϕℓ ≤ f , for ℓ = 0, 1, . . . , (27)
lℓ ≤ ϕℓ+1, (28)
f (yℓ) + ⟨gℓ, y − yℓ⟩ ≤ ϕℓ(y), ∀ y with gℓ ∈ ∂f (yℓ), (29)

where
lℓ(y) = ϕℓ(yℓ+1) + ⟨g̃ℓ, y − yℓ+1⟩, (30)

called the aggregate linearization of f , with g̃ℓ ∈ ∂ϕℓ(yℓ+1). From (25) it follows that the aggregate
error can be written as εℓ = f (xk) − lℓ(xk). Some examples of ϕℓ satisfying (27)–(29) are given in
[30].

The following result shows that the bundle subiterations belong to the interior of the feasible set,
and that this holds true for an arbitrary model function ϕℓ satisfying the properties (27)–(29).
Proposition 4.1: The subiterations {yℓ} generated by IPBAVM belong to F0.
Proof: We assume that xk = yℓk−1 satisfies the serious step and belong to F0. Let yj+1 = xk −
γ −1
k (A⊤Q−1

w(xk)A)−1g̃ j, with g̃ j ∈ ∂ϕj(yj+1), for j = ℓk−1 +1, . . . , ℓk. We suppose that for j = ℓk−1 +
1, . . . , ℓk the serious step fails and that for j = ℓk +1 the serious step holds.We prove that yj+1 ∈ F0,
for all j = ℓk−1 + 1, . . . , ℓk. From the monotonicity of ∂ϕj, it follows that ⟨g̃ j − ḡ k, yj+1 − xk⟩ ≥ 0,
where ḡ k ∈ ∂ϕj(xk). Replacing the value of g̃ j, and then by using the Cauchy–Schwarz inequality, we
obtain

γk⟨Q−1
w(xk)A(yj+1 − xk),A(yj+1 − xk)⟩ ≤ ⟨ḡ k, xk − yj+1⟩ ≤ ∥ḡ k∥∥yj+1 − xk∥, (31)

Now, since Q−1/2
w(xk) is positive definite (cf. Proposition 2.2(d)), one has that

∥Q−1/2
w(xk)A(yj+1 − xk)∥ ≥ λmin(Q−1/2

w(xk))∥A(yj+1 − xk)∥ = λmin(Q−1
w(xk))

1/2∥A(yj+1 − xk)∥.

Then,

∥Q−1/2
w(xk)A(yj+1 − xk)∥2 ≥ λmin(Q−1

w(xk))
1/2∥A(yj+1 − xk)∥∥Q−1/2

w(xk)A(yj+1 − xk)∥.

By using this inequality in (31), it follows that

γk∥A(yj+1 − xk)∥∥Q−1/2
w(xk)(w(yj+1) − w(xk))∥ ≤ λmax(Qw(xk))

1/2∥ḡ k∥∥yj+1 − xk∥. (32)

Since A is injective, we get ∥A(yj+1 − xk)∥ ≥ 1
∥A−1∥s ∥y

j+1 − xk∥, where ∥ · ∥s denotes the norm in
the sense of operators. By using this inequality in (32), we obtain that

γk∥Q−1/2
w(xk)(w(yj+1) − w(xk))∥ ≤ ∥A−1∥sλmax(Qw(xk))

1/2∥ḡ k∥. (33)
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1770 F. ALVAREZ AND J. LÓPEZ

On the other hand, as ḡ k ∈ ∂ϕj(xk), that is, ϕj(xk) + ⟨ḡ k, z − xk⟩ ≤ ϕj(z), ∀z ∈ Rn, (21) holds with
xk = yℓk−1 , and ϕj is minorant of f (cf. (27)), we get

f (xk) + ⟨ḡ k, z − xk⟩ ≤ f (z), ∀z ∈ Rn

whence ḡ k ∈ ∂f (xk). Thus, we can take ḡ k = gk. Then, by using this and the fact that γk > γ̄k we
obtain from (33) that

∥Q−1/2
w(xk)(w(yj+1) − w(xk))∥ < 1.

Note that Q−1/2
w(xk)w(xk) = e (cf. Proposition 2.2(e)), and

∥Q−1/2
w(xk)w(yj+1) − e∥ ≥ |λi(Q−1/2

w(xk)(y
j+1) − e)|, ∀i = 1, . . . , r.

Then, from the above inequalities we get that

−1 < λmin(Q−1/2
w(xk)w(yj+1) − e) < 1,

for all j = ℓk−1 + 1, . . . , ℓk. By using Proposition 2.2(c), in both inequalities, we get 0 < λmin(Q−1/2
w(xk)

w(yj+1)) < 2, for all j = ℓk−1 + 1, . . . , ℓk. This implies that Q−1/2
w(xk)w(yj+1) ∈ int(K), that is,

w(yj+1) ∈ Qw(xk)1/2(int(K)) for all j = ℓk−1 + 1, . . . , ℓk. Therefore, by Proposition 2.2(d) it follows
that yj+1 ∈ F0, for all j = ℓk−1 + 1, ℓk−1 + 2, . . . , ℓk. !

4.1. Convergence of IPBAVM

In this section, we give some results of convergence for the algorithm IPBAVM.
First, we prove that the bundle subiterations converge to a proximal point, for arbitrary ϕℓ

satisfying the properties (27)–(29). Without loss of generality, let us denote by proxγ̄ f (x̄) ∈ F0

the unique solution of problem (19) with prox-center x̄ ∈ F0 and parameter γ̄ > 0. The following
result is an extension of [37, Lemma 8] and [36, Theorem 3.1] to our context.
Theorem 4.2: Suppose that f is finite. Let {yℓ+1} be the bundle subiterations generated by the problem
(22) with prox-center x̄, where the descent test is omitted, i.e. only null steps are made. Set ξℓ+1 =
f (yℓ+1) − ϕℓ(yℓ+1). Then the following hold:

(i) g̃ℓ ∈ ∂ξℓ+1 f (yℓ+1).
(ii) The sequence {yℓ+1} is bounded.
(iii) ξℓ+1 ≥ 0, ∀ℓ ≥ 0 and limℓ→+∞ ξℓ+1 = 0.
(iv) The sequence {yℓ+1} converges to proxγ̄ f (x̄).

Proof:

(i) From (25) and (27), one has that

⟨g̃ℓ, y − yℓ+1⟩ ≤ ϕℓ(y) − ϕℓ(yℓ+1) ≤ f (y) − ϕℓ(yℓ+1) = f (y) − f (yℓ+1) + ξℓ+1.

Hence, the result follows.
(ii) For all ℓ and y ∈ F0, we define the following functions

l̂ℓ(y) = lℓ(y) + γ̄

2
∥y − x̄∥2Qw(x̄)

, ϕ̂ℓ(y) = ϕℓ(y) + γ̄

2
∥y − x̄∥2Qw(x̄)

,

with lℓ defined in (30).

D
ow

nl
oa

de
d 

by
 [J

ul
io

 L
op

ez
] a

t 0
3:

28
 0

5 
Ju

ly
 2

01
6 



OPTIMIZATION 1771

By using (27), the definition of yℓ+1 and the fact that lℓ(yℓ+1) = ϕℓ(yℓ+1), we get

f (x̄) ≥ ϕℓ(x̄) = ϕ̂ℓ(x̄) ≥ ϕ̂ℓ(yℓ+1) = ϕℓ(yℓ+1) + γ̄

2
∥yℓ+1 − x̄∥2Qw(x̄)

= lℓ(yℓ+1) + γ̄

2
∥yℓ+1 − x̄∥2Qw(x̄)

= l̂ℓ(yℓ+1). (34)

Also, from (28) we obtain

ϕ̂ℓ(yℓ+1) ≥ lℓ−1(yℓ+1) + γ̄

2
∥yℓ+1 − x̄∥2Qw(x̄)

= l̂ℓ−1(yℓ+1). (35)

On the other hand,

l̂ℓ−1(y) − l̂ℓ−1(yℓ) = ⟨g̃ℓ−1, y − yℓ⟩ + γ̄

2
(∥y − x̄∥2Qw(x̄)

− ∥yℓ − x̄∥2Qw(x̄)
)

= ⟨γ̄ (A⊤Q−1
w(x̄)A)(x̄ − yℓ), y − yℓ⟩ + γ̄

2
(∥y − x̄∥2Qw(x̄)

− ∥yℓ − x̄∥2Qw(x̄)
)

= γ̄

2
∥y − yℓ∥2Qw(x̄)

, (36)

where the first equality is due to definition of lℓ, the second one to (25) and the third one to
property of difference of norms. Now, setting yℓ+1 for y in (36) one has that

l̂ℓ−1(yℓ+1) − l̂ℓ−1(yℓ) = γ̄

2
∥yℓ+1 − yℓ∥2Qw(x̄)

. (37)

Then, combining (34), (35) and (37) gives

f (x̄) ≥ l̂ℓ(yℓ+1) ≥ l̂ℓ−1(yℓ) + γ̄

2
∥yℓ+1 − yℓ∥2Qw(x̄)

≥ l̂ℓ−1(yℓ).

Hence, the sequence {l̂ℓ−1(yℓ)}ℓ≥1 is bounded and monotone, that is, it converges to some
l∗ ∈ R. Moreover, from (27)–(28) one has lℓ−1(x̄) ≤ f (x̄), which is equivalent to l̂ℓ−1(x̄) ≤
f (x̄). Setting x̄ for y in (36), using the fact that {l̂ℓ−1(yℓ)}ℓ≥1 converges to l∗ and that γ̄ is
bounded (cf. Remark 2), it follows that the sequence {yℓ} is bounded.

(iii) By Proposition 4.1, we get that yℓ ∈ F0 ⊂ int(domf ). Then, the mean value theorem implies
the existence of zℓ in the open line segment (yℓ, yℓ+1) with cℓ ∈ ∂f (zℓ) such that

f (yℓ+1) − f (yℓ) = ⟨cℓ, yℓ+1 − yℓ⟩. (38)

Since f is defined everywhere, it follows that the sequences {cℓ} and {gℓ} are bounded. Note
also that from (27), (29), (38), and the Cauchy–Schwartz inequality, we obtain

∥cℓ∥∥yℓ+1−yℓ∥ ≥ f (yℓ+1)−f (yℓ) ≥ ϕℓ(yℓ+1)−f (yℓ) ≥ ⟨gℓ, yℓ+1−yℓ⟩ ≥ −∥gℓ∥∥yℓ+1−yℓ∥.

On the other hand, using the fact that {l̂ℓ−1(yℓ)}ℓ≥1 converges and that γ̄ is bounded (cf.
Remark 2), we get from (37) that

lim
ℓ→+∞

∥yℓ+1 − yℓ∥Qw(x̄) = 0. (39)
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1772 F. ALVAREZ AND J. LÓPEZ

By using (39) in the above inequality yields

lim
ℓ→+∞

(f (yℓ+1) − f (yℓ)) = lim
ℓ→+∞

(ϕℓ(yℓ+1) − f (yℓ)) = 0.

In consequence, as

0 ≤ ξℓ+1 = f (yℓ+1) − ϕℓ(yℓ+1) = f (yℓ+1) − f (yℓ) + f (yℓ) − ϕℓ(yℓ+1),

the result follows.
(iv) By Part (i) and (25) we get

0 ∈ ∂ξℓ+1 f (y
ℓ+1) + γ̄ (A⊤Q−1

w(x̄)A)(yℓ+1 − x̄),

and from definition of proxγ̄ f (x̄) one has that

0 ∈ ∂f (proxγ̄ f (x̄)) + γ̄ (A⊤Q−1
w(x̄)A)(proxγ̄ f (x̄) − x̄).

Then, from the above inclusions it follows that

ξℓ+1 ≥ γ̄ ⟨(A⊤Q−1
w(x̄)A)(proxγ̄ f (x̄) − yℓ+1), proxγ̄ f (x̄) − yℓ+1⟩

≥ γ̄λmin(A⊤Q−1
w(x̄)A)∥proxγ̄ f (x̄) − yℓ+1∥2,

where the second inequality it follows from the injectivity of A. Finally, letting ℓ → +∞ and
by using Part (iii), we get that yℓ+1 → proxγ̄ f (x̄). !

The next result extends [37, Theorem 4], [36, Theorem 3.2(a)] to our context.
Theorem 4.3: Suppose that f is finite. Let {xk} be the sequence generated by the algorithm IPBAVM.
If xk is not optimal solution, then the bundle subiterations gives in a finite number of steps ℓ(k) a point
yℓ(k)+1 satisfying the descent test.
Proof: Let {yℓ+1} be the sequence generated by the bundle subiterations with prox-center xk. We
denote by zk = proxγkf (x

k) ∈ F0 and 0(y) = f (y) + γk
2 ∥y − xk∥2Qw(xk)

. By Theorem 4.2 (iv),
yℓ+1 → zk as ℓ → +∞. Then, by continuity of f at zk it follows that f (yℓ+1) → f (zk) as ℓ → ∞.
On the other hand, suppose that xk is not optimal solution for SCP and that the descent test fails at
step k. Then, for each ℓ one has

f (yℓ+1) − f (xk) > −m(f (xk) − ϕℓ(yℓ+1)) = m(ϕℓ(yℓ+1) − f (yℓ+1) + f (yℓ+1) − f (xk)),

thus
(1 − m)(f (yℓ+1) − f (xk)) > −mξℓ+1.

Letting ℓ → +∞ in this inequality, and by usingTheorem4.2 (iii), we get that f (zk) = lim inf f (yℓ+1)
≥ f (xk). Hence, 0(zk) ≥ f (xk) = 0(xk) and from definition of zk it follows that zk = xk. Finally,
since ∅ ̸= F0 ⊂ int(dom(f )), we can apply [40, Theorem 23.8] so that 0 ∈ ∂0(xk) = (∂f ( · ) +
γk(A⊤Q−1

w(xk)A)( · −xk))(xk) = ∂f (xk), which means that xk is an optimal solution of SCP problem,
a contradiction. !

In the following result, we show that the descend steps fit the framework of Section 3.
Theorem 4.4: Suppose that f is finite, and that infinitely many descent steps occur. Then,

(i)
∑∞

k=0 ξk+1 < ∞.
(ii)

∑∞
k=0 γk∥xk+1 − xk∥2Qw(xk)

< ∞, the sequence {xk} is bounded and {f (xk)} converges.
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OPTIMIZATION 1773

(iii) Any cluster point (x̃, s̃, g̃) of {xk, sk, g̃ k} satisfies

g̃ = A⊤s̃, w(x̃) ∈ K, ⟨w(x̃), s̃⟩ = 0, (40)

where sk = γkQ−1
w(xk)(w(xk) − w(xk+1)).

Proof: (i) At iteration k, suppose that xk was not optimal solution. By Theorem 4.3, we compute
a point yℓ(k)+1 such that it satisfies the descent test, so we can take xk+1 = yℓ(k)+1. Then,

f (xk+1) − f (xk) ≤ −m(f (xk) − ϕℓ(k)(xk+1)) = −m(f (xk) − f (xk+1)) − mξk+1, (41)

where ξk+1 = f (xk+1) − ϕℓ(k)(xk+1) ≥ 0. This inequality is equivalent to

ξk+1 ≤
(
1
m

− 1
)(

f (xk) − f (xk+1)
)

. (42)

Summing (42) over k = 0, 1, . . . , l one has
∑l

k=0 ξk+1 ≤ ( 1
m − 1)(f (x0) − f (xl+1)) ≤

( 1
m − 1)(f (x0) − f ∗). Letting l → +∞, we obtain that

∑∞
k=0 ξk+1 < ∞.

(ii) From Theorem 4.2-(i), it follows that

g̃ k = −γkA⊤Q−1
w(xk)A(xk+1 − xk) ∈ ∂ξk+1 f (x

k+1). (43)

Thismeans that the sequence {xk} satisfies the conditions of IPAVMalgorithmwith εk = ξk+1
and ζ k+1 = 0 for all k ∈ N (see Section 3). Then, (43) implies that

f (xk) + ξk+1 ≥ f (xk+1) + γk∥xk+1 − xk∥2Qw(xk)
.

Hence, following the same steps of Proposition 3.2 the two first results in (ii) are obtained. For the
other part of (ii), we note (41) implies that f (xk+1) ≤ f (xk), that is, {f (xk)} is a sequence decreasing.
Since {f (xk)} is bounded below by f∗, it converges to some l ∈ R. Finally, the part (iii) it follows from
Proposition 3.3 via suitable identifications. !

5. Numerical experiences

In order to assess from a practical point of view the algorithm IPBAVM described in the previous
sections, we have coded it inMATLAB 7.8, Release 2009b and run it on a set of well-known problems
in convex nonsmooth optimization with nonnegative and second-order cone constraints, on an
IMAC with an Intel Pentium Core i5 CPU 2.7 GHz processor and 8GB of RAM, running OS X
operating system. The starting point for this code is a version of the proximal bundle algorithm
provided by Professor Claudia Sagastizábal, which solves problems of the type minx∈Rn h ◦ c with
h : Rm → R a positively homogeneous (degree 1) convex function and c : Rn → Rm a smooth
mapping (see [45] for more details). Note that Sagastizábal’s code does not solve directly the test
problems considered in this article.

Additionally, we use CVX (available in http://cvxr.com/cvx) with its default solver (SDPT3) and
settings for solving each test problem considered. This will enable us to compute, for instance, the
relative error between the computed value at the final iteration by our approach and the obtained by
CVX.

Next, we list a set of benchmark examples (see [29,38,46]) with additional constraints which will
be used to test our algorithm IPBAVM. This examples have the following form

min
x∈Rn

f (x); w(x) ∈ K,
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1774 F. ALVAREZ AND J. LÓPEZ

where

• CB2: f (x) = max{x21 + x42 , (2 − x1)2 + (2 − x2)2, 2 exp (x2 − x1)}
• QL: f (x) = max{x21 + x22, x

2
1 + x22 + 10( − 4x1 − x2 + 4), x21 + x22 + 10( − x1 − 2x2 + 6)}

• EVD2: f (x) = max{x21 + x22 + x23 − 1, x21 + x22 + (x3 − 2)2, x1 + x2 + x3 − 1, x1 + x2 − x3 + 1,
2x41 + 6x22 + 2(5x3 − x1 + 1)2, x21 − 9x3}

• Mifflin 2: f (x) = −x1 + 2(x21 + x22 − 1) + 1.75|x21 + x22 − 1|
• Rosen-Suzuki (R-S): f (x) = max1≤j≤4 fj(x) with

f1(x) = x21 + x22 + 2x23 + x24 − 5x1 − 5x2 − 21x3 + 7x4,
f2(x) = f1(x) + 10(x21 + x22 + x23 + x24 + x1 − x2 + x3 − x4 − 8),
f3(x) = f1(x) + 10(x21 + 2x22 + x23 + 2x24 − x1 − x4 − 10),
f4(x) = f1(x) + 10(2x21 + x22 + x23 + 2x1 − x2 − x4 − 5)

• MaxQuad (MQL): f (x) = max1≤j≤L{⟨Ajx, x⟩ − ⟨bj, x⟩ + cj}, where Aj is a 10×10 symmetric
matrix defined by

Aj
ik = exp

(
i
k

)
cos (ik) sin (ij), i < k and Aj

ii = i
n
| sin (j)| +

∑

l ̸=i
|Aj

il|,

bj is a vector in R10 whose components are bji = exp (i/k) sin (ij), and cj is a scalar defined by
cj = 1, for j = 1, . . . , L.

On the other hand, we recall the sufficient condition on the regularization parameter to have
interior iterates: γk > ∥A−1∥λmax(Qw(xk))

1/2[∥gk∥ + δk] (cf. Proposition 8). In practical compu-
tations, we have noticed that this condition can be weakened to speed up convergence. In fact, we
implemented the following relaxed version for the parameter:

γk(θ) = 1
2θ

(
∥A−1∥λmax(Qw(xk))

1/2[∥gk∥ + δk]
)
, 0 ≤ θ ≤ θmax, (44)

and we denote by y(θ) = xk − γk(θ)−1(A⊤Q−1
w(xk)A)−1g̃ℓ. Then we set yℓ+1 = y(θ∗

ℓk), where
θ∗
ℓk = max{0, . . . , θmax : y(θ) ∈ F0}.

5.1. Test problems on the nonnegative orthant

In this case, K = Rm
+. Next, we indicate the dimensions n and m, the feasible starting point x0 and

describe the constraints of each test problem.

• Test problem 1 (CB2): n = 2, m = 2, x0 = (0.5, 1)⊤, w1(x) = 2x1 + x2 − 1, w2(x) =
−3x1 + 4x2 + 6.

• Test problem2 (QL):n = 2,m = 3,x0 = (0.5, 2)⊤,w1(x) = 2x1+x2−1,w2(x) = −3x1+4x2+6,
w3(x) = −x1 − 2x2 + 14.

• Test problem 3 (EVD2): n = 3, m = 3, x0 = (1, 1, 0)⊤, w1(x) = 2x1 + 3x2 + x3 − 4, w2(x) =
−4x1 + 6x2 + 2x3 + 8, w3(x) = 5x1 − 4x2 − 3x3 + 10.

• Test problem 4 (Mifflin 2): m = 2, m = 2, x0 = (0, 1)⊤, w1(x) = x1 + x2 − 0.5, w2(x) =
−3x1 − x2 + 2.5.

• Test problem 5 (R-S): n = 4, m = 4, x0 = (0, 1, 1, 2)⊤, w1(x) = 3x1 + 2x2 + 4x4 − 9,
w2(x) = −2x1+5x3+6x4+6,w3(x) = 4x1−3x2−4x3+x4+10,w4(x) = x1−x2+4x3−2x4+5.

• Test problem 6 (MQL): n = 10, m = 11, x0 = 0.004, wi(x) = −|xi| + 0.05, for i = 1, . . . , 10,
and w11(x) = −∑n

i=1 xi + 0.05.
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OPTIMIZATION 1775

Table 1. Average CPU time in seconds used by SDPT3 under CVX.

Problem CB2 QL EVD2 Mifflin 2 R-S MQ10 MQ25 MQ50

CPUcvx 0”.55 0”.68 0”.91 0”.55 1”.45 0”.95 1”.45 2”.24
fcvx 1.9522 7.2 4.92955 −0.943649 −32.2867 0.940517 1 1

Table 2. Numerical results for bundle algorithm on the nonnegative orthant.

Tol = 10−2

Problem NIG NS CPU Er

CB2 12 3 0”.62 5.1854e-5
QL 11 3 0”.56 0.001270
EVD2 17 5 0”.67 0.004821
Mifflin 2 7 4 0”.61 0.011279
R-S 22 4 0”.81 0.011135
MQ10 10 6 0”.63 0.054649
MQ25 15 6 1”.17 0.034605
MQ50 17 7 1”.39 0.032555

Table 3. Numerical results for bundle algorithm on the nonnegative orthant.

Tol = 10−3 Tol = 10−4

Problem NIG NS CPU Er NIG NS CPU Er

CB2 12 3 0”.62 5.1854e-5 17 4 0”.66 8.0319e-6
QL 13 4 0”.60 3.3796e-5 17 5 0”.64 1.3198e-6
EVD2 25 12 0”.80 0.001126 147 128 1”.35 1.1935e-4
Mifflin 2 11 6 0”.73 9.5005e-4 13 8 0”.76 2.1037e-4
R-S 24 5 0”.85 5.2895e-4 40 19 0”.91 1.0100e-4
MQ10 15 10 0”.64 0.034122 67 48 1”.43 0.005235
MQ25 60 23 1”.68 5.0076e-6 60 23 1”.68 5.0076e-6
MQ50 51 22 1”.98 2.8918e-5 54 23 2”.06 2.0353e-6

Table 1 shows the average CPU time (run five times) in seconds required by SDPT3 under CVX to
solve approximately each test problem, and the respective optimal function value (denoted by fcvx).

Note that when increasing the value of L in the test problems MQL, CVX’s performance deterio-
rates as the CPU time increases.

Stopping rule and numerical results

The iterates stop when |w(xk)⊤sk| ≤ Tol, where sk denotes the dual solution at iteration k, and Tol
a given tolerance. The obtained numerical results are listed in Tables 2 and 3 for Tol = 10−2 and
Tol = 10−3, 10−4, respectively.

Here, NIG represents the number of general iterations, NS the number of serious steps, CPU
represents the average CPU time in seconds (run five times) for solving each problem, and

Er = |fipbavm − fcvx|
|fcvx|

is the relative error at the final iteration, where fipbavm is the computed objective value at the final
iteration of our algorithm IPBAVM.

From Tables 2 and 3, we can observe that output solutions obtained by our algorithm are optimal
when compared with the benchmark given by CVX. For Tol = 10−2, the relative error in the first
example is close to 0.005%, in the next two examples the relative error is close to 0.1% and 0.5%,
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Table 4. Average CPU time in seconds used by SDPT3 under CVX.

Problem CB2 QL EVD2 Mifflin 2 R-S MQ10 MQ25 MQ50

CPUcvx 0”.65 0”.71 0”.98 0”.64 1”.63 0”.83 1”.38 2”.22
fcvx 1.95222 7.57813 3.59408 19.5995 −23.2431 0.960938 1 1

respectively, while in the next two examples is close to 1%. In the sixth example, the relative error is
close to 5.5%. In the last two examples the relative error is closed to 0.03%.

For Tol = 10−3, the relative error in the two first examples are close to 0.005%, in the third
example the relative error is close to 0.1%, while in the next two examples are close to 0.09% and
0.05%. In the sixth example the relative error is close to 3.4%. In the last two examples the relative
error is close to 0.001% and 0.003%, respectively.

For Tol = 10−4, the relative error in the two first examples are close to 0.001%, while in the next
three examples are close to 0.01%. In MQ10 the relative error is close to 0.5%, while in the last two
examples the relative error is between 0.0002% and 0.0005%. Moreover, in all the test problems, we
need few iterations for obtaining convergence.

Note that our algorithm is faster than CVX for QL, R-S and MQ50 problems.

5.2. Test problems on second-order cones

Here K = Lm1
+ × · · · × LmJ

+ . Next, we indicate the dimension n, number of cones J , dimension of
conesmj and the starting point x0 of each test problem.

• Test problem 1 (CB2): n = 2, J = 1,m = 2, x0 = (2, 1)⊤, and w(x) = x.
• Test problem 2 (QL): n = 2, J = 2,m1 = m2 = 2, x0 = (2, 1)⊤, w1(x) = (x1 + x2,−x1 + x2)⊤,
and w2(x) = (2x1 + x2 − 1,−x1 + 3x2)⊤.

• Test problem 3 (EVD2): n = 3, J = 2, m1 = 2, m2 = 3, x0 = (1.8860,−0.1890,−0.4081)⊤,
w1(x) = (4x1 + 6x2 + 3x3 − 1,−x1 + 7x2 − 5x3 + 2)⊤, and w2(x) = x.

• Test problem 4 (Mifflin 2): n = 2, J = 2, m1 = m2 = 2, x0 = (4, 4)⊤, w1(x) = (5x1 −
2.5,−3x1 + 4x2 + 1.5)⊤, and w2(x) = (11x1 − 22,−13x1 + 4x2 + 42)⊤.

• Test problem 5 (R-S): n = 4, J = 2, m1 = 3, m2 = 4, x0 = (3, 1, 0, 0)⊤, w1(x) = (2x1 + 3x2 −
2x4 − 1, x1 + 4x2 − 6x3 + 5x4,−x1 + 8x3 + 7x4 + 2)⊤, and w2(x) = x.

• Test problem 6 (MQL): n = 10, J = 1, m = 10, x0 = (2,ω/∥ω∥)⊤ with ω ∈ R9 generated
randomly by Matlab’s randn.m and w(x) = x.

In Table 4, we show the average CPU time (run five times) in seconds used by applying SDPT3
under CVX to these test problems.

From this Table, we can note that when increasing the value of L in the test problem MQL, the
CPU time also increases.

Stopping rule and numerical results

As stopping rule we take

max
{
max
j=1,...,J

|min{λ1(sjk), 0}|, max
j=1,...,J

{
|wj(xk)⊤sjk|

}}
≤ Tol,

where sj denotes the dual solution. The last one is due to Theorem 4.4. The numerical results are
listed in Table 5, where CS is the value of maxj=1,...,J {|wj(xk)⊤sjk|} at the final iteration.

From Table 5, we can observe that output solutions obtained by our algorithm IPBAVM are
optimal when compared with the benchmark given by CVX. Moreover, for five test problems, we
need few iterations for obtaining convergence. The relative error in all the test problems is between
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Table 5. Numerical results for bundle algorithm on the second-order cone.

Tol = 10−2

Problem NIG NS CS CPU Er

CB2 15 3 3.4490e-4 0”.28 7.8388e-7
QL 65 53 9.9698e-5 0”.68 1.3153e-4
EVD2 243 235 9.9773e-5 1”.41 2.6819e-4
Mifflin 2 256 256 1.0631e-5 0”.85 1.0387e-5
R-S 1976 1974 9.9962e-4 5”.82 8.5994e-5
MQ10 47 12 9.3717e-5 0”.51 9.5383e-5
MQ25 27 10 9.3124e-5 0”.98 1.2021e-4
MQ50 27 10 9.3124e-5 1”.22 1.2020e-4

0.01% and 0.008%. For the CB2, QL, R-S and MQL (for L = 10, 25, 50) problems, IPBAVM is faster
than CVX. On the other, these results do not vary when we consider as tolerance Tol = 10−3, 10−4.

6. Concluding remarks

In this work, we have proposed an interior proximal-type algorithm with variable metric for solving
convex SCP problems. The variable metric is induced by a class of positive definite operators Q·
defined on the Euclidean Jordan algebra V. With the introduction of this metric, we showed that
the proposed algorithm is well defined, the iterates belong to the interior of the feasible set and we
establish some properties of convergence. Moreover, we have adapted and implemented the bundle
algorithm for solving nonsmooth convex SCP problems defined on two instances of symmetric cones:
the nonnegative orthant and the second-order cone. Then, we have applying these implementations
to some well-known test problems, obtaining good results. From the numerical results, we can see
that the output solutions obtained by our algorithm are optimal when compared with the benchmark
given by CVX. Moreover, we observe that our algorithm, in some test problems, is faster in terms of
CPU time than CVX.
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