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Abstract In this work we present a novel maximum-margin
approach for multi-class Support Vector Machines based
on second-order cone programming. The proposed method
consists of a single optimization model to construct all
classification functions, in which the number of second-
order cone constraints corresponds to the number of classes.
This is a key difference from traditional SVM, where the
number of constraints is usually related to the number of
training instances. This formulation is extended further to
kernel-based classification, while the duality theory pro-
vides an interesting geometric interpretation: the method
finds an equidistant point between a set of ellipsoids. Exper-
iments on benchmark datasets demonstrate the virtues of our
method in terms of predictive performance compared with
various other multicategory SVM approaches.
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1 Introduction

Multicategory classification is a very important pattern
recognition problem in various domains, such as bioin-
formatics (predicting multiple types of cancer based on
microarray data [36]), computer vision applications (clas-
sification of different species based on image processing
[8]), and business analytic (customer labeling in terms
of different levels of risk for a credit institution [9]). A
popular machine learning method used to solve this prob-
lem is Support Vector Machine (SVM), a convex quadratic
programming technique based on the structural risk
minimization principle, which reduces the risk of overfitting
and provides better generalization to new data [32].

Although SVM was originally proposed for binary clas-
sification, several extensions have been developed to make
it suitable for multi-class classification. While most stud-
ies in the scientific literature propose splitting the problem
into several binary classification problems [14, 27], some
approaches attempt to solve a single optimization problem
that constructs all classifiers simultaneously [33, 35]. The
latter strategy takes all available information into account,
which may lead to superior predictive performance, espe-
cially in low dimensional datasets.

Second-order cone programming SVM (SOCP-SVM)
[26] is a recently proposed alternative for classification pur-
poses. This method constructs a maximum-margin classifier
in such a way that the false positive and false negative error
rates do not exceed a predefined value [26], and it is based
on a robust setting for class-conditional densities. SOCP
formulations are special cases of nonlinear convex opti-
mization problems, which can be solved via interior point
algorithms [4].

The second-order cone programming SVM formulation
proposed by Nath and Bhattacharyya [26] has been applied
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successfully for binary classification [21], and we pro-
pose an extension to multicategory learning in this work.
Our proposal constructs the classification hyperplanes “all-
together” in a single SOCP formulation, providing a robust
and powerful method for performing this task. Our method
has important differences compared with the work proposed
by Zhong and Fukushima [37], in which the chance con-
straints are designed to deal with noisy data (instances with
measurement errors for example), instead of providing a
probabilistic framework for the class-conditional densities.
Our approach also differs from Debnath et al. [11] strategy,
where the authors solve the standard SVM formulation for
binary classification via a SOCP optimization scheme.

This paper has the following structure: Section 2 intro-
duces SVM for multicategory classification. The proposed
SOCP-SVM approach is presented in Section 3 in its linear
version, while Section 4 extends these ideas to kernel func-
tions. In Section 5 we propose multi-class extensions based
on the work by Nath and Bhattacharyya [26] for benchmark-
ing purposes. Section 6 provides the experimental results
using benchmark datasets. A summary of this work can be
found in Section 7, where we provide its main conclusions
and address future developments.

2 Prior work in support vector classification

The most commonly used multi-class SVM formulations
(OvO-SVM, OvA-SVM and MC-SVM), which will be used
as alternative methods in our experiments, are described in
this section. Additionally, we present two important “all-
together” SVM methods which are closely related to our
proposal: Scatter-SVM [16] and the multicategory SVM
formulation proposed by Bredensteiner and Bennet [10],
and by Yajima [35].

2.1 One-versus-all approach

This is the simplest and probably the earliest alternative
for multicategory SVM [32]. For m training samples of
the form (x1, y1), . . . , (xm, ym), where xi ∈ �n is the i-th
instance and yi ∈ {1, 2, . . . , K} its respective class label,
this method constructs K binary SVM classifiers, each one
of which aims at separating one category from the remain-
ing classes. The k-th model of OVA-SVM has the following
form:

min
wk,bk,ξk

1
2‖wk‖2 + C

m∑

i=1
ξk
i

s.t. ỹi

(
w�

k · xi + bk

) ≥ 1 − ξk
i ,

ξ k
i ≥ 0, i = 1, . . . , m,

(1)

where ỹi = 1 means the sample i has label k (yi = k), while
ỹi = −1 corresponds to the opposite case: object i belongs

to a different category from k’s. The decision function for
OVA-SVM is given by f k(x) = w�

k · x + bk , and a new
sample x is assigned to the class with the greatest value of
f k(x) (i.e. f k∗

(x) = max{f k(x) : k = 1, . . . , K}).

2.2 One-versus-One approach

Another well-known SVM variation is known as One-
versus-One (OvO) SVM [17], which constructs K(K−1)/2
binary SVM classifiers, one for each pair of categories.
Given training points from classes k and l, OvO SVM solves
the following problem:

min
wkl ,bkl ,ξ

kl

1
2‖wkl‖2 + C

∑

r

ξ kl
r

s.t. w�
kl · xr + bkl ≥ 1 − ξkl

r , if yr = k,

−(w�
kl · xr + bkl) ≥ 1 − ξkl

r , if yr = l,

ξ kl
r ≥ 0, r = 1, . . . , mk + ml,

(2)

where mk and ml are the cardinality of the sets of training
points of classes k and l, respectively. The decision function
for a new instance x is given by f kl(x) = w�

kl · x + bkl .
A Max-Wins voting strategy is used, in which each classifi-
cation function assigns its respective data objects to one of
the two categories, increasing the vote for the assigned class
by one [12]. The category with most votes determines the
classification of each new object.

2.3 “All-together” SVM approaches

Several multi-class SVM approaches that solve one single
optimization problem have been proposed in the literature.
The MC-SVM method [33] extends the ideas of OVA-SVM
by constructing K binary classifiers simultaneously. The
formulation of this approach follows:

min
w̃,b,ξ

1

2

K∑

k=1

‖wk‖2 + C

n∑

i=1

K∑

k=1,k �=yi

ξ k
i

s.t. (w�
yi

· xi + byi
) − (w�

k · xi + bk) ≥ 2 − ξk
i , (3)

ξk
i ≥ 0, i = 1, . . . , m, k ∈ {1, . . . , K} \ yi,

where w̃ = [w�
1 ,w�

2 , . . . ,w�
K ]� ∈ �nK and b =

[b1, b2, . . . , bK ]� ∈ �K represent all the hyperplanes con-
structed by this approach. The decision rule is similar to
that of the OvA SVM formulation, where a new sample
x belongs to the class k∗ iff k∗ = argmaxk=1,...,K{w�

k ·
x + bk}. An alternative formulation inspired in OVO-SVM
can be found in Yajima [35]. In that paper, the author pro-
poses the following quadratic problem, which subsequently
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transforms to a linear programming formulation via the l1
regularization:

min
w̃,b,ξ

1

2

K−1∑

k=1

K∑

l=k+1

‖wk − wl‖2 + θ

2

K∑

k=1

‖wk‖2 + C

K∑

k=1

K∑

l=1,l �=k

e� · ξ kl

s.t. (w�
k · xi + bk) − (w�

l · xi + bl) ≥ 1 − ξkl
i , (4)

ξkl
i ≥ 0, i = 1, . . . , mk; k, l ∈ {1, . . . , K} k �= l,

where ξ kl ∈ �mk and e denote an all-ones vector of
appropriate dimension.

The parameter θ controls the trade-off between the errors
and the regularization term. This parameter is related to the
Tikhonov regularization [31] and the viscosity methods [6]
and is usually used to avoid ill-conditioning problems. The
case of θ = 1 was first studied by Bredensteiner and Bennet
[10].

Another multi-class approach was proposed by Jensen
et al. [16] for ν-SVM (Scatter-SVM) and Ñanculet et al. [1]
for standard SVM (AD-SVM formulation). The main idea
is to find a point that is equidistant to all classes that mini-
mizes the distance between their reduced convex hulls (also
referred to the center of the configuration [1]). This can be
obtained by solving the following minimization problem,
which results from the dual formulation of AD-SVM:

min
w̃,b,ξ

1

2

K∑

k=1

‖wk − w̄‖2 + C

K∑

k=1

e� · ξ k

s.t. X�
k (wk − w̄)+bke+ξ k ≥ e, k = 1, . . . , K, (5)

w̄ = 1

K

K∑

k=1

wk,

K∑

k=1

bk = 0,

where ξ = [ξ�
1 , . . . , ξ�

K ]� ∈ �m, Xk is the matrix of all
training points of class k, and w̄ represents the center of the
configuration.

Alternatively to discriminative methods, some “all-
together” SVM-based approaches that follow a different
classification strategy have been recently proposed. One of
such methods is MSM-SVM, a maximal-margin spherical-
structured multi-class approach based on the principles of
one-class classification for outlier detection [13]. This tech-
nique constructs hyperspheres that tightly enclosed each
training pattern while controlling the number of support
vectors. MSM-SVM is potentially useful in multi-class
problems with skewed class distributions.

3 Proposed linear SOCP-SVM formulation

In this section, we present a novel multi-class linear SVM
formulation using second-order cones, for which all classi-
fiers are constructed simultaneously. The reasoning behind

this approach is that we can construct the classifiers by find-
ing a new center of the configuration, which would be a
point, equidistant to all classes, that minimizes the distance
between the ellipsoids which represent each class, instead
of the reduced convex hulls. In this section we describe
the notation and preliminaries regarding second-order cone
programming first. Next, the primal form of the proposed
approach is presented, while the geometrical interpretation
based on the dual form of the approach is discussed at the
end of this section. The kernel version of our approach is
presented in Section 4.

3.1 Notation and preliminaries

Let us denote the set of points xi such that yi = k by Ak ,
and by mk its cardinality. Let Xk be a random vector vari-
able that generates the sample Ak , with mean μk ∈ �n

and covariance matrix �k for k = 1, . . . , K , where �k ∈
�n×n are symmetric positive semi-definite matrices. Let us
denote a family of distributions which have a common mean
and covariance by X ∼ (μ, �). For binary classification,
Nath and Bhattacharyya [26] proposed the following proba-
bilistic constraints:

Pr
{
w�X1 + b ≥ 1

}
≥ η1, Pr

{
w�X2 + b ≤ −1

}
≥ η2.

(6)

The above constraints suggest that the probability of
false-negative and false-positive errors should not exceed
a predefined parameter 1 − ηk with ηk ∈ (0, 1], for each
class k. Although this has been suggested in the literature,
Nath and Bhattacharyya showed evidence that test errors
may exceed these thresholds, and suggest setting these
parameters via cross validation since their interpretation is
not straightforward [26].

In order to classify each training pattern k correctly up
to the rate ηk , even for the worst data distribution, the
probabilistic constraints are then replaced with their robust
counterparts:

inf
X1∼(μ1,�1)

Pr
{
w�X1 + b ≥ 1

}
≥ η1,

inf
X2∼(μ2,�2)

Pr
{
w�X2 + b ≤ −1

}
≥ η2. (7)

The previous constraints can be converted into second-
order cones thanks to the application of the Chebyshev
inequality [18, Lemma 1]. Taking this into account, the
SOCP-SVM formulation for binary classification follows
[26]:

min
w,b

1

2
‖w‖2

s.t. w�μ1 + b ≥ 1 + κ1

√
w��1w, (8)

−(w�μ2 + b) ≥ 1 + κ2

√
w��2w,
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where κi =
√

ηi

1−ηi
, for i = 1, 2. The parameter κi controls

the size of the ellipsoids [18], and the problem may become
infeasible for some ηi due to the intersection of ellipsoids
[26]. This can be avoided by introducing slack variables, as
was proposed by Maldonado and López in [21].

Next, we describe our proposal in its primal formulation
based on SOCP-SVM and the concept of the center of the
configuration.

3.2 Primal formulation for multi-class SOCP-SVM

Motivated by the studies described in Section 2.3, we sug-
gest considering the following quadratic chance-constrained
programming problem with an additional regularization
term:

min
w̃,b

1

2

K−1∑

k=1

K∑

l=k+1

‖wk − wl‖2 + θ

2

K∑

k=1

‖wk‖2

s.t. Pr
{
(wk − w̄)� · Xk + bk − 1 ≥ 0

}
≥ ηk, k = 1, . . . , K, (9)

w̄ = 1

K

K∑

k=1

wk,

K∑

k=1

bk = 0,

where w̃ = [
w�

1 ,w�
2 , . . . ,w�

K

]� ∈ �nK , b = [b1, b2,
. . . , bK ]� ∈ �K , ηk ∈ (0, 1) and θ ≥ 0 denotes
the control parameter. It is important to notice that∑K−1

k=1
∑K

l=k+1‖wk−wl‖2 is equivalent to
∑K

k=1‖wk−w̄‖2,
i.e. the differences between each pair of weight vectors lead
to the concept of center of the configuration. Following
the procedure presented in Nath and Bhattacharyya [26],
Formulation (9) becomes:

min
w̃,b

1

2

K∑

k=1

‖wk − w̄‖2 + θ

2

K∑

k=1

‖wk‖2

s.t. κk

∥
∥
∥S�

k (wk − w̄)

∥
∥
∥ ≤ (wk − w̄)�μk + bk − 1, k = 1, . . . , K, (10)

w̄ = 1

K

K∑

k=1

wk,

K∑

k=1

bk = 0,

where �k = SkS
�
k and κk =

√
ηk

1−ηk
, for k = 1, . . . , K .

Next, following the notation presented in [35], we rewrite
Formulation (10) in a compact form. Let us denote by

Q(θ) = (K + θ)InK − J ∈ �nK×nK, (11)

with

J =

⎡

⎢
⎢
⎢
⎣

In In · · · In

In In · · · In

...
...

. . .
...

In In · · · In

⎤

⎥
⎥
⎥
⎦

∈ �nK×nK.

where InK and In denote the identity matrix of size nK and
n, respectively.

Note that the matrix Q(0) is symmetric positive semi-
definite, and that the matrixQ(θ) is symmetric positive
definite for θ > 0 (see [35, Proposition 3.3, Proposition
3.4]). Then, the objective function of problem (10) can be
expressed as:

1

2
w̃�Q(θ)w̃ = 1

2
‖Q1/2(θ)w̃‖2, (12)

where

Q1/2(θ) = √
K + θInK −

√
K + θ − √

θ

K
J . (13)

Let Hi be the n×nK matrix with all blocks being − 1
K

In

except the ith block being (1 − 1
K

)In, that is,

Hi =
[

− 1

K
In, . . . , − 1

K
In,

(

1 − 1

K

)

In,

− 1

K
In, . . . , − 1

K
In

]

, i = 1 . . . , K.

Then,

wi − w̄ = Hiw̃. (14)

Let us denote the K-dimensional canonical vector by di ,
that is,

di = [0, . . . , 0, 1, 0, . . . , 0]�.

With this,

bi = (di )�b. (15)

Then, by using previous definition (12)–(15), Problem
(10) can be rewritten compactly as follows:

where e denotes a vector of ones of dimension K .
By introducing a new variable t , Formulation (Pθ ) can be

written equivalently as the following problem:

min
t,w̃,b

t

s.t.

[
t − 1√

2Q1/2(θ)w̃

]

≤ t + 1,

κi‖S�
i H iw̃‖ ≤ (H iw̃)�μi + (di )�b − 1, i = 1, . . . , K,

e�b = 0,

(16)

which is a convex programming problem with a linear
objective function, K + 1 second-order cone (SOC) con-
straints, and one affine equality constraint. We recall that an
SOC constraint (see [3] for details) on the variable x ∈ �n

can be expressed as:

‖Ax + b‖ ≤ c�x + d,

where d ∈ �, c ∈ �n, b ∈ �m, A ∈ �m×n are given.
Thus, Problem (Pθ ) can be cast as a linear second-order
cone programming (SOCP) problem.
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Problem (Pθ ) will be called (linear) Center-of-the-
Configuration SOCP-SVM formulation (CC-SOCP-SVMl).
The solution of this problem leads to the construction of K

classifiers, and a new point x will be classified as the class
which attains the greatest value of f k(x) = w�

k x + bk .

3.3 Dual formulation and geometric interpretation

In this section we present first the dual formulation of
the Multiclass SOCP-SVM, which provides an interesting
geometric interpretation for this problem. Additionally, we
discuss the relationship between our approach and others
reported in the literature.

The following theorem gives the dual formulation of
problem (Pθ ) where θ ≥ 0. This formulation is interpreted
geometrically as the minimization of distances between K

ellipsoids (see Proposition 1 below).

Theorem 1 For a given θ ≥ 0, the dual problem of Problem
(Pθ ) is given by:

max
zi ,ui ,β

Kβ − β2

2(K+θ)

K∑

i=1
‖zi − p‖2

s.t. zi = μi − κiSiui , i = 1, . . . , K,

‖ui‖ ≤ 1, i = 1, . . . , K,

p = 1
K

K∑

i=1
zi ,

β ≥ 0.

(17)

The proof of Theorem 1 is presented in the
Appendix A.1. The following proposition, derived from
problem (17), gives us a geometric interpretation of the
formulation (Pθ ).

Proposition 1 Given θ ≥ 0 the dual problem of (Pθ ) can
be written equivalently as

where the set E(μ, S, κ) is defined by

E(μ, S, κ) = {z ∈ �n : z = μ − κSu, ‖u‖ ≤ 1}
and it corresponds to an ellipsoid centered atμwhose shape
is determined by S and with its size determined by κ .

The proof of Proposition 1 is presented in the
Appendix A.2.

Remark 1 It is important to mention that the objective
function in problem (Dθ ) is continuous and the feasible
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Fig. 1 Geometric illustration of problem (Dθ )

set is nonempty and compact. Therefore, by strong duality
theorem (see [3, 28]) we have that

v(Pθ ) = v(Dθ)

where v(·) denotes the optimal value of the problem.

Remark 2 The obtained formulation (Dθ ) is similar to that
proposed by Jensen et al. [16] and Ñanculet et al. [1]. In
these papers each ellipsoid is replaced by a convex hull of
some training dataset, and the vector p is called configura-
tion center. On the other hand, it is not difficult to see that,
for any zi ∈ �n, i = 1, . . . , K,

1

K

K−1∑

i=1

K∑

j=i+1

‖zi − zj‖2 =
K∑

i=1

‖zi − 1

K

K∑

j=1

zj‖2. (18)

Then, the problem (1) can be written equivalently as:

min
zi ,ui

2
K3(K+θ)

K−1∑

i=1

K∑

j=i+1
‖zi − zj‖2

s.t. zi ∈ E(μi , Si, κi), i = 1, . . . , K.

(19)

Thus, the dual problem (Dθ ) can be seen as finding the
minimum distance between a set of K ellipsoids.

In Fig. 1 we illustrate the points in the ellipsoids (in 2D)
obtained by using the formulation (Dθ ).

The following result relates the primal and dual variables
of the CC-SOCP-SVMl formulation, which is relevant since
we can solve the dual formulations and then obtain the deci-
sion functions. Their proofs are presented in Appendix A.3
and A.4.

Proposition 2 Given θ > 0, we consider wi ∈ �n and
zi ∈ �n, for i = 1, . . . , K, solutions of (Pθ ) and (Dθ )
respectively. Then

wi = K
∑K

i=1‖zi − p‖2
(zi − p), i = 1, . . . , K. (20)
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Remark 3 From the previous Proposition 2 it follows a pos-
teriori that w̄ = 0, where w̄ is defined in (10). Additionally,
from (18) we have that

1

K

K−1∑

i=1

K∑

j=i+1

‖wi − wj‖2 =
K∑

i=1

‖wi − w̄‖2.

Therefore Problem (10) can be written equivalently as

min
wi ,bi

K+θ
2

K∑

i=1
‖wi‖2

s.t. κi‖S�
i wi‖ ≤ w�

i μi + bi − 1, i = 1, . . . , K,
K∑

i=1
wi = 0,

K∑

i=1
bi = 0.

(21)

Proposition 3 Given θ > 0, and zi ∈ �n, for i =
1, . . . , K, solution of (1). Suppose that �i are symmetric
positive definite matrices, and zi �= p for all i = 1, . . . , K .
Then, bi solution of (Dθ ) for i = 1, . . . K, can be written in
terms of zi as follows:

bi = 1− K
∑K

i=1‖zi − p

2

‖(zi −p)�zi , i = 1, . . . , K. (22)

In this case, the decision functions are given by

f i(x) := K
∑K

i=1‖zi −p‖2
(zi−p)�(x−zi )+1, i =1, . . . , K.

(23)

4 Kernel-based Center-of-the-Configuration
SOCP-SVM formulation

Motivated by the works of [8] and [26], we modify problem
(Dθ ) in this section in order to include nonlinear Kernels in
its definition.

Let Ai be an n×mi matrix whose columns are the points
in Ai , and X = [A1A2 . . . AK ] ∈ �n×m be a matrix contain-
ing the whole training set (sorted by class). Since wi ∈ �n,
it exists a matrix M whose columns vectors form a basis
orthogonal to the span of X. Variables αi and ri are vec-
tors of appropriate dimension such that wi = Xαi + Mri .
On the other hand, the empirical estimates of the mean and
covariance are given by

μi = μ̂i = 1

mi

Aie, �i = �̂i = SiS
�
i

with Si = 1√
mi

(Ai − μie
�)

for i = 1, . . . , K . Then,

w�
i μi = α�

i gi , w�
i �iwi = α�

i Giαi ,

w̄�μi = 1

K

K∑

j=1

α�
j gi ,

where

gi = 1

mi

⎡

⎢
⎣

K1ie
...

KKie

⎤

⎥
⎦ ,

Gi = 1

mi

⎡

⎢
⎣

K1i

...

KKi

⎤

⎥
⎦

(

Imi
− 1

mi

ee�
)[

K�
1i · · · K�

Ki

]
,

with Kij = (Kji)
� = Ai�Aj matrices whose elements are

inner products of data points. For instance, the entry (l, s)

for the matrix Kij is (Kij )ls = (xi
l )

�xj
s . Hence, in order

to obtain a Kernel formulation of Problem (21), we replace
the inner product above by any function K : �n × �n →
� satisfying the Mercer’s condition [25]. Using this kernel
function, the quantity (xi

l )
�xj

s is replaced by

(Kij )ls = K(xi
l , x

j
s ).

Typical choices for this function are the Gaussian kernel
defined by K(u, v) = exp(−‖u − v‖2/2σ 2) with σ ∈ � or
the polynomial function K(u, v) = (u�v + 1)d with d ∈ N

[29].
Let us denote the symmetric matrix formed with the

blocks Kij by K ∈ �m×m. It should be noted that Mercer’s
condition ensures the positive semidefiniteness of the matrix
K. Then, the nonlinear formulation is given by

min
αi ,bi

1
2

K∑

i=1
α�

i Kαi

s.t. κi

√
α�

i Giαi ≤ α�
i gi + bi − 1, i = 1, . . . , K,

K∑

i=1
αi = 0,

K∑

i=1
bi = 0.

(24)

Suppose that K is positive definite; then we can use the
Cholesky factorization K = L�L to obtain a full rank
matrix L ∈ �m×m. Thus, introducing a new variable vi =
Lαi , for i = 1, . . . , K , the formulation (24) is rewritten as
follows:

min
vi ,bi

1
2

K∑

i=1
‖vi‖2

s.t. κi

√
v�
i Hiv i ≤ v�

i hi + bi − 1, i = 1, . . . , K,

K∑

i=1
L−1vi = 0,

K∑

i=1
bi = 0,

(25)

where hi = L−�gi , and Hi = L−�GiL−1, for i =
1, . . . , K .

Again, since Hi is positive semi-definite, it can be written
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as Hi = DiD�
i . Then, (25) can be written as the following

quadratic second-order cone programming problem:

min
vi ,bi

1
2

K∑

i=1
‖vi‖2

s.t. κi‖D�
i vi‖ ≤ v�

i hi + bi − 1, i = 1, . . . , K,
K∑

i=1
vi = 0,

K∑

i=1
bi = 0.

(26)

This formulation is similar to that proposed in (21), up to the
factor (K +θ). Thus, proceeding similarly to the analysis of
the previous section (cf. Proposition 1) we can compute the
dual problem of (26), which is given by

min
zi ,p

K∑

i=1
‖zi − p‖2

s.t. zi ∈ E(hi ,Di , κi), i = 1, . . . , K.

(27)

Problem (26) will be called Kernel-based Center-of-
the-Configuration SOCP-SVM formulation (CC-SOCP-
SVMk). According to Formulation (27), this problem can
also be interpreted as a minimization of distance between
ellipsoids. Finally, let us consider X•j as the j th column of
the matrix X and, given x ∈ �n, we define the row vector
K(x,X) by

K(x,X) = [K(x,X•1),K(x,X•2), · · · ,K(x,X•m)].
With this notation, we set the classification functions as

fk(x) = K(x,X)αk + bk k = 1, . . . , K.

5 Alternative multi-class SOCP-SVM formulations

In this section we formalize the One-versus-All and One-
versus-One extensions to multiclass SOCP-SVM for both
linear and kernel-based classification. These formulations
were previously used in López and Maldonado [20] in the
context of feature selection for microarray classification, but
only as linear classifiers.

5.1 One-versus-All SOCP-SVM

The SOCP-SVM formulation for binary classification by
Nath and Bhattacharyya [26] can be easily extended to OvA
classification. Following the notation used in Section 3.1,
the following quadratic chance-constrained programming
problem is proposed for each class k = 1, . . . , K:

min
wk,bk

1
2‖wk‖2

s.t. infXk∼(μk,�k) Pr{wk
� · Xk + bk ≥ 1} ≥ ηk,

infXc
k∼(μc

k,�
c
k) Pr{wk

� · Xc
k + bk ≤ −1}≥ ηc

k,

(28)

where Xc
k is a random variable that generates samples of

all classes but k, having (μc
k, �

c
k), with �k, �

c
k ∈ �n×n

symmetric positive semidefinite matrices. Again, the use

of the Chebyshev-Cantelli inequality leads to the following
quadratic SOCP formulation (OvA-SOCP-SVM), for each
k = 1, . . . , K:

min
wk,bk,tk

1
2‖wk‖2

s.t. w�
k μk + bk ≥ 1 + κk

√
w�

k �kwk,

−(w�
k μc

k + bk) ≥ 1 + κc
k

√
w�

k �c
kwk,

(29)

with κk =
√

ηk

1−ηk
(resp. κc

k =
√

ηc
k

1−ηc
k
).

The decision rule for a new data point x follows: x
belongs to the class k∗ iff k∗ = arg maxk=1,...,K{w�

k x+bk}.
The above formulation also can be extended to nonlin-

ear kernel by using the same arguments of Section 4. In
this case, the k-th OvA-SOCP-SVM solves the following
formulation:

min
αk,bk

1
2α�

k K
kαk

s.t. αk
�gk + bk ≥ 1 + κk

√
αk

�Gkαk,

−αk
�gc

k − bk ≥ 1 + κc
k

√
α�

k Gc
kαk,

(30)

where Kk = [Kk
11,K

k
12;Kk

21,K
k
22] ∈ �m×m,

gk = 1

mk

[
Kk

11e
Kk

21e

]

, gc
k = 1

mc
k

[
Kk

12e
Kk

22e

]

,

Gk = 1

mk

[
Kk

11
Kk

21

] (

Imk
− 1

mk

ee�
)[

Kk
11

�
Kk

21
�]

,

Gc
k = 1

mc
k

[
Kk

12
Kk

22

] (

Imc
k
− 1

mc
k

ee�
)[

Kk
12

�
Kk

22
�]

,

with Kk
11 = K(Ak, Ak), Kk

12 = (Kk
21)

� = K(Ak, (Ak)c),
Kk

22 = K((Ak)c, (Ak)c). Here, (Ak)c ∈ R
n×mc

k denotes a
matrix whose columns are the points of all classes but k.

5.2 One-versus-One SOCP-SVM

Similar to the OvA-SOCP formulation, let Xk be a random
variable that generates samples of class k, with mean and
covariance matrix given by (μk, �k) for k = 1, . . . , K ,
where �k ∈ �n×n are symmetric positive semidefinite
matrices. Based on the idea of OvO-SVM described in
Section 2.2, we can formulate an OvO version for SOCP-
SVM. More precisely, for training examples from the k-th
and the l-th classes (k < l), we solve the following quadratic
chance-constrained programming problem:

min
wkl ,bkl

1
2‖wkl‖2

s.t. infXk∼(μk,�k) Pr{wkl
� · Xk + bkl ≥ 1} ≥ ηkl,

infXl∼(μl ,�l) Pr{wkl
� · Xl + bkl ≤ −1} ≥ ηlk,

(31)

where ηkl, ηlk ∈ (0, 1). Again, thanks to an appro-
priate application of the multivariate Chebyshev-Cantelli



464 J. López et al.

inequality, Formulation (31) can be rewritten as the follow-
ing quadratic SOCP problem (OvO-SOCP):

min
wkl ,bkl

1
2‖wkl‖2

s.t. w�
kl · μk + bkl ≥ 1 + κkl

√
w�

kl�kwkl,

−w�
kl · μl − bkl ≥ 1 + κlk

√
w�

kl�lwkl,

(32)

with κkl =
√

ηkl

1−ηkl
(resp. κlk =

√
ηlk

1−ηlk
). Similarly to OvO-

SVM, this method constructs K(K−1)/2 binary classifiers,
one for each pair of classes. The decision function is given
by fkl(x) = w�

kl ·x+bkl , and the prediction of a new point x
is done by the Max-Wins voting strategy (see Section 2.2).

Formulation (32) also can be extended to nonlinear ker-
nel by using the same arguments of Section 4. In this case,
considering training points from the k-th and the l-th classes
(k < l), OvO-SOCP-SVM solves the following problem:

min
αkl ,bkl

1
2α�

klK
klαkl

s.t. αkl
�gk + bkl ≥ 1 + κkl

√
αkl

�Gkαkl,

−αkl
�gl − bkl ≥ 1 + κlk

√
α�

klGlαkl,

(33)

where Kkl = [Kkk,Kkl;Klk,Kll] ∈ �mk+ml×mk+ml ,

gk = 1

mk

[
Kkke
Klke

]

, gl = 1

ml

[
Kkle
Klle

]

,

Gk = 1

mk

[
Kkk

Klk

] (

Imk
− 1

mk

ee�
)[

K�
kk K

�
lk

]
,

Gl = 1

ml

[
Kkl

Kll

](

Iml
− 1

ml

ee�
)[

K�
kl K

�
ll

]
,

with Kkk = K(Ak, Ak), Kkl = (Klk)
� = K(Ak, Al), Kll =

K(Al, Al).

6 Experimental results

We applied the proposed SOCP-SVM approach in its
linear and kernel-based form to five well-known bench-
mark datasets for multi-class classification. We also used
other alternative multi-class SVM formulations described
in Section 2 (MC-SVM, OvO-SVM, OvA-SVM, and AD-
SVM) for comparison purposes.

This section is organized as follows. We provide a
description of the datasets in Section 6.1, while Section 6.2
presents a summary of the performance obtained for all the
approaches and a detailed discussion of these results.

6.1 Datasets and experimental settings

For our experiments we used five datasets available from the
UCI Machine Learning Repository [5]: Iris, Wine, Glass,
Waveform, and Segment. We also include a sixth dataset
used in a previous research project for classification of fish

Table 1 Number of examples, number of variables and number of
classes for all datasets

Dataset #examples #variables #classes

Iris 150 4 3

Wine 178 13 3

Glass 214 13 6

Fish 762 12 3

Segment 2310 19 7

Waveform 5000 21 3

schools (see [8] for more details). Table 1 summarizes the
descriptive information for each dataset.

The following model selection procedure was performed:
10-fold cross-validation was used for model selection,
where balanced accuracy is monitored to assess predic-
tive performance. This measure is computed as follows:
the recall of each class is first obtained, and then averaged
over the number of different classes. We studied the follow-
ing values of ηk ∈ {0.2, 0.4, 0.6, 0.8}. For standard SVM
approaches, we used the following set of values for parame-
ters C and σ (only for kernel methods): {2−7, 2−6, . . . , 27}.
These exponentially growing sequences for (C, σ ) are rec-
ommended in [15, 22]. We used the Spider Toolbox for
Matlab [34] for standard SVM approaches, and the SeDuMi
Matlab Toolbox for SOCP-based classifiers [30].

6.2 Classification performance summary

Table 2 summarizes the results for all linear approaches. The
best performance among all methods in terms of balanced
accuracy is highlighted in bold type.

It can be seen in Table 2 that no method outper-
formed others, although the SOCP-SVM methods achieved
best results on four out of six datasets and, in particular,
CC-SOCP-SVM had best predictive performance in Wave-
form dataset. From the traditional approaches, OVO-SVM
achieved best results on two out of six datasets. Notice
that CC-SOCP-SVM has always better performance than
AD-SVM, demonstrating the advantage of using ellipsoids

Table 2 Performance summary for all linear classification approaches

Iris Wine Glass Fish Segment Waveform

MC-SVMl 96.0 99.0 57.3 69.7 90.9 87.3

OVA-SVMl 94.7 98.6 60.7 74.4 92.7 87.0

OVO-SVMl 98.0 98.6 66.1 80.0 95.6 87.0

AD-SVMl 95.3 93.2 51.0 67.8 80.1 87.0

CC-SOCP-SVMl 96.0 98.5 60.6 68.0 85.5 87.4

OVA-SOCP-SVMl 96.7 99.1 68.9 67.3 91.0 86.7

OVO-SOCP-SVMl 97.3 99.1 68.9 77.2 97.0 87.1
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Table 3 Performance summary for all kernel-based classification
approaches

Iris Wine Glass Fish Segment Waveform

MC-SVMk 97.3 99.0 71.4 83.2 98.3 87.0

OVA-SVMk 97.3 99.5 71.8 81.6 97.5 87.2

OVO-SVMk 98.0 99.0 72.2 82.6 97.4 87.0

AD-SVMk 96.7 97.6 61.2 74.5 93.8 87.0

CC-SOCP-SVMk 96.7 98.9 61.9 77.1 86.8 87.8

OVA-SOCP-SVMk 97.3 99.1 75.0 84.4 96.5 87.3

OVO-SOCP-SVMk 98.7 99.5 76.3 87.1 97.6 87.3

instead of reduced convex hulls to compute the center of the
configuration.

Table 3 summarizes the results for all kernel-based
approaches. Again, the best performance among kernel
methods in terms of balanced accuracy is highlighted in bold
type.

Similarly to the linear case, in Table 3 we observe supe-
rior performance for the SOCP-SVM methods based on
kernel functions, achieving best results on five out of six
datasets. Again, our CC-SOCP-SVM approach performed
better on the Waveform dataset, while the OVO-SOCP-
SVM method behaved better for the first four datasets.
The proposed CC-SOCP-SVM method performs better than
AD-SVM, being worse than the latter method only in one
dataset (Segment). In general, the robust counterparts of the
explored SVM methods OVA, OVO, and AD-SVM have
better overall results than the original approaches.

From previous experiments we conclude that:

– Kernel-based versions perform better in general, and
should be considered for multi-class classification. Our
approach has the advantage that it can be extended to
kernel methods, compared with the linear methods that
have been suggested in the literature.

– Best overall performance is achieved with OVO-SOCP-
SVM, although no method outperformed others. Our
proposals achieve best overall results, and are recom-
mended as alternatives for SVM classification.

– Our CC-SOCP-SVM method performs better than AD-
SVM, which follows a similar geometric principle (the
center of the configuration), demonstrating the use-
fulness of the robust optimization scheme based on
second-order cones.

7 Conclusions

In this work, we present a novel multi-class SVM approach
based on the principle of the center of the configuration

[1, 16] and second-order cone programming [26]. The con-
cept of center of the configuration is an appealing geometric
principle: it corresponds to the point from which all classes
are equidistant, while the use of second-order cones confers
robustness to the proposal, given their ability to generalize
the training patterns better by assuming the worst distribu-
tion of the data. We identified the following advantages of
the CC-SOCP-SVM method according to the results of our
experiments presented in the previous section:

– It can be extended to kernel methods, conferring flexi-
bility to the classifier and improving predictive results.

– It solves an SOCP problem based on a balanced design,
in which each conic constraint corresponds to a partic-
ular class pattern that should be correctly classified up
to the rate η. This approach yields to the benefit of the
correct generalization of all classes compared to stan-
dard SVM, where each constraint is related to a training
sample, biasing the classification to the majority class
when facing class-imbalance and overlap [23].

– It solves a single optimization problem, constructing all
classifiers simultaneously by taking all available infor-
mation into account. This strategy differs from OvO and
OvA approaches, in which the classification functions
are obtained by solving independent problems. Addi-
tionally, the OvO-SVM and MC-SVM methods require
the construction of several classifiers, one for each pair
of classes, and therefore the running times and com-
plexity grow exponentially with the number of classes.
Our strategy constructs fewer classifiers and therefore
is capable of solving problems that have a high number
of classes.

– It has better predictive performance than alternative
multi-class approaches based on the principle of the
center of the configuration, such as AD-SVM, demon-
strating the effectiveness of the robust strategy based on
second-order cones.

In this work we also extend the One-versus-All and One-
versus-One strategies to SOCP-SVM with excellent results
in both linear and kernel-based versions. In fact, the OvO-
SOCP-SVM method has the best overall results among all
the methods studied. Since no method outperformed all the
others, we recommend our approach as part of a pool of
methods for multi-class classification. Since our proposals
follow different classification strategies compared with tra-
ditional SVM methods, they are also good candidates for the
construction of ensembles for SVM classification [23].

Some research opportunities for future work have been
identified. The optimization process for second-order cone
programming formulations is, in general, more time con-
suming than quadratic programming methods, such as tra-
ditional SVM. Although several techniques have been sug-
gested for an efficient optimization process [2, 19], none
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of these strategies has been adapted for SOCP-based SVM.
Faster SOCP-SVM implementations that exploit the struc-
ture of the problem are needed in order to be able to
apply such techniques on large scale datasets. Addition-
ally, the proposed method has interesting properties for
class-imbalanced classification, due to its balanced design.
The use of this formulation in multi-class applications with
skewed class distributions [13] is suggested.
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Appendix A: Dual formulation for multi-class
SOCP-SVM

A.1 Proof of Theorem 1

Proof The Lagrangian function associated with Problem
(Pθ ) is given by:

L(w̃, b, αi, β) = 1

2
‖Q1/2(θ)w̃‖2 +

K∑

i=1

αi(κi‖S�
i H iw̃‖

−(H iw̃)�μi − (di )�b)

+
K∑

i=1

αi + β(e�b).

Since the relationship ‖v‖ = max‖u‖≤1 v�u holds for any
v ∈ �n, we can rewrite the Lagrangian as follows

L(w̃, b, αi, β) = max
ui

{L1(w̃,b, αi, β,ui ) : ‖ui‖
≤ 1, i = 1, . . . , K},

where L1 is given by

L1(w̃,b, αi, β,ui )

= 1

2
‖Q1/2(θ)w̃‖2

+
K∑

i=1

αi

(
κi(S

�
i H iw̃)�ui − (H iw̃)�μi

)

+
K∑

i=1

αi(1 − (di )�b) + β(e�b). (34)

Thus, Problem (Pθ ) can be written equivalently as

min
w̃,b

max
αi ,β,ui

{L1(w̃, b, αi, β,ui ):‖ui‖≤1, αi ≥0,i =1, . . . ,K}.

Hence, the dual problem (see e.g. [7, 24, 28]) of (Pθ ) is
given by

max
αi ,β,ui

min
w̃,b

{L1(w̃, b, αi, β,ui ) : ‖ui‖ ≤ 1, αi

≥ 0, i = 1, . . . , K}. (35)

The expression (35) now enables us to eliminate the pri-
mal variables to give the dual. Computing the first order
optimization condition of the internal minimum problem
(35) yields

∇w̃L1 = Q(θ)w̃ +
K∑

i=1

αi

(
κiH

i�Siui − Hi�μi

)

= 0, (36)

∇bL1 = −
K∑

i=1

αidi + βe = 0. (37)

It follows from the previous (37) that αi = β for all i =
1, . . . , K, and therefore, replacing in (34) we get

L1(w̃, b, αi, β,ui ) = 1

2
‖Q1/2(θ)w̃‖2

+β

K∑

i=1

w̃�Hi�(κiS
�
i ui − μi )

+Kβ. (38)

Additionally, from (36) we get

Q(θ)w̃ = β

K∑

i=1

Hi�(μi − κiSiui ). (39)

Replacing (39) in (38) we obtain the reduced form

L1(w̃, b, αi, β,ui ) = −1

2
‖Q1/2(θ)w̃‖2 + Kβ. (40)

In order to use (39) to compute Q1/2(θ)w̃, and then to
obtain the dual problem, we distinguish two main cases:
θ > 0, in which we have strong convexity of the objec-
tive function and we obtain good mathematical properties as
uniqueness of the optimal solution; and the case θ = 0, in
which most of this mathematical structure is lost but we can
still derive a dual problem for this alternative by using some
properties of the matrix Q(0).

Case θ > 0: In this case we note first that (see [35, Propo-
sition 3.4] for details)

Q−1/2(θ) = 1√
K + θ

InK +
√

K + θ − √
θ

K
√

θ
√

K + θ
J ,

then

Q−1/2(θ)H i� = 1√
K + θ

H i�. (41)
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Therefore, multiplying (39) by Q−1/2(θ) we obtain

Q1/2(θ)w̃ = β√
K + θ

K∑

i=1

Hi�zi , where zi = μi−κiSiui .

Replacing this expression in the reduced Lagrangian func-
tion (40), we get

L1 = Kβ − β2

2(K + θ)
‖

K∑

i=1

Hi�zi‖2,

and therefore we obtain the following dual formulation

max
ui ,β

Kβ − β2

2(K+θ)
‖

K∑

i=1
Hi�zi‖2

s.t. zi = μi − κiSiui ,

‖ui‖ ≤ 1, i = 1, . . . , K,

β ≥ 0.

(42)

Note that, after some algebraic manipulation, we have

‖
K∑

i=1

Hi�zi‖2 =
K∑

i=1

‖zi − p‖2, with p = 1

K

K∑

i=1

zi .

(43)

In consequence, Problem (42) can be written as

max
zi ,ui ,β

Kβ − β2

2(K+θ)

K∑

i=1
‖zi − p‖2

s.t. zi = μi − κiSiui ,

‖ui‖ ≤ 1, i = 1, . . . , K,

p = 1
K

K∑

i=1
zi ,

β ≥ 0.

(44)

Case θ = 0: We note the following property Q(0) =√
KQ1/2(0). Replacing this in (39) one has

Q1/2(0)w̃ = β√
K

K∑

i=1

Hi�(μi − κiSiui ).

Using this in (40) and proceeding in a similar way to the
case θ > 0, we obtain the same formulation in (44) with
θ = 0.

A.2 Proof of Proposition 1

Proof It is suffices to prove that the formulation (Dθ ) is
equivalent to (17). We note that, given θ ≥ 0, the objective
function of the dual problem (17) is concave with respect to
β therefore attains its maximum value at

β = K(K + θ)
∑K

i=1‖zi − p‖2
, (45)

also its optimal value is given by

K2(K + θ)

2
∑K

i=1‖zi − p‖2
.

Hence, replacing this in (17) and using the definition of
E(μ, S, κ) we get that (17) is equivalent to problem:

max
zi ,ui

K2(K+θ)

2
∑K

i=1‖zi−p‖2

s.t. zi ∈ E(μi , Si, κi), i = 1, . . . , K,

p = 1
K

K∑

i=1
zi ,

(46)

turn the max term to min we obtain the result.

A.3 Proof of Proposition 2

Proof It is not difficult to see that

K∑

i=1

Hi�zi = 1

K
Q(0)z̃, (47)

where we denote z̃ = [z�
1 , z�

2 , . . . , z�
K ]� ∈ �nK. There-

fore, from (39) the relation between wi and zi can be written
equivalently as

Q(θ)w̃ = β

K
Q(0)z̃.

Since Q(θ) is invertible, when θ > 0, we have

w̃ = β

K
Q(θ)−1Q(0)z̃ = β

K(K + θ)
Q(0)z̃.

where the last inequality follows from (41) and (47). Then,
we conclude that wi can be written in terms of zi and p as

wi = β

(K + θ)
(zi − p) = K

∑K
i=1‖zi − p‖2

(zi − p),

i = 1, . . . , K.

We note that in the case θ = 0, w̃ and z̃, are related by

Q(0)w̃ = β

K
Q(0)z̃,

but the uniqueness of solution is lost, because the matrix
Q(0) is symmetric positive semi-definite.
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A.4 Proof of Proposition 3

Proof The KKT conditions of the dual formulation (1) can
be summarized as follows

− 4κi

K2(K + θ)
S�

i (zi − p) + γiui = 0,

γi(‖ui‖ − 1) = 0, (48)
∑

i

(zi − p) = 0,

‖ui‖ ≤ 1, γi ≥ 0. (49)

Since �i are symmetric positive definite matrices, and zi �=
p for all i = 1, . . . , K, we have that zi − p does not belong
to the null space of S�

i . Consequently, the Lagrangian mul-
tipliers γi are strictly positive. This implies that ‖ui‖ = 1
holds. In such situation, zi = μi − κiSiui belong to the
boundary of the Ellipsoid E(μi , Si, κi).

Furthermore, by (37) and (45) we have that αi = β > 0
for i = 1, . . . , K . This implies that the constraints in (Pθ )
are active. Then, since w̄ = 0 (cf. Remark 3) and ‖ui‖ = 1,

we get from (10) that

κi‖ui‖‖S�
i wi‖ = w�

i μi + bi − 1 i = 1, . . . , K.

We note at optimality S�
i (zi − p) is parallel to ui , for

i = 1, . . . , K, thus, we have that ‖ui‖‖S�
i wi‖ = u�

i S�
i wi ,

obtaining from the above expression that

0 = w�
i (μi − κiSiui ) + bi − 1 i = 1, . . . , K.

Then, we get the following conditions:

w�
i zi + bi = 1, for i = 1, . . . , K.

This geometrically means that the hyperplanes w�
i x +

bi = 1 are tangents to the ellipsoids E(μi , Si, κi), for
i = 1, . . . , K . Using the above relation and (45), one can
compute the value of bi obtaining the result in (22).

Finally, as decision functions are given by f i(x) :=
w�

i x + bi, the result in (23) is obtained by replacing the
values of bi from (22) and wi from Proposition 2.
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2. Ñanculef R, Frandi E, Sartori C, Allende H (2014) A novel frank-
wolfe algorithm. analysis and applications to large-scale svm
training. Inf Sci 285:66–99

3. Alizadeh F, Goldfarb D (2003) Second-order cone programming.
Math Program 95:3–51
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