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a b s t r a c t

Expert systems often rely heavily on the performance of binary classification methods. The need for ac-

curate predictions in artificial intelligence has led to a plethora of novel approaches that aim at correctly

predicting new instances based on nonlinear classifiers. In this context, Support Vector Machine (SVM)

formulations via two nonparallel hyperplanes have received increasing attention due to their superior

performance. In this work, we propose a novel formulation for the method, Nonparallel Hyperplane SVM.

Its main contribution is the use of robust optimization techniques in order to construct nonlinear mod-

els with superior performance and appealing geometrical properties. Experiments on benchmark datasets

demonstrate the virtues in terms of predictive performance compared with various other SVM formula-

tions. Managerial insights and the relevance for intelligent systems are discussed based on the experi-

mental outcomes.

© 2016 Elsevier Ltd. All rights reserved.
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. Introduction

Support Vector Machine is one of the most popular tools used

or prediction in intelligent systems. Its superior performance and

exibility are appealing virtues that lead to numerous extensions.

VM has proved to be very effective in various expert systems ap-

lications, such as medical diagnosis (Ríos & Erazo, 2016), churn

rediction (Ali & Aritürk, 2014), and human resources analytics

Saradhi & Palshikar, 2011).

Recently, second-order cone programming (SOCP) has been

sed not only as an alternative optimization scheme for SVM

Debnath, Muramatsu, & Takahashi, 2005), but also to derive robust

ormulations that follow the SVM principle of maximum margin

Maldonado & López, 2014a; Nath & Bhattacharyya, 2007). The goal

f such models is to construct one that correctly classifies most in-

tances of each training pattern even for the worst distribution of

he class-conditional densities with a given mean and covariance

atrix. Such methods have proved to be very effective in terms of

lassification performance (Maldonado & López, 2014b).

On the other hand, there is a promising new stream of re-

earch that extends SVM to constructing two nonparallel hyper-

lanes in such a way that each one is close to one of the classes,
∗ Corresponding author. Tel: +56 2 26181874.
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nd as far as possible from the other. The most popular approach

s Twin SVM (Jayadeva, Khemchandani, & Chandra, 2007; Shao,

hang, Wang, & Deng, 2011), while some other extensions, such

s Nonparallel Hyperplane SVM (NH-SVM) (Shao, Chen, & Deng,

014), have also been proposed in the literature, claiming success-

ul results. Twin SVM splits the original problem into two smaller

ubproblems, and the two hyperplanes are constructed indepen-

ently. In contrast, NH-SVM solves a single problem to obtain both

lassifiers simultaneously.

In this work, we propose a novel SVM-based method that ex-

ends the ideas of NH-SVM to second-order cones. The approach

onstructs two nonparallel classifiers, and represents each train-

ng pattern by an ellipsoid characterized by the mean and covari-

nce of each class, instead of the reduced convex hulls used in NH-

VM. Originally developed for linear classifiers, the method is also

dapted to construct nonlinear classification functions via the ker-

el trick. The use of ellipsoids for SVM modeling has been applied

uccessfully in the context of expert systems (Czarnecki & Tabor,

014).

This paper is organized as follows: in Section 2 we present

he relevant SVM formulations for this work: Twin SVM, NH-SVM,

nd SOCP-SVM. The proposed method based on SOCP for Non-

arallel Hyperplane SVM is described in Section 3. Experimental

esults using seven benchmark data sets are given in Section 4.

inally, Section 5 provides the main conclusions of this work, dis-

ussing managerial insights and addressing future developments in

he context of expert and intelligent systems.
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2. Prior work in SVM classification

In this section, we discuss the relevant SVM formulations in

this work: standard soft-margin SVM (Cortes & Vapnik, 1995), Twin

SVM (Jayadeva et al., 2007; Shao et al., 2011), Nonparallel Hyper-

plane SVM (Shao et al., 2014), and SVM based on second-order

cone programming (Nath & Bhattacharyya, 2007).

2.1. Soft-margin support vector machine

Given a set of training examples and their respective labels (xi,

yi), where xi ∈ �n, i = 1, . . . , m and yi ∈ {−1,+1}, the soft-margin

SVM formulation aims at finding a classification function of the

form f (x) = w�x + b by solving the following quadratic program-

ming problem (QPP):

min
w,b,ξ

1

2
‖w‖2 + C

m∑
i=1

ξi

s.t. yi · (w�xi + b) ≥ 1 − ξi, i = 1, . . . , m,

ξi ≥ 0, i = 1, . . . , m, (1)

where ξ ∈ �m is a set of slack variables and C > 0 is a regulariza-

tion parameter.

A non-linear classification function can be obtained via the Ker-

nel Trick on the dual of Formulation (1) (Schölkopf & Smola, 2002).

This kernel-based SVM formulation follows:

max
α

m∑
i=1

αi − 1

2

m∑
i,s=1

αiαsyiysK(xi, xs)

s.t.

m∑
i=1

αiyi = 0,

0 ≤ αi ≤ C, i = 1, . . . , m, (2)

where α ∈ �m is the set of dual variables corresponding to the

constraints in (1). In this work we use the Gaussian kernel, which

usually lead to best empirical results (see e.g. Maldonado, Weber,

and Basak (2011); Schölkopf and Smola. (2002)), and has the fol-

lowing form:

K(xi, xs) = exp

(
−||xi − xs||2

2σ 2

)
, (3)

where σ is a parameter that controls the width of the kernel

(Schölkopf and Smola. (2002)).

2.2. Twin support vector machine

The twin SVM performs classification by using two nonparallel

hyperplanes obtained by solving two smaller-sized QPPs (Jayadeva

et al., 2007). Let us denote the cardinality of the positive (nega-

tive) class by m1 (m2), and by A ∈ �m1×n (B ∈ �m2×n) the data ma-

trix related to the positive (negative) class. The linear Twin SVM

formulation follows:

min
w1,b1,ξ2

1

2
‖Aw1 + e1b1‖2 + c1

2
(‖w1‖2 + b2

1) + c3e�
2 ξ2

s.t. − (Bw1 + e2b1) ≥ e2 − ξ2,

ξ2 ≥ 0, (4)

and

min
w2,b2,ξ1

1

2
‖ Bw2 + e2b2‖2 + c2

2

(‖ w2‖2 + b2
2

)
+ c4e�

1 ξ1

s.t. (Aw2 + e1b2) ≥ e1 − ξ1,

ξ1 ≥ 0.

(5)

Formulation (4)–(5) constructs two hyperplanes w�
k

x + bk = 0,

k = 1, 2, such that each one is closer to instances of one of the
wo classes and is as far as possible from those of the other class.

new data point x is assigned to k∗ according to its proximity to

he hyperplanes based on the following rule:

∗ = argmin
k=1,2

{
dk(x) := |w�

k x + bk|
‖wk‖

}
, (6)

here dk corresponds to the perpendicular distance of the data

ample x from hyperplane w�
k

x + bk = 0, k = 1, 2. The scalars c1,

2, c3, and c4 are positive parameters, and e1 and e2 are vec-

ors of ones of appropriate dimensions. We refer to Formulation

4)–(5) as Twin-Bounded SVM (TB-SVM) (Shao et al., 2011), which

xtends the original Twin SVM (TW-SVM) formulation (Jayadeva

t al., 2007). Both problems are equivalent if c1 = c2 = ε, with ε >

a fixed small parameter. The dual formulation of Twin-Bounded

VM can be found by Shao et al. (2011).

The linear Twin SVM can be extended to non-linear classifi-

ation surfaces of the form K(x, X)uk + bk = 0 (k = 1, 2) via ker-

el functions by solving the following quadratic problems (kernel-

ased Twin SVM):

min
u1,b1,ξ2

1

2

∥∥K(A�, X)u1 + e1b1

∥∥2 + c1

2
(‖u1‖2 + b2

1) + c3e�
2 ξ2

s.t. − (K(B�, X)u1 + e2b1) ≥ e2 − ξ2, (7)

ξ2 ≥ 0,

nd

min
u2,b2,ξ1

1

2

∥∥K(B�, X)u2 + e2b2

∥∥2 + c2

2
(‖u2‖2 + b2

2) + c4e�
1 ξ1

s.t. (K(A�, X)u2 + e1b2) ≥ e1 − ξ1, (8)

ξ1 ≥ 0,

here X = [A� B�] ∈ �n×m is the matrix that combines both train-

ng patterns sorted by class, and K : �n × �n → � is a kernel func-

ion (Schölkopf and Smola. (2002)).

.3. Nonparallel hyperplane SVM (NH-SVM)

The NH-SVM approach constructs two nonparallel hyperplanes

imultaneously by solving a single QPP. Similarly to Twin SVM, the

inear NH-SVM formulation finds two hyperplanes in �n such that

ach classifier is close to one of the training patterns and is as far

s possible from the other. The main difference compared to Twin

VM is that, since one single QPP is constructed, both hyperplanes

re simultaneously optimized in the same formulation. The linear

H-SVM formulation follows:

min
wk,bk,ξk

k=1,2

1

2

(‖Aw1 + e1b1‖2 + ‖Bw2 + e2b2‖2
)

+ c1

2

(‖w1‖2 + b2
1 + ‖w2‖2 + b2

2

)
+ c2

2

(
e�

1 ξ1 + e�
2 ξ2

)
s.t. Aw1 + e1b1 − Aw2 − e1b2 ≥ e1 − ξ1,

Bw2 + e2b2 − Bw1 − e2b1 ≥ e2 − ξ2, (9)

ξ1 ≥ 0, ξ2 ≥ 0,

here c1, c2 > 0 are regularization parameters (Shao et al., 2014).

point x in �n is assigned to class k∗ by identifying the nearest

yperplane according to Eq. (6).

The computation of the Lagrangian and the Karush–Kuhn–

ucker (KKT) conditions leads to the following dual formulation for

roblem (9):

max
α

e�α − 1

2
α�Ā�[

(H�H + c1I)−1 + (G�G + c1I)−1
]
Āα,

s.t. 0 ≤ α ≤ c2e,
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Fig. 1. Geometric interpretation for Twin SVM and NH-SVM.
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here H = [A, e1] ∈ �m1×(n+1), G = [B, e2] ∈ �m2×(n+1), Ā =
H�,−G�] ∈ �(n+1)×m, and e = [e�

1
, e�

2
]� ∈ �m. Using this for-

ulation, the values of wk and bk (k = 1, 2) are computed as

1 = (H�H + c1I)−1Āα and v2 = (G�G + c1I)−1Āα,

here vk = [w�
k
, bk]� ∈ �n+1 for k = 1, 2. Similarly to Twin SVM, a

ernel-based formulation NH-SVM can be obtained via the kernel

rick. This formulation is given by

min
uk,bk,ξk

k=1,2

1

2

(‖K(A�, X)u1 + e1b1‖2 + ‖K(B�, X)u2 + e2b2‖2
)

+

c1

2

(‖u1‖2 + b2
1 + ‖u2‖2 + b2

2

)
+ c2

2

(
e�

1 ξ1 + e�
2 ξ2

)
(10)

s.t. K(A�, X)u1 + e1b1 − K(A�, X)u2 − e1b2 ≥ e1 − ξ1,

K(B�, X)u2 + e2b2 − K(B�, X)u1 − e2b1 ≥ e2 − ξ2,

ξ1 ≥ 0, ξ2 ≥ 0,

here c1, and c2 are positive parameters.

Fig. 1 presents the geometrical interpretation of Twin SVM and

H-SVM in a two-dimensional toy data set. The dashed lines rep-

esent the three hyperplanes constructed with Twin SVM: the two

onparallel classifiers over the training patterns and the one that

efines the decision rule between both twin hyperplanes. Similarly,

he dot-dash lines correspond to the hyperplanes defined by NH-

VM.

In Fig. 1 we observe the small differences between Twin SVM

nd NH-SVM in terms of the construction of the twin hyperplanes.

oth methods construct a decision rule adequately that classifies

ll training points correctly for this toy data set, although the deci-

ion rules are slightly different. The NH-SVM method has the the-

retical advantage that it optimizes both twin hyperplanes in the

ame optimization problem, leading to potentially better predictive

erformance. On the other hand, Twin SVM splits the formulation
nto two subproblems, providing more efficient training according

o the divide and conquer paradigm.

Besides NH-SVM, several extensions for Twin SVM have also

een proposed in the literature. Some of the tasks explored with

win SVM are feature selection (Bai, Wang, Shao, & Deng, 2014),

east squares classification (Kumar & Gopal, 2009; Peng, 2010), and

eighted regression (Xu & Wang, 2012).

.4. Second-order cone programming SVM

In this section we introduce the robust SVM version based on

econd-order cones presented by Nath and Bhattacharyya (2007).

et Xk be a random variable that generates the training sam-

les from class k = 1, 2, with mean vectors and covariance matri-

es given by (μk,�k), where �k ∈ �n × n are symmetric positive

emidefinite matrices. The method constructs a maximum-margin

lassifier such that the probability of false-negative (resp. false-

ositive) errors does not exceed 1 − η1 (resp. 1 − η2), with η1, η2

(0, 1). This problem can be formulated as the following quadratic

hance-constrained programming model:

min
w,b

1

2
‖w‖2

s.t. Pr{w�X1 + b ≥ 1} ≥ η1, (11)

Pr{w�X2 + b ≤ −1} ≥ η2.

A robust setting can be defined from the previous formulation

y requiring that each training pattern k has to be correctly clas-

ified, up to the rate ηk, even for the worst data distribution. To

chieve this goal, the probability constraints in (11) are replaced

ith their robust counterparts:

inf
1∼(μ1,�1)

Pr{w�X1 + b ≥ 1} ≥ η1, inf
X2∼(μ2,�2)

Pr{w�X2 + b ≤ −1}≥η2,
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where X ∼ (μ, �) refers a family of distributions which a common

mean μ, and covariance �.

Thanks to an appropriate application of the multivariate Cheby-

shev inequality (Lanckriet, Ghaoui, Bhattacharyya, & Jordan, 2003,

Lemma 1), these constraints are equivalent to

w�μ1 + b ≥ 1 + κ1

√
w��1w, −(w�μ2 + b) ≥ 1 + κ2

√
w��2w,

where κk =
√

ηk
1−ηk

, for k = 1, 2. Replacing the constraints in (11)

leads to the following deterministic problem:

min
w,b

1

2
‖w‖2

s.t. w�μ1 + b ≥ 1 + κ1‖S�
1 w‖, (12)

−(w�μ2 + b) ≥ 1 + κ2‖S�
2 w‖,

where �k = SkS�
k
, for k = 1, 2. Formulation (12) is a quadratic SOCP

with two blocks (Alizadeh & Goldfarb, 2003). This problem can be

formulated as a linear SOCP with three blocks by introducing a

new variable t and a constraint ‖w‖ ≤ t. The solutions for both

models are similar, but linear SOCP formulations are required by

some SOCP solvers, such as the one used in this work. These lin-

ear SOCP formulations can be solved efficiently by interior point

methods (Alizadeh & Goldfarb, 2003; Alvarez, López, & Ramírez C.,

2010).

A kernel-based version can be derived from Formulation (12)

by rewriting weight vector w ∈ �n as w = Xs + Mr, where M is a

matrix whose columns (as vectors) are orthogonal to training data

points; s, r are vectors of combining coefficients with the appro-

priate dimension; and X = [A� B�] ∈ �n×m is the data matrix con-

taining both training patterns. On the other hand, the empirical es-

timates of the mean μk and covariance �k are given by

μ̂1 = 1

m1

A�e1, μ̂2 = 1

m2

B�e2, �̂k = SkS�
k , k = 1, 2,

where

S1 = 1√
m1

(A� − μ̂1e�
1 ), S2 = 1√

m2

(B� − μ̂2e�
2 ).

Thus, for each class k, we have

w�μk = s�gk, w��kw = s�	ks, k = 1, 2,

where

gk = 1

mk

[
K1kek

K2kek

]
, 	k = 1

mk

[
K1k

K2k

](
Imk

− 1

mk

eke�
k

)[
K�

1k K�
2k

]
,

where K11 = AA�, K12 = K�
21

= BA�, K22 = BB� are matrices whose

elements are inner products of data points. For instance, the entry

(l, s) for the matrix Kkk′ is the following (Kkk′ )ls = (xk
l
)�xk′

s . Using

a kernel function, this quantity becomes:

(Kkk′ )ls = K(xk
l , xk′

s ).

Therefore, the non-linear formulation is given by:

min
s,b

1

2
s�Ks

s.t. s�g1 + b ≥ 1 + κ1

√
s�	1s (13)

−s�g2 − b ≥ 1 + κ2

√
s�	2s,

where K = [K11, K12; K21, K22] ∈ �m×m.

3. Robust nonparallel hyperplane SVM (RNH-SVM)

A novel approach for binary classification using second-order

cones and nonparallel hyperplanes is presented in this section.

This formulation extends the ideas of the NH-SVM approach

(Shao et al., 2014) to second-order cones. The reasoning behind
his approach is to construct two nonparallel classifiers simulta-

eously, in such a way that each hyperplane is close to one class

nd far away from the other class, while each training pattern is

epresented by ellipsoids instead of reduced convex hulls.

The linear formulation of RNH-SVM is presented in Section 3.1.

he dual form of RNH-SVM is derived in Section 3.2, providing the

eometrical interpretation of the method. The kernel-based version

f RNH-SVM is described in Section 3.3. Finally, the relationship

etween our approach and other SVM-based methods is discussed

n Section 3.4.

.1. Linear RNH-SVM

In order to obtain two linear nonparallel hyperplanes, we

onsider the following quadratic chance-constrained programming

roblem:

min
wk,bk

k=1,2

1

2

(‖Aw1 + e1b1‖2 + ‖Bw2 + e2b2‖2
)

+ θ

2

(‖w1‖2 + b2
1 + ‖w2‖2 + b2

2

)
s.t. inf

X1∼(μ1,�1)
Pr{X1 ∈ H+(w1 − w2, b1 − b2)} ≥ η1,

inf
X1∼(μ1,�1)

Pr{X2 ∈ H−(w1 − w2, b1 − b2)} ≥ η2,

here θ > 0, and

+(w, b) := {x : x�w + b ≥ 1}, H−(w, b) := {x : x�w + b ≤ −1}.
otice that the previous formulation has a similar objective func-

ion compared to the NH-SVM formulation when setting c2 = 0 for

he latter (hard-margin NH-SVM). The constraints are used to as-

ure that the two hyperplanes, H− and H+, classify correctly the

nstances from both classes up to the rate ηk (k = 1, 2) under a

robabilistic scheme. Denoting �1 = S1S�
1
, �2 = S2S�

2
, and follow-

ng the arguments provided in Section 2.4, we obtain the following

eterministic problem (RNH-SVM formulation):

min
wk,bk

k=1,2

1

2

(‖Aw1 + e1b1‖2 + ‖Bw2 + e2b2‖2
)

+ θ

2

(‖w1‖2 + b2
1 + ‖w2‖2 + b2

2

)
s.t. (w1 − w2)

�μ1 + (b1 − b2) ≥ 1 + κ1‖S�
1 (w1 − w2)‖,

−
(
(w1 − w2)

�μ2 + (b1 − b2)
)

≥ 1 + κ2‖S�
2 (w1 − w2)‖,

(14)

here κk =
√

ηk
1−ηk

for k = 1, 2.

Note that the objective function of Problem (14) can be written

ompactly as

1

2
‖Aw1 + e1b1‖2 + θ

2
(‖w1‖2 + b2

1) = 1

2
v�

1 (H�H + θ I)v1, (15)

nd

1

2
‖Bw2 + e2b2‖2 + θ

2
(‖w2‖2 + b2

2) = 1

2
v�

2 (G�G + θ I)v2, (16)

here

vk = [w�
k , bk]� ∈ �n+1, H = [A, e1] ∈ �m1×(n+1),

G = [B, e2] ∈ �m2×(n+1). (17)

hen, by introducing new variables t1, t2 and the constraints

(H�H + θ I)1/2v1‖ ≤ t1, ‖(G�G + θ I)1/2v2‖ ≤ t2,
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roblem (14) can be cast as the following linear SOCP problem:

min
wk,bk,tk

k=1,2

t1 + t2

s.t.
∥∥(H�H + θ I)1/2v1

∥∥ ≤ t1, (18)∥∥(G�G + θ I)1/2v2

∥∥ ≤ t2,

(w1 − w2)
�μ1 + (b1 − b2) ≥ 1 + κ1‖S�

1 (w1 − w2)‖,

−
(
(w1 − w2)

�μ2 + (b1 − b2)
)

≥ 1 + κ2‖S�
2 (w1 − w2)‖.

he decision function is similar to the one used for the NH-SVM

ethod, that is, a new sample x belongs to the class k∗ iff k∗ =
rgmink=1,2{ |w�

k x+bk|‖wk‖ }.

.2. Dual formulation of RNH-SVM and geometric interpretation

In this section we derive the dual formulation of RNH-SVM in

ts linear version (Formulation (14)), and provide geometrical in-

ights into the method. The Lagrangian function associated with

roblem (14) is given by

L(wk, bk, λk)

= 1

2

(‖Aw1 + e1b1‖2 + ‖Bw2 + e2b2‖2
)

+ θ

2

(‖w1‖2 + b2
1

)
+ θ

2

(‖w2‖2 + b2
2

)
− λ1(w1 − w2)

�μ1 + λ2(w1 − w2)
�μ2

+λ1

(
−(b1 − b2) + 1 + κ1‖S�

1 (w1 − w2)‖
)

+λ2

(
(b1 − b2) + 1 + κ2‖S�

2 (w1 − w2)‖
)
, (19)

here λk ≥ 0, for k = 1, 2. Since ‖v‖ = max‖u‖≤1 u�v holds for any

∈ �n, we can rewrite the Lagrangian as follows:

(wk, bk, λk) = max
u1,u2

{L̂(wk, bk, λk, uk) : ‖uk‖ ≤ 1},

here L̂ is given by

ˆ(wk, bk, λk, uk)

= 1

2

(‖Aw1 + e1b1‖2 + ‖Bw2 + e2b2‖2
)

+ θ

2

(‖w1‖2 + b2
1

)
+ θ

2

(‖w2‖2 + b2
2

)
− λ1(w1 − w2)

�μ1 + λ2(w1 − w2)
�μ2

+λ1

(
−(b1 − b2) + 1 + κ1(w1 − w2)

�S1u1

)
+λ2

(
(b1 − b2) + 1 + κ2(w1 − w2)

�S2u2

)
. (20)

hus, Problem (14) can be written equivalently as

in
k,bk

max
uk,λk

{L̂(wk, bk, λk, uk) : ‖uk‖ ≤ 1, λk ≥ 0},
nd therefore the Wolfe-dual of Formulation (14) (see, e.g.

angasarian (1994)) corresponds to

ax
uk,λk

{L̂ : ∇wk
L̂ = 0,∇bk

L̂ = 0,‖uk‖ ≤ 1, λk ≥ 0, k = 1, 2}. (21)

omputing the gradient of L̂ with respect to wk and bk (k = 1, 2)

eads to the following linear system

(A�A + θ I)w1 + b1A�e1 = λ1z1 − λ2z2, (22)

(B�B + θ I)w2 + b2B�e2 = −λ1z1 + λ2z2, (23)

b1 + (w�
1 A�e1 + e�

1 e1b1) = λ1 − λ2, (24)

b2 + (w�
2 B�e2 + e�

2 e2b2) = −λ1 + λ2. (25)

here z = μ − κ S u and z = μ + κ S u .
1 1 1 1 1 2 2 2 2 2
The Relations (22)–(25) can be written compactly as

(H�H + θ I)v1 = Zλ, (G�G + θ I)v2 = −Zλ, (26)

here λ = [λ1, λ2] ∈ �2, Z = [z1,−z2; 1, −1] ∈ �n+1×2. The opera-

or ‘, ’ in [a, b] concatenates matrices a and b horizontally, while

he operator ‘; ’ in [a; b] concatenates both matrices vertically.

ince the symmetric matrices (H�H + θ I) and (G�G + θ I) are pos-

tive definite, for any θ > 0, one has that

1 = (H�H + θ I)−1Zλ, v2 = −(G�G + θ I)−1Zλ. (27)

Subsequently, the objective function L̂ in (21) can be rewritten

sing (15), (16), and (26), as follows:

ˆ = −1

2

[
v�

1 (H�H + θ I)v1 + v�
2 (G�G + θ I)v2

]
+ e�λ,

here e� = [1, 1] ∈ �2.

Finally, the dual problem can be rewritten using (27), as fol-

ows:

min
zk,uk,

λk,k=1,2

1

2
λ�Z�[(H�H + θ I)−1 + (G�G + θ I)−1]Zλ − e�λ

s.t. z1 = μ1 − κ1S1u1, ‖u1‖ ≤ 1,

z2 = μ2 + κ2S2u2, ‖u2‖ ≤ 1,

λ1 ≥ 0, λ2 ≥ 0. (28)

The optimal value for λ can be obtained by fixing variables zk

nd uk (k = 1, 2), and solving the following linear system:

�[(H�H + θ I)−1 + (G�G + θ I)−1]Zλ = e.

he solution of this system of linear equations allows us to rewrite

he dual problem (28) as

min
zk,uk

k=1,2

−1

2
e�(

Z�[(H�H + θ I)−1 + (G�G + θ I)−1]Z
)−1

e

s.t. z1 ∈ B(μ1, S1,−κ1),

z2 ∈ B(μ2, S2, κ2), (29)

here

(μ, S, κ ) = {z : z = μ + κSu,‖u‖ ≤ 1}. (30)

The set B(μ, S, κ) denotes an ellipsoid centered at μ whose

hape is determined by S. This result is important since we can link

he proposed formulation to the geometrical interpretation: the el-

ipsoids B(μ, S, κ) define the two hyperplanes, and subsequently

he classification rule. Fig. 2 illustrates the geometrical interpreta-

ion of the proposed approach in its linear version.

The parameter κk =
√

ηk
1−ηk

(k = 1, 2) governs the size of the el-

ipsoids (Lanckriet et al., 2003). Fig. 3 presents the influence of pa-

ameter η in the solution of RNH-SVM for a toy example.

In Fig. 3 we observe that η controls the size of the ellipsoid of

he respective class: higher values of η imply bigger ellipsoids. Un-

ven η values allow the method to manage the classification per-

ormance for each class, favoring the one with higher error costs,

or example. The SOCP formulations provide an adequate frame-

ork for dealing with the class-imbalance problem (Maldonado &

ópez, 2014b).

Finally, the following remark relates the primal and dual vari-

bles of the RNH-SVM formulation, and is relevant since we can

olve the dual formulations and then obtain both nonparallel hy-

erplanes. The weights wk provide interesting insight into the so-

ution found, since we can assess the importance of each attribute

n the final solution (Bai et al., 2014; Maldonado, Famili, & Weber,

014).

emark 3.1. Note that if z∗
k

∈ �n, for k = 1, 2, are the opti-

al solutions of Problem (29), then by using (27), the solution
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Fig. 2. Geometric interpretation for Robust Nonparallel Hyperplane SVM.

Fig. 3. Geometric interpretation for RNH-SVM, influence of parameter η.

a

v

w
1 2
v∗
k

= [w∗
k
�, b∗

k
]� (k = 1, 2) of Problem (14) can be compute by

v∗
1 = (H�H + θ I)−1Z(Z�[(H�H + θ I)−1 + (G�G + θ I)−1]Z)−1e,

(31)
nd

∗
2 = (G�G + θ I)−1Z(Z�[(H�H + θ I)−1 + (G�G + θ I)−1]Z)−1e,

(32)

ith Z = [z∗ , −z∗; 1, −1].
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Table 1

The metadata for all data sets.

Data set #features #examples %class(min.,maj.) IR

AUS 14 690 (55.5,44.5) 1.2

WBC 30 569 (62.7,37.3) 1.7

LIVER 6 345 (58.0,42.0) 1.4

GER 24 1000 (70.0,30.0) 2.3

DIA 8 768 (65.1,34.9) 1.9

HEART 13 270 (55.6,44.4) 1.25

IONO 34 351 (64.1,35.9) 1.8
.3. Kernel-based RNH-SVM formulation

In this section we extend RNH-SVM to kernel functions to ob-

ain non-linear classifiers. Following the notation introduced in

ection 2.4, the weight vectors for each one of the nonparallel hy-

erplanes can be written as wk = Xsk + Mrk, where M and X are

quivalent to the matrices described in Section 2.4, and sk and

k are combining coefficients with the appropriate dimension. For

ach problem we have

�
k μk = s�

k gk, w�
k �kwk = s�

k 	ksk, k = 1, 2,

nd

w1 = [K11 K12]s1 = K1•s1, Bw2 = [K21 K22]s2 = K2•s2,

here gk, 	k, and Kkk′ have a similar form compared to the no-

ation presented in Section 2.4. Hence, in order to obtain a ker-

el formulation for Problem (14), we replace the inner product

hat appears in the expressions Kkk′ by any kernel function K :
n × �n → � satisfying Mercer’s condition (see Mercer (1909)), ob-

aining the following model (kernel-based RNH-SVM):

min
sk,bk,

k=1,2

1

2
(‖K1•s1 + e1b1‖2 + ‖K2•s2 + e2b2‖2

)

+ θ

2
(‖s1‖2 + b2

1 + ‖s2‖2 + b2
2)

s.t. (s1 − s2)
�g1 + (b1 − b2) ≥ 1 + κ1‖��

1 (s1 − s2)‖,

−(s1 − s2)
�g1 − (b1 − b2) ≥ 1 + κ2‖��

2 (s1 − s2)‖, (33)

here 	k = �k�
�
k
, for k = 1, 2. Then, the solution of Problem (33)

enerates the following kernel-based surfaces:

(x, X)s1 + b1 = 0, K(x, X)s2 + b2 = 0, (34)

here, for a given x ∈ R
n, the row vector K(x, X) is defined by

(x, X) = [K(x, X•1),K(x, X•2), . . . ,K(x, X•m)]

ith X• j ∈ �n denoting the jth column of the matrix X. According

o this, a new point x ∈ �n belongs to the class k∗ iff

∗ = argmin
k=1,2

|K(x, X)sk + bk|√
s�

k
Ksk

, (35)

here K = [K11, K12; K21, K22] ∈ �m×m.

.4. Relation to other SVM methods

Our proposal extends the ideas of NH-SVM (Shao et al., 2014) to

econd-order cones, following the methodology suggested by Nath

nd Bhattacharyya (2007). These authors proposed a maximum-

argin separating hyperplane to split the training patterns, char-

cterized by ellipsoids. On the other hand, NH-SVM extends the

deas of Twin SVM (Jayadeva et al., 2007), in which two nonpar-

llel hyperplanes are constructed to perform binary classification.

n contrast to Twin SVM, where the hyperplanes are constructed

ndependently via two different optimization problems, NH-SVM

stimates both classification functions jointly, taking all available

nformation into account in a single formulation.

Afew approaches are closely related to our proposal. The only

pproach, to the best of our knowledge, that relates Twin SVM and

econd-order cone programming is the work proposed by Qi, Tian,

nd Shi (2013). In that work, the SOCP-based SVM formulation by

oldfarb and Iyengar (2003) is extended to Twin SVM. The main

ifference between this method and the SOCP-SVM approach de-

eloped by Nath and Bhattacharyya (2007) is that the former uses

obust constraints to deal with noisy data (instances with mea-

urement errors for example), while the latter provides a proba-

ilistic framework for the class-conditional densities. The Goldfarb
nd Iyengar formulation results in m linear constraints and one

econd-order cone constraint, while the Nath and Bhattacharyya

ethod considers one second-order cone constraint for each train-

ng pattern k, which is computationally more tractable. Similar to

oldfarb and Iyengar, Zhong and Fukushima (Zhong & Fukushima,

007) proposed a multi-class approach based on SOCP to deal with

oisy observations.

Several extensions have been proposed for both the Twin SVM

nd the SOCP-SVM approach by Nath & Bhattacharyya (2007). An

fficient optimization scheme together with other modifications to

he original version was proposed by Shao et al. (2011) for Twin

VM. On the other hand, the Nath and Bhattacharyya formula-

ion has been extended further for dealing with class-imbalance

Maldonado & López, 2014b) and high dimensionality (Maldonado

López, 2015).

. Experimental results

We applied the proposed approach in its linear and kernel-

ased forms to seven well-known data sets from the UCI Repos-

tory (Bache & Lichman, 2013): Australian Credit (AUS), Wiscon-

in Breast Cancer (WBC), BUPA Liver (LIVER), German Credit (GER),

ima Indians Diabetes (DIA), Heart/Statlog (HEART), and Iono-

phere (IONO). All variables in the data sets were scaled between

1 and 1. Table 1 summarizes the relevant information for each

enchmark data set, including the number of variables, the sample

ize, the percentage of observations in each class, and the imbal-

nce ratio (IR).

Together with our proposals, namely the Robust Nonparallel

yperplane SVM method in its linear (RNH-SVMl, Formulation

14)), and the kernel-based version (RNH-SVMK, Formulation (33)),

he following alternative approaches have been studied and re-

orted for benchmarking purposes:

• Standard SVM, linear (SVMl, Formulation (1)) and kernel-based

version (SVMK, Formulation (2)).
• Twin-Bounded SVM, linear (TB-SVMl, Formulation (4)–(5)) and

kernel-based version (TB-SVMK, Formulation (7)–(8)).
• Nonparallel hyperplane SVM, linear (NH-SVMl, Formulation (9))

and kernel-based version (NH-SVMK, Formulation (10)).
• SOCP-SVM, linear (SOCP-SVMl, Formulation (12)) and kernel-

based version (SOCP-SVMK, Formulation (13)).

The validation and model selection procedure consisted of a

rid search for SVM parameters C and σ ; Twin SVM parame-

er ci, i = {1, 2, 3, 4}; SOCP parameters ηk; and parameter θ used

n the proposed approach. We studied the following values of

k ∈ {0.2, 0.4, 0.6, 0.8}. We used the following set of values:

, ci, θ , σ ∈ {2−7, 2−6, . . . , 26, 27}. Training and test sets were ob-

ained using 10-fold cross-validation, while the metric Area Un-

er the Curve (AUC) was used as the main performance measure.

e used LIBSVM for Matlab (Chang & Lin, 2011) for standard SVM

pproaches, the SeDuMi Matlab Toolbox for SOCP-based classifiers

Sturm, 1999), and the codes provided by Yuan-Hai Shao, author of

H-SVM and Twin-Bounded SVM, which are publicly available in

ttp://www.optimal-group.org/.

http://www.optimal-group.org/
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Table 2

Predictive performance summary for all linear approaches and for all data

sets.

AUS WBC LIVER GER DIA HEART IONO

SVMl 86.2 97.3 51.5 69.4 72.1 50.8 93.2

TB-SVMl 86.7 96.8 65.9 72.2 73.4 85.0 85.2

NH-SVMl 87.0 95.8 65.4 68.0 72.2 85.0 80.5

SOCP-SVMl 86.8 96.5 63.9 72.2 74.9 84.7 86.1

RNH-SVMl 86.8 97.9 67.6 73.2 75.9 84.8 83.5

Table 3

Predictive performance summary for all kernel-based approaches and for all

data sets.

AUS WBC LIVER GER DIA HEART IONO

SVMK 86.2 97.1 73.3 68.8 72.1 79.4 94.1

TB-SVMK 87.6 97.0 65.0 72.4 75.6 62.3 95.4

NH-SVMK 87.1 97.1 67.1 68.9 73.7 64.4 95.4

SOCP-SVMK 86.9 97.4 72.9 72.2 76.3 79.5 95.2

RNH-SVMK 87.9 98.1 73.2 72.6 76.4 80.9 95.4
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Tables 2 and 3 present the best performance of all methods ob-

tained by the validation procedure described above. Table 2 pro-

vides the results for the linear approaches, while Table 3 presents

the results of the kernel-based methods. For each family of meth-

ods (linear or non-linear) and each data set, the best technique in

terms of AUC is highlighted in bold type.

In Table 2 we observe that the best predictive results were

achieved using the proposed method RNH-SVMl in four out of

seven data sets, while NH-SVM had better AUC in two data sets

(Australian Credit and Heart/Statlog) and standard SVM in one

data set (Ionosphere). The TB-SVMl, NH-SVMl, and SOCP-SVMl ap-

proaches, and the proposed RNH-SVMl have relatively similar per-

formance among all data sets, outperforming SVMl in BUPA Liver
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0

2

4

6

SVM TB.SVM NH.SVM
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Fig. 4. Sum of AUC ratios fo
nd Heart/Statlog. Similar results can be observed in Table 3,

here the proposed method performs better in six out of seven

ata sets.

Although no method outperformed others in all the experi-

ents, and the differences in terms of AUC are not conclusive in

ost cases, our proposal achieved the best overall performance for

ll methods. We used the robustness analysis procedure proposed

y Geng, Zhan, and Zhou (2005) to assess this claim quantitatively.

e first computed the relative performance of a given method M on

data set i as the ratio between its AUC and the highest among all

the compared strategies:

UCRatioi(M) = AUC(M)

maxj AUC( j)
, (36)

here AUC(j) is the AUC for method j when trained over data set

. The larger the value of AUCRatioi(M), the better the performance

f M in data set i. The best approach M∗ will have AUCRatioi(M
∗)

qual to 1 for data set i. The value of �iAUCRatioi(M) represents

measure of robustness and overall performance for a method M,

nd the larger its value, the better its overall performance and ro-

ustness (Geng et al., 2005).

Figs. 4 and 5 present the distribution of the relative perfor-

ance for the five methods and all data sets. Fig. 4 shows all linear

ethods, while Fig. 5 presents all kernel-based approaches. Each

echnique is represented by a stacked bar that aggregates the rela-

ive performances for all data sets.

In Figs. 4 and 5 we observe that RNH-SVM has the best over-

ll performance for both linear and kernel-based approaches, being

lose to the optimal performance measure of 7 (6.89) for the for-

er, and achieving optimal performance for the latter. For linear

ethods, standard SVM has the lowest overall performance, while

B-SVM and NH-SVM have the lowest relative performance for ker-

el methods.
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Fig. 5. Sum of AUC ratios for all kernel-based methods.
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We conclude that RNH-SVM is an excellent alternative for bi-

ary classification, since it is based on a robust framework that

onstructs two nonparallel hyperplanes in a single optimization

roblem. Both robust optimization via SOCP and the Twin SVM

ormulation have been proved to be effective at enhancing SVM’s

redictive performance, and our results demonstrate that the com-

ination of both strategies leads to a formulation that achieves the

est overall performance among all the methods studied.

. Discussion and conclusions

In this work, a novel SVM-based classification approach is pre-

ented. Its main contribution is the use of second-order cones

o model each training pattern, conferring robustness to the NH-

VM formulation (Shao et al., 2014). The method constructs two

onparallel hyperplanes using kernel functions and solving a sin-

le optimization problem. Empirically, we observed the best av-

rage performance on seven benchmark data sets with our pro-

osal. The gain is particularly important compared to standard

VM for two data sets, BUPA Liver and Heart/Statlog, since the lat-

er method failed at constructing a classifier that correctly split the

wo classes, leading to an AUC close to 0.5.

An important managerial advantage of the proposed method is

ts superior performance. Our proposal achieved important gains,

n some cases up to a 34% increase in terms of AUC compared to

tandard SVM, and the proposed kernel-based RNH-SVM was ei-

her the best method or only 0.1% below the best technique on

ne occasion. This method was also 1.93%, 4.17%, and 4.4% better

n average with respect to kernel-based SVM, Twin SVM, and NH-

VM, respectively.

In expert systems applications, a 1% increase in predictive per-

ormance could be enough to achieve significant monetary gains.

or example, it has been suggested that an increase of only 1% in

orecast error for the electricity demand in United Kingdom caused
n increase of 10 million £in the operating cost per year (Gross &

aliana, 1987). In expert systems like those used for cancer diag-

osis, the benefits of a good classifier can be measured in terms

f human lives since early cancer detection is the main form of

ghting it successfully (Borges, Corrêa, Cardoso, & Gattass, 2015).

Another important managerial insight can be linked to the bal-

nced structure of the proposed method. In contrast to SVM, our

roposal assures the correct classification of each training pattern

y constraining the misclassification errors. Since the parameter η
anages the Type I and Type II errors, the RNH-SVM method has

n enormous potential when facing highly imbalanced data sets, a

ommon issue in intelligent systems such as the one used in churn

rediction (Ali & Aritürk, 2014; Saradhi & Palshikar, 2011) or med-

cal diagnosis (Borges et al., 2015; Ríos & Erazo, 2016). A differ-

ntiated value for η should suffice for constructing classification

unctions that include the asymmetric misclassification costs.

The main limitation of the proposed framework is the higher

omputational effort it requires compared to standard SVM. Sev-

ral optimization strategies have been tailored for SVM in order

o make the classification method more efficient. Some examples

f incremental optimization methods are Sequential Minimal Opti-

ization (SMO) for standard SVM (Platt, 1999) and QPSOR for Twin

VM (Shao et al., 2011). However, no optimization technique has

een customized for SOCP-based SVM, to the best of our knowl-

dge. We therefore rely exclusively on a general purpose solver for

onvex SOCP, such as SeDuMI. Future developments could include

he design of more efficient optimization strategies for SOCP-SVM.

Future work can be performed in several directions. First,

t would interesting to apply the proposed method in class-

mbalance problems related to intelligent systems. As mentioned

bove, this issue occurs in several domains related to expert sys-

ems, and we believe that the proposal has strong potential for

ompensating for the undesirable effects caused by unbalanced

ata sets. Secondly, it would be interesting to extend the proposed
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method to multi-class classification, which also has wide appli-

cability in expert systems. Some relevant applications are credit

scoring, in which defaulters can be labeled differently according

to their willingness to pay (Bravo, Thomas, & Weber, 2014), and

the prediction of the occurrence of different types of cancer (Yang,

Cai, Li, & Lin, 2006). Thirdly, the development of more efficient

implementations than SeDuMI Matlab toolbox for SOCP models is

an interesting future research suggestion, since the fast training

of an SVM algorithm is an important virtue for expert systems

(Czarnecki & Tabor, 2014). Finally, there are several margin max-

imization strategies for SVM, besides SOCP, that can be explored in

intelligent systems in more applied contexts, such as flexible and

affine convex hulls (Zeng, Yang, Zheng, & Cheng, 2015), and other

strategies based on ellipsoids (Czarnecki & Tabor, 2014).
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