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a b s t r a c t

Multi-class classification is an important pattern recognition task that can be addressed accurately and
efficiently by Support Vector Machine (SVM). In this work we present a novel SVM-based multi-class
classification approach based on the center of the configuration, a point which is equidistant to all
classes. The center of the configuration is obtained from the dual formulation by minimizing the
distances between the reduced convex hulls using the l1-norm, while the decision functions are
subsequently constructed from this point. This work also extends the ideas of Zhou et al. (2002) [37] to
multi-class classification. The use of l1-norm provides a single linear programming formulation, which
reduces the complexity and confers scalability compared with other multi-class SVM methods based on
quadratic programming formulations. Experiments on benchmark datasets demonstrate the virtues of
our approach in terms of classification performance and running times compared with various other
multi-class SVM methods.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Support Vector Machine (SVM) is a well-known machine
learning method, which has been used frequently in classification
problems because of its strong theoretical foundation and its good
performance in practice. Its extension to multi-class learning has
been reported extensively in the literature: while some methods
solve a series of binary problems, others attempt to construct a
single optimization formulation to obtain the classification hyper-
planes simultaneously [9]. However, training times can be prohi-
bitively long for both cases, even with specially tailored quadratic
programming solvers, growing exponentially with the number of
classes in the problem.

In this work we propose an SVM-based linear programming
formulation to solve the multi-class classification problem effi-
ciently. While most l1-norm SVM formulations are related to the
primal form of SVM, where the Euclidean norm of the weight vector
is replaced by the l1-norm (also known as LASSO penalty), here we
follow a completely different strategy. We based our work on the
concept of the center of the configuration [1,16] to obtain a point
which is equidistant to all classes, while the classification functions
are constructed based on this point. This novel formulation provides

a geometrically grounded interpretation of the model, while the use
of the l1-norm to find the center of the configuration results in a
convex programming problem that can be reduced to an efficient
linear programming model (see e.g. [5,12]).

This paper is structured as follows: Section 2 introduces SVM
for multi-class classification. The proposed linear programming
approach for multi-class SVM is presented in Section 3. Section 4
provides experimental results using benchmark datasets. A sum-
mary of this paper can be found in Section 5, where we provide its
main conclusions and address future developments.

2. Multi-class support vector machines

In this section we describe the multi-class Support Vector
Machines approach in its three most common forms (one-ver-
sus-all SVM, one-versus-one SVM, and k-class SVM). Additionally,
we present recently developed SVM approximations for multi-
class classification, which are highly optimized implementations
designed to achieve reduced training times [10].

2.1. One-versus-all support vector machines

One-versus-all SVM is the simplest and probably the earliest
formulation for multi-class SVM [9]. This approach constructs K
binary SVM classifiers, where each one separates one class from
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the remaining training patterns. The k-th SVM classifier is trained
with all examples of the k-th class, labeled as the positive class,
while the remaining ones have a negative label. Formally, for m
training points of the form ðx1; y1Þ;…; ðxm; ymÞ, where xiARn is a
feature vector representing the i-th sample, and yiAf1;2;…;Kg is
the class label of xi, the k-th SVM solves the following problem:

min
wk ;bk ;ξ

k

1
2
‖wk‖2þC ∑

m

i ¼ 1
ξki

s:t: ~yiðw>
k � xiþbiÞZ1�ξki ;

ξki Z0; i¼ 1;…;m; ð1Þ
where ~yi ¼ 1 if yi ¼ k and ~yi ¼ �1 otherwise. The decision function
is given by f kðxÞ ¼w>

k � xþbk. A new sample x will be classified in
the class which attains the greatest value of f kðxÞ, that is, x is in the
kn-th class when f kn ðxÞ ¼maxff kðxÞ : k¼ 1;…;Kg. In the excep-
tional case when this maximum is attained in more than one
class, sample x is classified in the class associated with the lowest
index kn by convention.

Note that in the binary case (when K¼2), Problem (1) reduces
to the classical SVM problem [31].

2.2. One-versus-one support vector machines

Another important SVM-based multi-class classification method
is known as one-versus-one (OvO) Support Vector Machine [17].
This method constructs KðK�1Þ=2 binary SVM classifiers, one for
every pair of classes. For training data from the k-th and the l-th
classes, ka l (ko l), OvO-SVM solves the following binary classifica-
tion problem:

min
wkl;bkl ;ξ

kl

1
2
‖wkl‖2þC∑

i
ξkli

s:t: w>
kl � xiþbklZ1�ξkli if yi ¼ k;

�ðw>
kl � xiþbklÞZ1�ξkli if yi ¼ l;

ξkli Z0; i¼ 1;…;mkþml; ð2Þ
where mk denotes the number of elements of the class k. The
decision function is given by f klðxÞ ¼w>

kl � xþbkl.
Classification of new examples is performed by a max-wins

voting strategy [13], in which each data point is assigned to one of
the two classes, increasing the vote for the assigned class by one.
Finally, the class with the maximum number of votes determines
the classification of each instance. This strategy can also be
adapted to filter out non-competent classifiers [14].

2.3. k-Class support vector machines

In Weston and Watkins [36], an all-together approach for multi-
class SVM by solving one single optimization problem was pro-
posed. This approach constructs K binary classifiers simultaneously.
The formulation of this approach (k-class SVMs) is given by

min
wk ;bk ;ξ

k

1
2

∑
K

k ¼ 1
Jwk J2þC ∑

n

i ¼ 1
∑
K

k ¼ 1;kayi

ξki

s:t: ðw>
yi

� xiþbyi Þ�ðw>
k � xiþbkÞZ2�ξki ;

ξki Z0; i¼ 1;…;m; kAf1;…;Kg n yi: ð3Þ
The decision function is similar to that of the OvA-SVM

formulation, that is, a new sample x belongs to the class kn iff
kn ¼ arg maxk ¼ 1;…;Kfw>

k � xþbkg. Different variations of this
approach have been proposed in the literature. For instance,
Crammer and Singer [7] extend the SMO decomposition algorithm
based on the dual formulation of SVM to multi-class classification,
leading to a fast and efficient kernel machine. An alternative

multi-class formulation to k-class SVMs can be found in Lee
et al. [18].

2.4. Optimized SVM approximations

In this section we briefly describe three highly optimized SVM
approximations, which are used for benchmarking purposes in the
experimental section. These state-of-the-art approaches are Pega-
sos, Adaptive Multi-Hyperplane Machine (AMM), and Budgeted
Stochastic Gradient Descent (BSGD).

The first approach, Pegasos, is an iterative algorithm that alter-
nates between stochastic sub-gradient descent steps and projection
steps. This algorithm was proposed by Shalev-Shwartz et al. [29] for
binary classification, and then extended to multi-class by Wang et al.
[32]. The AMM method approximates a non-linear decision bound-
ary via multiple linear classifiers [34]. The method is trained via
Stochastic Gradient Descent (SGD). Finally, the BSGD method main-
tains a fixed number of support vectors in the model, and incre-
mentally updates them during the Stochastic Gradient Descent
training [33].

3. Proposed multi-class SVM approaches based on the center
of the configuration

In this section, we present a novel multi-class classification
approach based on the l1-norm minimization of all distances with
respect to the center of the configuration. Geometrically speaking, the
idea behind this approach is to minimize the distances between all
reduced convex hulls using the l1-norm.We first revisit the concept of
the center of the configuration presented in two approaches, namely
AD-SVMs [1] for standard SVM, and Scatter SVM [16] for ν-SVM, and
present a novel geometric approach based on the l2-norm based on
the center of the configuration and the concept of reduced convex
hulls, highlighting the differences and similarities with these works.
Two linear formulations that can be derived from this geometric
approach are subsequently presented: one considers p as an addi-
tional decision variable of the optimization problem (l1-CCSVMp), and
the other uses an explicit value for p (l1-CCSVMe). The kernel version
related to the latter linear formulation is described subsequently.
Some extensions and properties regarding the relationship between
our proposals and other approaches are discussed at the end of the
section.

3.1. Center of the configuration: notation and preliminaries

The idea of the center of the configuration was introduced by
Ñanculef et al. [1] for standard SVM (AD-SVM formulation) and [16]
for ν-SVM (Scatter-SVM). Let us consider Xk ¼ ½xk

1…xk
mk
�ARn�mk a

data matrix, for k¼ 1;…;K: Each column xk
i ARn of Xk corresponds

to a feature vector representing the i-th sample related to the class
k. We denote the reduced convex hull of the class associated with X
by RCoðXÞ, that is,
RCoðXÞ≔fXμ : e>μ¼ 1; 0rμrCeg;
where Co1 is a real fixed parameter and e is the vector with all one
entries (see [4,8] for details about reduced convex hulls).

We start by finding a point equidistant to all classes that
minimizes the distance between their reduced convex hulls. This
can be obtained by solving the following minimization problem:

min
μk ;p

1
2

∑
K

k ¼ 1
‖Xkμk�p‖2

s:t: e>μk ¼ 1; 0rμkrCe; k¼ 1;…;K : ð4Þ
The constraints of this problem require that CZ1=Nmin, where

Nmin denotes the number of points in the smallest class.
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Graphically, the center of the configuration for a two-dimen-
sional toy example with three classes can be represented as in
Fig. 1.

In this formulation we call p the center of the configuration of
the multi-class problem [1]. Jenssen et al. [16] refer to it as the
arithmetic mean because Problem (4) is unconstrained with
respect to p, so then, p can be computed in terms of μk as

p¼ 1
K

∑
K

k ¼ 1
Xkμk: ð5Þ

The inclusion of this explicit value for p leads to the following
formulation, which will allow the use of kernel functions:

min
μk

1
2

∑
K

k ¼ 1
JXkμk�

1
K

∑
K

l ¼ 1
Xlμl J

2 ð6Þ

s:t: e>μk ¼ 1; 0rμkrCe; k¼ 1;…;K : ð7Þ

Remark 1. The proposed formulation differs from the one pro-
posed by Ñanculef et al. [1] in the optimization strategy (they
minimize the distances among all the reduced convex hulls), and
in the computation of the center of the configuration (according to
Ñanculef et al. [1], p is obtained heuristically).

In order to obtain a kernel-based formulation of Problem (6)–
(7), we replace the inner products ðxk>

q xl
rÞ; q¼ 1;…;mk;

r¼ 1;…;ml; that result from expanding the quadratic term of
the objective function, with any function K : Rn � Rn-R satisfying
the Mercer condition [23]. Using this kernel function the quantity
ðxk>

q xl
rÞ is replaced by ðKklÞqr computed as

ðKklÞqr ¼Kðxk
q; x

l
rÞ:

The Gaussian kernel, defined by Kðu; vÞ ¼ expð�‖u�v‖2=2σ2Þ
with σAR, and the polynomial kernel Kðu;vÞ ¼ ðu>vþ1Þd with
dAN are kernel choices (see e.g. [22,28]). Let KARm�m denote a
symmetric matrix formed with the blocks Kkl. It should be noted
that the Mercer condition ensures the positive semidefiniteness of
the matrix K. Following the ideas of Ñanculef et al. [1] and Jenssen
et al. [16], the kernel-based formulation follows

min
μk

1
2

∑
K

k ¼ 1
μ>
k Kkkμk�

1
K
μ>Kμ

 !

s:t: e>μk ¼ 1; 0rμkrCe; k¼ 1;…;K ; ðPkerÞ
where μ¼ ½μ1; μ2; …;μK �ARm.

The classification functions are given for each class by

f kðxÞ ¼ ∑
mk

q ¼ 1
μkqKðx; xk

qÞþbk; k¼ 1;…;K : ð8Þ

Remark 2. It is not difficult to see that (Pker) is equivalent to that
studied by Ñanculef et al. [1]. In that work, the authors introduce
linear and nonlinear kernels and consider the classification function
f kðxÞ ¼w>

k ðx�pÞ with p¼ ð1=KÞ∑K
k ¼ 1wk and wk ¼ Xkμk. Addition-

ally, adding the constraint μ>e¼ K to the Formulation (6)–(7) and
(Pker), they coincide with that given by Jenssen et al. [15,16]. This
constraint is related to the ν-SVM formulation. The authors also
propose the following classification function: f kðxÞ ¼w>

k x=Jwk J .
This function corresponds to the angular spread with respect to the
class representatives [15,16], i.e. the data points that support the
center of the configuration (X1μ1, X2μ2, and X3μ3 in Fig. 1).

3.2. Proposed linear formulations

We first propose studying a linear programming formulation
based on the l1-norm where the center of the configuration is a
part of the optimization problem. We recall that for a given xARn

we define ‖x‖1 ¼∑n
i ¼ 1jxij. The method l1-CCSVMp can be formu-

lated as follows:

min
μk ;p

∑
K

k ¼ 1
‖Xkμk�p‖1 ð9Þ

s:t: e>μk ¼ 1; 0rμkrCe; k¼ 1;…;K : ð10Þ
Fig. 2 provides a graphic representation of the previous

formulation, where the solution of the l2-norm from Formulation
(4) (p2) is compared with the l1-norm (p1).

In Fig. 2 we observe a slight change in the center of the
configuration compared to the one obtained with the l2-norm
formulation since the support vector related to the second pattern
shifted from X2μ2 to X2μn

2. Both centers assure the correct classifica-
tion of all training patterns using an adequate classification function.
The l1-CCSVMp formulation corresponds to a convex programming
problem, but the objective function ‖ � ‖1 is not differentiable at 0,
which can be a difficulty in practice. Nevertheless, l1-CCSVMp can be
transformed to a linear programming problem by making the

X2µ2

X3µ3

X1µ1
p

Fig. 1. Geometric illustration of Problem (4).

p1
p2

X1µ1

X3µ3

X2µ2
*

X2µ2

Fig. 2. Comparison between the l2-norm and the l1-norm formulations based on
the center of the configuration.
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following substitutions (see [5,12]):

Xkμk�p¼ uk�vk; JXkμk�pJ1 ¼ e> ðukþvkÞ; uk; vkZ0:

Then, a solution of (9)–(10) can be obtained by solving the
following equivalent linear formulation:

min
μk ;p;uk ;vk

∑
K

k ¼ 1
e> ðukþvkÞ

s:t: uk�vk ¼ Xkμk�p; k¼ 1;…;K;

e>μk ¼ 1; 0rμkrCe; k¼ 1;…;K ;

uk; vkZ0; k¼ 1;…;K: ðPLpÞ
In order to derive a dual formulation for the problem above we
computed its optimality conditions. The Lagrange function of PLp is
given by

Lðμk;p;uk; vk;bk; sk; ξk;wk;αk;βkÞ ¼ ∑
K

k ¼ 1
e> ðukþvkÞþbkðe>μk�1Þ

�s>k μkþξ>
k ðμk�CeÞ�α>

k uk

�β>
k vk�w>

k ðuk�vk�XkμkþpÞ: ð11Þ
Therefore, the optimality conditions of (PLp) are given by (k¼1,…,
K)

∇μk
L¼ bke�skþξkþX>

k wk ¼ 0; ð12Þ

∇pL¼∑
k
wk ¼ 0; ð13Þ

∇uk L¼ e�wk�αk ¼ 0; ð14Þ

∇vk L¼ eþwk�βk ¼ 0; ð15Þ
with

s>k μk ¼ 0; ξ>
k ðμk�CeÞ ¼ 0; α>

k uk ¼ 0; β>
k vk ¼ 0;

where sk; ξk;αk;βkZ0.
Since αk;βkZ0, from (14) and (15) it follows that

�erwkre; k¼ 1;…;K :

On the other hand, from (12) and the fact that skZ0 we get

X>
k wkþbkeþξkZ0; k¼ 1;…;K :

By using (12)–(14), we obtain the dual formulation of ðPLpÞ as
follows:

min
wk ;bk ;ξk

∑
K

k ¼ 1
ðbkþCξ>

k eÞ

s:t: X>
k wkþbkeþξkZ0; k¼ 1;…;K;

�erwkre; k¼ 1;…;K ;

ξkZ0; k¼ 1;…;K ;

∑
K

k ¼ 1
wk ¼ 0: ðDLpÞ

Since formulations ðPLpÞ and ðDLpÞ are feasible, we conclude by
the strong duality theorem for linear programming (see [19,
Chapter 4]) that both problems have optimal solutions and also
satisfy vðPLpÞþvðDLpÞ ¼ 0, where vðPLpÞ and vðDLpÞ are the optimal
values of PLp and DLp, respectively. This conclusion is important
since we can then use either ðPLpÞ or ðDLpÞ and achieve the same
solution.

As mentioned earlier in this section, an alternative formulation
is proposed based on the following expression for the center of the
configuration:

p¼ 1
K

∑
K

k ¼ 1
Xkμk:

Including this equation in problem (9)–(10), we obtain the
following model (l1-CCSVMe):

min
μk

∑
K

k ¼ 1
‖Xkμk�p‖1

s:t: e>μk ¼ 1; 0rμkrCe; k¼ 1;…;K ;

p¼ 1
K

∑
K

k ¼ 1
Xkμk: ðPLeÞ

We observe that the previous formulation is strongly related to
Formulation (6)–(7), but the l1-norm is used instead of the l2-norm
to minimize all distances with respect to the center of the config-
uration, conferring scalability to the approach. Fig. 3 illustrates the
difference between methods l1-CCSVMe and l1-CCSVMp in terms of
the position of the center of the configuration. Again, we observe
only a small change in its position, demonstrating the robustness of
the l1-norm in computing distances between all data points. Using
an appropriate classification function, all training instances can be
shattered adequately.

Similar to the derivation of the dual formulation for l1-CCSVMp,
the dual problem of the formulation l1-CCSVMe is the following
linear program:

min
wk ;bk ;ξk

∑
K

k ¼ 1
ðbkþCξ>

k eÞ

X>
k ðwk�wÞþbkeþξkZ0; k¼ 1;…;K ;

�erwkre; k¼ 1;…;K;

ξkZ0; k¼ 1;…;K ;

w ¼ 1
K

∑
K

k ¼ 1
wk: ðDLeÞ

Again, thanks to the strong duality theorem for linear program-
ming, both the primal and the dual formulation can be used
interchangeably.

Remark 3. Note that if ðwk; bk; ξkÞ is a feasible solution of for-
mulation (DLe) then the point 1

2ððwk�wÞ; bk; ξkÞ is a feasible
solution of (DLp). The inverse is not true in general.

3.3. Kernel-based formulation

Based on the kernel-based formulation presented in Section
3.1, we propose a nonlinear kernel formulation for l1-CCSVMe. Let

p1
µ

p1
X1µ1

X3µ3

X2µ2

X2µ2
µ

Fig. 3. Comparison between formulations l1-CCSVMe and l1-CCSVMp.
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us assume that

wk ¼ Xkμk�
1
K

∑
K

l ¼ 1
Xlμl for k¼ 1;…;K;

then it is easy to see that ∑kwk ¼ 0. Using this result, the
inequality constraints of the dual form of l1-CCSVMe can be
rewritten as

X>
k Xkμk�

1
K

∑
K

l ¼ 1
X>
k XlμlþbkeþξkZ0; k¼ 1;…;K :

Similar to Section 3.1, we replace the dot products of the form
X>
k Xl, by a kernel matrix Kkl. The ðq; rÞ entry of the kernel matrix is

ðKklÞqr ¼Kðxk
q; x

l
rÞ; q¼ 1;…;mk; r¼ 1;…;ml;

where K : Rn � Rn-R is any function satisfying the Mercer con-
dition. Taking previous equations into account, we propose the
following kernel-based formulation (l1-CCSVMK):

min
μk ;bk ;ξk

∑
K

k ¼ 1
ðbkþCξ>

k eÞ

s:t: Kkkμk�
1
K

∑
K

l ¼ 1
KklμlþbkeþξkZ0; k¼ 1;…;K;

�erμkre; k¼ 1;…;K ;

ξkZ0; k¼ 1;…;K: ðPLKÞ

3.4. Test rules for classification

In this work we study three classification functions found in the
literature. First, we consider the standard OVA function based on
the hyperplanes constructed from the weight vector, in their linear
form, and in the kernel-based version:

f kðxÞ ¼w>
k � xþbk; k¼ 1;…;K; ð16Þ

f kðxÞ ¼ ∑
mk

q ¼ 1
μkqKðx; xk

qÞþbk; k¼ 1;…;K : ð17Þ

We also studied the classification function presented by Ñan-
culef et al. [1] based on the center of the configuration, which can
be obtained either as the arithmetic mean of the weight vectors
p¼ ð1=KÞ∑K

k ¼ 1wk for l1-CCSVMe or as a part of the optimization
problem for l1-CCSVMp:

f kðxÞ ¼w>
k � ðx�pÞ; k¼ 1;…;K; ð18Þ

f kðxÞ ¼ ∑
mk

q ¼ 1
μkq Kðx; xk

qÞ�
1
K

∑
K

l ¼ 1
∑
ml

r ¼ 1
Kðxk

q; x
l
rÞμqr

 !
; k¼ 1;…;K:

ð19Þ
Finally, we study the classification function related to the work

proposed by Jenssen et al. [15], named Test Rule 1 in that work and
which is based on the angular spread with respect to the class
representatives as

f kðxÞ ¼
w>

k � x
Jwk J

; k¼ 1;…;K ; ð20Þ

f kðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ>
k Kkkμk

q ∑
mk

q ¼ 1
μkqKðx; xk

qÞ; k¼ 1;…;K : ð21Þ

3.5. Relation to other SVM-based approaches and extensions

In this section we study the relationship between our proposal
and other SVM models for binary and multiclass classification. First,
we recall the LP-SVM formulation proposed by Zhou et al. [37] for
binary classification. In this formulation, the bound of the VC

dimension is loosened properly, using the l1�norm [37, Theorem
2.2], resulting in an LP formulation that controls the margin max-
imization directly by including a margin variable r. This variable is
maximized while the empirical risk is minimized simultaneously.
The LP-SVM soft-margin formulation follows

min
ŵ ;b̂k ;ξ̂k ;r

�rþC½ξ̂
>
1 eþ ξ̂

>
2 e�

s:t: X>
1 ŵþ b̂1eZre� ξ̂1;

�X>
2 ŵ� b̂1eZre� ξ̂2;

ξ̂kZ0; k¼ 1;2; rZ0;
�erŵre:

Geometrically, the previous optimization problem in its dual
form is equivalent to finding the closest points on the reduced
convex hulls by using 1-norm [4,21]. Zhou et al. [37] also proposed
the following kernel-based formulation:

min
μk ;b;r;ξk

�rþCðξ>
1 eþξ>

2 eÞ

K11μ1�K12μ2þbeZr�ξ1;
�K21μ1þK22μ2þbeZr�ξ2
ξkZ0; k¼ 1;2;
�erμkre; k¼ 1;2: ð22Þ

The proposed work can be seen as an extension of the LP-SVM
method proposed by Zhou et al. [37] to multi-class. First, it can be
seen that when K¼2, the method l1-CCSVMe reduces to the
following problem:

min
μ1 ;μ2

‖X1μ1�X2μ2‖1

s:t: e>μk ¼ 1; 0rμkrCe; k¼ 1;2:

The previous formulation is similar to the dual form of LP-SVM
[21]. Based on the LP-SVM method, the following multi-class SVM
formulation can be derived from the soft-margin LP-SVM model:

min
ŵk ;b̂k ;ξ̂k ;r

�rþC ∑
K

k ¼ 1
ξ̂
>
k e

s:t: X>
k ŵkþ b̂keZre� ξ̂k; k¼ 1;…;K ;

�erŵkre; k¼ 1;…;K ;

rZ0; ξ̂kZ0; k¼ 1;…;K ;

∑
K

k ¼ 1
ŵk ¼ 0; ∑

K

k ¼ 1
b̂k ¼ 0: ð23Þ

We first note that taking K¼2, and denoting by ŵ ¼ ŵ1 ¼ �ŵ2,
we obtain the soft-margin LP-SVM model proposed by Zhou et al.
[37]. Additionally, the following proposition relates Formulation
(23) with l1-CCSVMp, demonstrating that, in fact, l1-CCSVMp

extends LP-SVM to multi-class classification.

Proposition 3.1. Formulations (23) and l1-CCSVMp are equivalent.
More precisely, ðwk; bk; ξkÞ is a solution of l1-CCSVMp if and only if

r≔�1
K
∑
k
bk; ŵk≔wk; b̂k≔bkþr and ξ̂k≔ξk or k¼ 1;…;K

ð24Þ
solves Formulation (23).

The proof of Proposition 3.1 is presented in Appendix A.
The following remark also demonstrates that l1-CCSVMK, the
kernel-based method proposed in this work, is an extension to
the kernel-based LP-SVM formulation proposed by Zhou et al. [37].

Remark 4. Taking K¼2, the formulation ðPLK Þ reduces to

min
μk ;bk ;ξk

b1þb2þCðξ>
1 eþξ>

2 eÞ

K11μ1�K12μ2þ2b1eþ2ξ1Z0;
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�K21μ1þK22μ2þ2b1eþ2ξ2Z0;

ξkZ0; k¼ 1;2;
�erμkre; k¼ 1;2: ð25Þ

If we choose b1 ¼ ðb�rÞ=2, b2 ¼ �ðbþrÞ=2, and ξ̂k ¼ 2ξk, with
rZ0, the above formulation is then equivalent to the kernel-based
LP-SVM formulation proposed by Zhou et al. [37].

In addition to LP-SVM, several SVM extensions have been pro-
posed for efficient classification. The Sphere Support Vector Machine
[30], for example, solves the minimal enclosing ball problem effi-
ciently via an adaptation of the Sequential Minimization Approach
(SMO) [27] algorithm. The Ellipsoidal Support Vector Machine [24]
uses the center of an ellipsoid to approximate the Bayes point, instead
of approximating it by a sphere center, as the standard SVM
formulation does. This new approach leads to a convex quadratic
problem that can be solved efficiently by a variant of the SMO
method. Another strategy that leads to efficient SVM-based imple-
mentations is the concept of mixture-of-experts, which splits the
input data into a number of subregions and trains an SVM classifier
within each region [38]. One of these approaches is the Infinite
Support Vector Machine, which is based on Dirichlet Process [11] for
constructing the mixture of large margin classifiers. The main
differences among these approaches compared with our proposal
are the geometric principles behind the methods: while our approach
is based on finding the center of the configuration via one-norm
minimization, the Sphere Support Vector Machines, Infinite Support
Vector Machines, and Ellipsoidal Support Vector Machines follow
other geometrical approaches, as described above. Another important
difference is the optimization scheme: Sphere Support Vector
Machines, Infinite Support Vector Machines, and Ellipsoidal Support
Vector Machines are quadratic problems, while our method is based
on a convex linear formulation, being, therefore, potentially faster and
more suitable for large scale machine learning than quadratic
methods.

4. Experimental results

We applied the proposed multi-class approach to seven well-
known benchmark datasets for multi-class classification, studying
its different variations. We compare the proposal with standard
SVM (OvO SVM, OvA SVM and k-class SVM), Scatter SVM [16], AD-
SVM [1], Pegasos, AMM, and BSGD [10]. In Section 4.1 we provide a
description of the datasets, while Section 4.2 provides a summary
of the performance obtained for all the proposed and alternative
approaches.

4.1. Datasets and experimental settings

In this section we briefly present the datasets used in this work.
We studied four datasets from the UCI Machine Learning Repository
[3]: Iris, Wine, Glass, and Vowel; one dataset from the Statlog Project
Databases, Segment dataset, also available from UCI Repository; and

two high-dimensional microarray datasets: MLL [2], and Glioma [26].
Table 1 summarizes the relevant metadata for each dataset:

We performed the following model selection procedure: The
dataset was split into different training and test subsets using 10-
fold cross-validation for the first five datasets, while leave-one-out
validation was used for the microarray datasets. For this work we
studied the balanced accuracy as the main performance metric to
assess predictive performance. This metric corresponds to the
Recall for each class, averaged over the number of different classes.
We used the following set of values for parameter C (λ for the
methods Pegasos, AMM, and BSGD) and σ:

C;σAf2�7;2�6;2�5;2�4;2�3;2�2;2�1;20;21;22;23;24;25;26;27g:

4.2. Classification performance summary

We first study the performance of the different variations of
our proposal, which involves:

� Method l1-CCSVMp using decision rule given by Formula (16).
� Method l1-CCSVMp using decision rule given by Formula (18).
� Method l1-CCSVMp using decision rule given by Formula (20).
� Method l1-CCSVMe using decision rule given by Formula (16).
� Method l1-CCSVMe using decision rule given by Formula (18).
� Method l1-CCSVMe using decision rule given by Formula (20).
� Method l1-CCSVMK using decision rule given by Formula (17).
� Method l1-CCSVMK using decision rule given by Formula (19).
� Method l1-CCSVMK using decision rule given by Formula (21).

Table 2 summarizes the results obtained from the model
selection procedure for each variation of our proposal and for all
five datasets. The best performance among all variations in terms
of balanced accuracy is highlighted in bold type.

In Table 2 we first observe that the best performance is
achieved using kernel functions for all datasets. The method l1-
CCSVMK using the decision rule given by Formula (21) performs
better in six out of seven datasets, while l1-CCSVMK with the
decision rule given by Formula (17) has better performance on the
Wine dataset. The decision rule given by Formula (19) tends to fail
at constructing adequate classifiers for the kernel-based method
l1-CCSVMK. For linear methods, all classification functions tend to
perform consistently, but kernel methods outperform the linear
ones, especially for the more complex datasets (Glass, Segment,
Vowel and Glioma) in terms of number of instances, number of
classes, and class overlap.

Next, the results obtained from the model selection procedure
for all alternative approaches are presented in Table 3. We studied
the linear and kernel-based formulation for standard SVM (OvO
SVM, OvA SVM and k-class SVM), Scatter SVM, AD-SVM, Pegasos
(only available as a linear model), AMM (only available as a kernel-
based model), and BSGD (only available as a kernel-based model).

Table 1
Number of variables, number of examples and number of classes for all datasets.

Dataset # examples # variables # classes

IRIS 150 4 3
WINE 178 13 3
GLASS 214 13 6
VOWEL 528 10 11
SEGMENT 2310 19 7
GLIOMA 50 4433 4
MLL 72 5848 3

Table 2
Predictive performance for all variations of the proposed approach for all datasets.

Method Iris Wine Glass Segment Vowel Glioma MLL

l1-CCSVMp, d.r. (16) 90.7 95.6 42.7 53.0 27.5 72.4 97.6
l1-CCSVMp, d.r. (18) 81.3 87.9 59.7 72.8 30.3 68.3 95.5
l1-CCSVMp, d.r. (20) 88.0 95.3 44.3 43.2 25.6 25.0 53.6
l1-CCSVMe, d.r. (16) 73.3 95.9 46.8 68.5 30.2 74.1 96.2
l1-CCSVMe, d.r. (18) 82.7 95.3 59.6 69.9 33.8 65.2 95.0
l1-CCSVMe, d.r. (20) 82.0 93.0 37.8 47.9 29.1 25.0 58.1
l1-CCSVMK, d.r. (17) 96.7 98.5 60.3 93.8 97.4 78.7 96.0
l1-CCSVMK, d.r. (19) 46.7 43.3 33.3 14.3 67.9 41.1 54.1
l1-CCSVMK, d.r. (21) 96.7 98.1 69.8 97.1 99.5 80.5 97.6
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The best performance among all methods in terms of balanced
accuracy is highlighted in bold type.

Again, we observed that the kernel-based versions perform better
than the linear versions of each method. Table 4 summarizes the best
performance for each method in all datasets. The best performance
among all methods in terms of balanced accuracy is highlighted in
bold type. We also indicate with one asterisk where the performance
is significantly lower than the best method at a 10% significance level,
and with two asterisks at a 5% significance level. A t-test is used to
make pairwise comparisons between the mean of each approach and
the best method for a particular dataset.

From Table 4 we observe that the proposed methods are never
outperformed by the best approach for each dataset. There is also
no approach that performs consistently better than the others:
OVO-SVM, OVA-SVM, and k-class SVM are the best method two out
of seven times, while Scatter SVM, BSGD, and the proposed l1-
CCSVM are the best methods one time each. The worst performance
is obtained with Pegasos since five out of seven times performs
significantly worse than the best method once at a 5% significance
level, followed by AMM with significantly lower accuracy three out
of seven times. AD-SVM is significantly lower than the best method
once at a 5% significance level and once at a 10% significance level,
while k-class SVM and BSGD are significantly lower than the best
method once at a 10% significance level.

The proposed approach is based on a linear programming for-
mulation, which is more efficient and less time consuming than
quadratic programming, used in standard SVM and AD-SVM. This
efficiency can be very useful in large scale machine learning where
huge datasets are to be analyzed. Table 5 provides a comparison for
each method including the average running time using 10-fold cross-
validation, and considering the best set of parameters obtained using
the model selection procedure. The experiments were performed on
an HP Envy dv6 with 16 GB RAM, 750 GB SSD, a i7-2620M processor
with 2.70 GHz, and using Microsoft Windows 8.1 Operating System
(64-bits). We used the LINPROG solver for Matlab 7.12 for the

proposed approach; the QUADPROG solver for Matlab 7.12 for AD-
SVM and Scatter SVM; the Budgeted SVM toolbox [10] for Pegasos,
AMM, and BSGD; and the spider toolbox [35] and LIBSVM [6] were
used for the multiclass SVM approaches to solve the quadratic
optimization problem. Training times for AD-SVM and Scatter SVM
are similar since they have essentially the same formulation but
consider different classification functions, as mentioned in Remark 2.
Training times for l1-CCSVMe and l1-CCSVMK are also similar since l1-
CCSVMe corresponds to l1-CCSVMK's using a linear kernel.

In Table 5 we observe that our approach is consistently faster
than the alternative QP approaches which, in the case of k-class
SVM, may have prohibitive running times under the implementa-
tion used in this work. Furthermore, the running times achieved by
our approach are comparable with the ones achieved by the most
efficient SVM approximations in the literature in most cases.

Although the running times for one SVM training are below one
second in most cases, the gain can be significant if an exhaustive
grid search is used to tune the hyperparameters. It is also interest-
ing to note that l1-CCSVMe is several times faster than AD-SVM,
since both formulations studied the concept of the center of the
configuration in a similar fashion, but in our work the l1-norm is
used instead of the l2-norm. The methods AD-SVM and Scatter
behave faster than the proposed approaches only for the microarray
datasets. It is also important to highlight that running times
decrease significantly when using l1-CCSVMK for high-dimensional
datasets (such as microarray data) instead of l1-CCSVMp or l1-
CCSVMe as in Formulation DLe. The reason is that the number of
variables for l1-CCSVMK does not increase with the dimensionality,
in contrast to l1-CCSVMe and l1-CCSVMp, which are faster than l1-
CCSVMK when the number of cases is larger than the number of
variables.

5. Conclusions

In this work, we presented two multi-class classification
approaches based on Support Vector Machines and the concept of
the center of the configuration. The l1-norm is used to find a point
that is equidistant to all classes, which is subsequently used to
construct the classification functions. The two methods differ
mainly in the computation of the center of the configuration: l1-
CCSVMp, on one hand, obtains the center of the configuration
directly from the optimization process, while l1-CCSVMe provides
an explicit value for it based on the arithmetic mean of the weights,
on the other. From the latter method we derive a kernel-based
formulation (l1-CCSVMK), conferring flexibility to the classification
process by allowing non-linear classifiers, and achieving the best
results among our proposals.

A comparisonwith other multi-class SVM classification approaches
shows the advantages of the proposed methods:

Table 3
Predictive performance summary for all alternative approaches and for all datasets.

Method Iris Wine Glass Segment Vowel Glioma MLL

Linear k-class SVM 96.0 99.0 57.3 90.9 72.1 80.5 97.1
Linear OVA-SVM 94.7 98.6 60.7 92.7 56.4 78.7 98.3
Linear OVO-SVM 98.0 98.6 66.1 95.6 90.0 78.7 97.1
Linear Scatter-SVM 82.0 94.5 39.1 60.4 40.1 25.0 63.6
Linear AD-SVM 76.0 95.4 52.1 57.3 41.3 65.4 98.3
Pegasos (linear) 97.3 98.3 51.4 81.5 51.7 30.0 69.3
Kernel k-class SVM 97.3 99.0 71.4 98.3 99.0 78.7 98.8
Kernel OVA-SVM 97.3 99.5 71.8 97.5 99.6 80.5 98.3
Kernel OVO-SVM 98.0 99.0 72.2 97.4 99.6 78.7 98.3
Kernel Scatter-SVM 96.7 98.1 69.9 97.3 99.5 78.7 98.8
Kernel AD-SVM 96.0 98.6 59.8 95.0 99.3 78.7 98.3
AMM (kernel-based) 96.7 98.3 57.0 83.9 61.7 78.0 98.3
BSGD (kernel-based) 96.0 96.7 73.3 95.9 98.3 78.0 98.6

Table 4
Predictive performance summary for all approaches and for all datasets.

Method Iris Wine Glass Segment Vowel Glioma MLL

k-Class SVM 97.3 99.0 71.4 98.3 99.0n 78.7 98.8
OVA-SVM 97.3 99.5 71.8 97.5 99.6 80.5 98.3
OVO-SVM 98.0 99.0 72.2 97.4 99.6 78.7 98.3
AD-SVM 96.0 98.6 59.8nn 95.0n 99.3 78.7 98.3
Scatter SVM 96.7 98.1 69.9 97.3 99.5 78.7 98.8
Pegasos 97.3 98.3 51.4nn 81.5nn 51.7nn 30.0nn 69.3nn

AMM 96.7 98.3 57.0nn 83.9nn 61.7nn 78.0 98.3
BSGD 96.0 96.7nn 73.3 95.9 98.3 78.0 98.6
l1-CCSVM 96.7 98.5 69.8 97.1 99.5 80.5 97.6

Table 5
Average running times, in seconds, for all datasets.

Method Iris Wine Glass Segment Vowel Glioma MLL

k-Class SVM 0”.48 0”.56 6”.33 14627”.13 529”.23 0”.31 0”.24
OVA-SVM 0”.37 0”.43 1”.16 59”.77 0”.98 0”.57 0”.57
OVO-SVM 0”.20 0”.25 0”.90 9”.15 5”.02 0”.65 0”.46
AD-SVM 0”.15 0”.12 0”.21 45”.21 0”.95 0”.01 0”.12
Scatter-SVM 0”.15 0”.12 0”.21 45”.21 0”.95 0”.01 0”.12
Pegasos 0”.05 0”.04 0”.04 0”.05 0”.05 0”.06 0”.10
AMM 0”.05 0”.07 0”.08 0”.09 0”.11 0”.23 0”.42
BSGD 0”.02 0”.02 0”.08 2”.68 0”.73 0”.21 0”.61
l1-CCSVMp 0”.03 0”.06 0”.06 0”.87 0”.22 2”.64 5”.91
l1-CCSVMe&K 0”.04 0”.08 0”.10 3”.07 0”.53 0”.19 0”.37
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� They provide a geometrically grounded framework for multi-class
classification, which allows an adequate interpretation of the
classification process based on the concept of reduced convex hulls.

� They achieved competitive results compared to other SVM-based
methods, never being significantly below the best method for each
dataset.

� They provide more efficient formulations based on linear program-
ming, leading to an important reduction in terms of running times.

Some conclusions can be drawn from the experimental section
of this work, which can be useful for practitioners:

� Predictive performance is significantly improved with kernel-
based approaches, compared to linear methods. This result
demonstrates the advantage of constructing nonlinear classifi-
cation functions, especially in the context of models based on
the center of the configuration.

� The usage of the test rule proposed by Jenssen et al. [15] based
on the angular spread of the class representatives led to better
results compared to other decision functions studied in this
work, leading to conclusions about the importance of consider-
ing this test rule for prediction.

� There is a tradeoff between predictive performance and training
times for SVM-based approaches: while best average performance
can be achieved with the standard OVO-SVM, running times can be
prohibitive for large datasets. Highly optimized SVM approxima-
tions, on the other hand, are extremely efficient with large-scale
problems, but they may perform significantly worst than standard
SVM in terms of predictive accuracy. Our proposal has the best
compromise between classification permeance and efficiency in
terms of running times, being the recommended method for
medium-size datasets. For small problems, OVO-SVM is suggested,
while the method BSGD is recommended for very large datasets.

There are several opportunities for future work. The work of
Jenssen et al. [16] for ν-SVM can be adapted to the l1-norm as
presented in this work, while the concept of the center of the
configuration can be extended further to other SVM-based classifica-
tion approaches, such as Second-order cone programming Support
Vector Machine (SOCP-SVM) [20,25]. Additionally, the proposed
approach presents an interesting property for classification on highly
imbalanced datasets, namely the minimization of the distances
between the reduced convex hulls. Given that each training pattern
is studied separately, adaptations of the model can be performed on
others to favor relevant classes that could be less represented in the
training sample. Similar attempts have been done recently for SOCP-
SVM [21].
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Appendix A. Proof of Proposition 3.1

Proof. The Lagrangian function for ðDLpÞ is given by

Lðwk; bk; ξk;μk;αk;βk; sk; γÞ ¼ ∑
K

k ¼ 1
ðbkþCξ>

k eÞ�μ>
k ðX>

k wkþbkeþξkÞ
h

�αkðwkþeÞ�β>
k ðe�wkÞ�s>k ξkþγ>wk

i
:

Then, the KKT conditions of the linear programming problem
ðDLpÞ are given by

∇wk L¼ �Xkμk�αkþβkþγ ¼ 0;
∂L
∂bk

¼ 1�μ>
k e¼ 0; ðA:1Þ

∇ξk L¼ Ce�μk�sk ¼ 0; ∑
k
wk ¼ 0; ðA:2Þ

μ>
k ðX>

k wkþbkeþξkÞ ¼ 0; s>k ξk ¼ 0; ðA:3Þ

β>
k ðe�wkÞ ¼ 0; α>

k ðwkþeÞ ¼ 0; ðA:4Þ

X>
k wkþbkeþξkZ0; μkZ0; ðA:5Þ

�erwkre; αkZ0; βkZ0; ξkZ0; skZ0: ðA:6Þ
From (A.3) and the second expression of (A.1), we get

w>
k Xkμkþbkþμ>

k ξk ¼ 0:

Multiplying the first equality of (A.1) by wk and replacing in the
above equality one has

bk ¼w>
k ðαk�βk�γÞ�μ>

k ξk:

Summing over i in the above equality and using (A.2) and (A.4), we
have

∑
K

k ¼ 1
bk ¼ ∑

K

k ¼ 1
ðw>

k ðαk�βkÞ�μ>
k ξkÞ ¼ � ∑

K

k ¼ 1
ððαkþβkÞ>eþμ>

k ξkÞ;

ðA:7Þ
from which we deduce that ∑K

k ¼ 1bkr0.
In a similar way, we define the Lagrangian function associated

with (23) as

L̂ðŵk; b̂k; ξ̂k; r; ξk; μ̂k; α̂k; β̂k; ŝk; γ̂ ; t;θÞ ¼ �rþ ∑
K

k ¼ 1
Cξ̂

>
k e� μ̂>

k ðX>
k ŵkþ b̂keÞ

�

� μ̂>
k ð�reþ ξ̂kÞ�α̂kðŵkþeÞ�rt�β>

k ðe�ŵkÞ� ŝ>
k ξ̂kþ γ̂ > ŵkþθb̂k

i
:

Then, the KKT conditions for Problem (23) are the following:

∇ŵ k
L̂ ¼ �Xkμ̂k�α̂kþ β̂kþ γ̂ ¼ 0;

∂L̂
∂bk

¼ θ� μ̂>
k e¼ 0; ðA:8Þ

∇ξk L̂ ¼ Ce� μ̂k� ŝk ¼ 0;
∂L̂
∂r

¼ �1þ μ̂>
k e�t ¼ 0; ðA:9Þ

μ̂>
k ðX>

k ŵkþ b̂ke�reþ ξ̂kÞ ¼ 0; ŝ>
k ξ̂k ¼ 0; rt ¼ 0; ðA:10Þ

β̂
>
k ðe�ŵkÞ ¼ 0; α̂kðŵkþeÞ ¼ 0; ðA:11Þ

X>
k ŵkþ b̂ke�reþξkZ0; μ̂kZ0; rZ0; ðA:12Þ

�erŵkre; α̂kZ0; β̂kZ0; ξ̂kZ0; ŝkZ0; ðA:13Þ

∑
K

k ¼ 1
ŵk ¼ 0; ∑

K

k ¼ 1
b̂k ¼ 0; tZ0: ðA:14Þ

We note that θZ1; as a direct consequence of the second equality in
(A.8)–(A.9) and the feasibility (A.14). Additionally, from (A.8)–(A.10)
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one has rðθ�1Þ ¼ 0. If we assume r40; then θ¼ 1; and therefore

wk ¼ ŵk; bk ¼ b̂k�r; ξk ¼ ξ̂ ; μk ¼ μ̂k; αk ¼ α̂k; βk ¼ β̂k; sk ¼ ŝk; γ ¼ γ̂ ;

satisfy the KKT conditions of the problem ðDLpÞ.
On the other hand, from (A.10) and the second equality of (A.8),

we have

ŵ >
k Xkμ̂kþθðb̂k�rÞþμ>

k ξ̂k ¼ 0:

Multiplying the first equality of (A.8) by wk and replacing in the
above equality we get

θðr� b̂kÞ ¼ ŵ >
k ð�α̂kþ β̂kþ γ̂Þþμ>

k ξ̂k

Summing the above equality over k¼1,…,K and using (A.11) and
(A.14), we have

Krθ¼ ∑
K

k ¼ 1
ðŵ >

k ð�α̂kþ β̂kÞþ μ̂>
k ξ̂kÞ ¼ ∑

K

k ¼ 1
ðα̂ >

k eþ β̂
>
k eþ μ̂>

k ξ̂kÞ: ðA:15Þ

If we assume that r¼ 0; using the above expression, we deduce that

α̂k ¼ 0; β̂k ¼ 0; μ̂>
k ξ̂k ¼ 0; k¼ 1;…;K:

Now, multiplying the first equality of (A.9) by ξ̂k; using the above
relation and (A.10), we get

Cξ̂
>
k e¼ 0; k¼ 1;…;K;

therefore ξ̂k ¼ 0, for k¼1,…,K. Finally, taking

wk ¼ ŵk; bk ¼ b̂k; ξk ¼ 0; μk ¼
μ̂k

θ
; αk ¼ 0; βk ¼ 0;

sk ¼ 1�1
θ

� �
μ̂kþ

1
θ
ŝk; γ ¼ γ̂

θ
; ðA:16Þ

satisfy the KKT conditions of the problem ðDLpÞ.
Similarly, supposing that ðwk; bk; ξk;μk;αk;βk; sk; γÞ satisfies the

KKT conditions of the problem ðDLpÞ. Take θ¼ 1 and let us define

r¼ �1
K

∑
K

k ¼ 1
bk ðA:17Þ

From (A.7), we obtain that rZ0 and therefore

ŵk ¼wk; b̂k ¼ bkþr; ξ̂k ¼ ξ; μ̂k ¼ μk; α̂k ¼αk; β̂k ¼ βk;

ŝk ¼ sk; γ̂ ¼ γ; t ¼ 0; θ¼ 1; ðA:18Þ
satisfy the relations (A.8)–(A.14). □
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