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a b s t r a c t

Learning from imbalanced data sets is an important machine learning challenge, especially in Support
Vector Machines (SVM), where the assumption of equal cost of errors is made and each object is treated
independently. Second-order cone programming SVM (SOCP-SVM) studies each class separately instead,
providing quite an interesting formulation for the imbalanced classification task. This work presents a
novel second-order cone programming (SOCP) formulation, based on the LP-SVM formulation principle:
the bound of the VC dimension is loosened properly using the l1-norm, and the margin is directly
maximized using two margin variables associated with each class. A regularization parameter C is
considered in order to control the trade-off between the maximization of these two margin variables.
The proposed method has the following advantages: it provides better results, since it is specially
designed for imbalanced classification, and it reduces computational complexity, since one conic
restriction is eliminated. Experiments on benchmark imbalanced data sets demonstrate that our
approach accomplishes the best classification performance, compared with the traditional SOCP-SVM
formulation and with cost-sensitive formulations for linear SVM.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The class imbalance problem is a relatively new challenge that has
attracted growing attention in both industry and academia, since it
negatively affects classification performance. This issue arises when
the class distribution is too skewed [37]. Technically speaking, any data
set with unequal distribution between the two classes can be
considered imbalanced. However, class ratios of 5:1 or higher have
often been used in experiments under the category of imbalanced data
sets [14]. When this situation occurs, standard classification methods
such as Support Vector Machines (SVM) will generate a model that
predicts everything to the majority class. Attempts have been made to
deal with this problem in the context of business analytics, such as
churn prediction [17], credit scoring [27], and fraud detection [12]; and
also various domains such as text categorization [39], spam filtering
[33] and anomaly detection [24].

Recently, second-order cone programming (SOCP) formulations
have been proposed as an alternative optimization scheme for SVM.
These formulations consider all possible choices of class-conditional
densities with a given mean and covariance matrix, that is, in a
worst-case setting, and hence they avoid making assumptions about
the class-conditional densities, which could cast the generality and

validity of such an approach in doubt [3,7]. Moreover, these formula-
tions provide a cost-sensitive framework for handling uneven mis-
classification costs in binary classification [22], for instance, in medical
diagnosis. These special types of non-linear convex optimization
problems can be solved efficiently by interior point algorithms [2,3].

This work presents a novel second-order cone programming
(SOCP) formulation based on the LP-SVM principle: the bound of the
VC dimension is loosened properly using the l1-norm, and the margin
is maximized directly using two margin variables associated with each
class. A regularization parameter, C, is included to control the trade-off
between the maximization of these two margin variables.

This paper is organized as follows: in Section 2, we briefly
introduce the methods Support Vector Machines, LP-SVM and
SOCP-SVM for binary classification. Section 3 provides an overview
of the class imbalance problem. Section 4 presents the proposed
SOCP-SVM formulation for imbalanced data classification. Experi-
mental results using benchmark data sets are given in Section 5.
A summary of this paper can be found in Section 6, where we
provide its main conclusions and address future developments.

2. Support Vector Machines for binary classification

This section introduces SVM for binary classification, as devel-
oped by Vapnik [35] for hard margin and Cortes and Vapnik [10]
for soft margin, and its variation based on second-order cone
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programming [22,29]. Given a set of tuples ðxi; yiÞ of training
examples and their respective labels, where xiARn, i¼ 1;…;m
and yiAf�1; þ1g, the linear version of SVM aims at finding the
maximum-margin hyperplane, i.e., it finds a classifier of the form
f ðxÞ ¼w> � xþb that maximizes the distance from it to the nearest
training point on each class. To maximize this measure, SVM
minimizes the Euclidean norm of coefficients w [35]. Additionally,
we want to classify the training vectors xi correctly into two
different classes yi. For linearly separable problems, this can be
formulated as follows (hard margin SVM formulation):

min
w;b

1
2 JwJ2

s:t: yi � ðw> � xiþbÞZ1; i¼ 1;…;m: ð1Þ
Notice that if there is no hyperplane that can split both classes,

formulation (1) becomes unfeasible. Cortes and Vapnik [10]
suggested a modified formulation that allows misclassification
by balancing the structural (minimization of the Euclidean norm),
and the empirical risk (minimization of misclassification errors) by
introducing slack variables ξi, i¼ 1;…;m, which measure the
degree of misclassification for an instance xi, and a penalty
parameter C that controls this trade-off. For a linear penalty
function, the soft margin SVM formulation becomes

min
w;b;ξ

1
2 JwJ2þC ∑

m

i ¼ 1
ξi

s:t: yi � ðw> � xiþbÞZ1�ξi; i¼ 1;…;m;

ξiZ0; i¼ 1;…;m: ð2Þ
One important advantage of formulation (2) is that these slack

variables do not appear in the dual formulation of the problem,
resulting only in an additional constraint on the Lagrange multi-
pliers, upper-bounding them with the parameter C.

Formulation (2) can be solved efficiently in the dual space using
the Sequential Minimal Optimization (SMO) technique [25],
among others. Some studies have also been proposed for solving
the primal SVM formulation efficiently, using a Newton-based
algorithm [21] or back-fitting strategies [23], for example.

2.1. Linear programming Support Vector Machine

In linear programming SVM, the bound of the VC dimension is
loosened properly, using the l1-norm, to improve the speed of the
training time [40, Theorem 2.2], resulting in a linear programming
formulation that controls the margin maximization directly by
including a margin variable r. This variable is then maximized
while simultaneously minimizing the empirical risk, by penalizing
the slack variables similar to that in standard SVM. The LP-SVM
soft-margin formulation follows:

min
w;r;b;ξ

�rþC ∑
m

i ¼ 1
ξi

s:t: yi � ðw> � xiþbÞZr�ξi; i¼ 1;…;m;

�1rwjr1; j¼ 1;…;n;

ξiZ0; i¼ 1;…;m;

rZ0: ð3Þ
The formulation (3) is simpler than the one in (2), especially for
large-scale problems. The dual formulation associated with (3) can
be stated as follows (see Appendix A for details):

min
z1 ;z2

JAz1�Bz2 J1

s:t: e> � z1 ¼ e> � z2 ¼ 1;
0rz1rCe; 0rz2rCe: ð4Þ
Geometrically, this means that the optimization problem (3) is

equivalent to finding the closest points on the reduced convex

hulls formed by the positive and negative labeled data points, by
using 1-norm (see [6] for alternative norm variations).

2.2. SOCP Support Vector Machines

Suppose that X1 and X2 are the random vectors that generate
samples of the positive and negative classes respectively, with
means and covariance matrices given by ðμi;ΣiÞ for i¼1,2, where
ΣiARn�n are symmetric positive semi-definite matrices.

In order to construct a maximum margin linear classifier, so
that the probability of false-negative and false-positive errors does
not exceed η1Að0;1� and η2A ð0;1� respectively, Nath and Bhatta-
charyya [22] suggested considering the following quadratic
chance-constrained programming problem:

min
w;b

1
2 JwJ2

s:t: Prfw> � X1�bZ0gZη1;

Prfw> � X2�br0gZη2: ð5Þ
In other words, the model requires that the random variable Xi

lies on the correct side of the hyperplane, with greater probability
than ηk for k¼1,2. In this case, we want to be able to classify for
each training pattern correctly, up to the rate ηk, even for the worst
distribution in the class of the ones that have common mean and
covariance Xk � ðμk;ΣkÞ. For this purpose, the probability con-
straints in (5) are replaced by their robust counterparts:

inf
X1 � ðμ1 ;Σ1Þ

Probfw> � X1�bZ0gZη1;

inf
X2 � ðμ2 ;Σ2Þ

Probfw> � X2�br0gZη2:

Thanks to an appropriate application of the multivariate Cheby-
shev inequality [18, Lemma 1], this worst distribution approach
leads to the following deterministic problem:

min
w;b

1
2 JwJ2

s:t: w> � μ1�bZ1þκ1 JS>
1 wJ ;

b�w> � μ2Z1þκ2 JS
>
2 wJ ; ð6Þ

where κi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηi=ð1�ηiÞ

p
and Σi ¼ SiS

>
i , for i¼1,2.

By introducing a new variable t and a constraint JwJrt, the
formulation (6) can be casted as the following optimization
problem:

min
w;b

t

s:t: JwJrt

w> � μ1�bZ1þκ1 JS>
1 wJ ;

b�w> � μ2Z1þκ2 JS
>
2 wJ : ð7Þ

This problem is an instance of linear SOCP with three blocks [2].
A linear SOCP problem is a convex optimization problem with a
linear objective function, and second-order cone (SOC) constraints.
An SOC constraint on the variable xARn is of the form

JAxþbJrc> � xþd; ð8Þ
where dAR, cARn, bARm, AARm�n are given.

3. The class imbalance problem

Several developments have been made in the class imbalance
problem, mainly in three subareas: data resampling, cost-sensitive
learning and one-class learning. Other areas, such as feature
selection [14] and extraction [36] have been studied. In this
section, we briefly describe these topics, referring also to the
assessment techniques used to evaluate these tasks at the end of
this section.
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3.1. Data resampling

The two most common and intuitive data resampling techniques
are random oversampling and undersampling. The first one replicates
randomly selected examples of the minority class, while the second
discards instances from the majority class randomly, downsizing
this class. Both cases help to balance the class distribution, but no
new information is added to the data set and this may lead to
overfitting [16]. Additionally, oversampling increases the training
size, causing longer model training times, while undersampling
may lead to an important loss of information [16].

SMOTE [8] is an intelligent oversampling method that gener-
ates new examples for the minority class. These are created
artificially by interpolating the preexisting minority instances,
which may help to improve the classification performance, redu-
cing the risk of overfitting [13,17].

3.2. Cost-sensitive learning

Classification methods can also be trained from imbalanced
data sets without data resampling. Cost-sensitive techniques are
based on the concept of the cost matrix, which can be considered
as a numerical representation of the penalty for misclassification.
For example, we define C� as the cost of misclassifying a majority
class instance as a minority one, and let Cþ represent the cost of
misclassification in the target class, which is usually higher, i.e.,
Cþ 4C� .

There are strategies for cost-sensitive learning. One group of
techniques applies misclassification costs to the data set as a form
of data weighting, for example, by introducing costs into the
weight updating strategy used in AdaBoost [32]. Other approaches
consider cost-sensitive adjustment of different classification meth-
ods, which can be applied to the decision threshold or modifying
their formulation [14]. In the case of SVM, the total misclassifica-
tion cost C∑m

i ¼ 1ξi can be replaced by two terms, one for each class,
leading to the following formulation (Cost-sensitive SVM or CS-
SVM):

min
w;b;ξ

1
2 JwJ2þCþ ∑

iA Iþ
ξiþC� ∑

iA I�
ξi

s:t: yi � ðw> � xiþbÞZ1�ξi; i¼ 1;…;m;

ξiZ0; i¼ 1;…;m: ð9Þ
where Iþ and I� are the sets of positive and negative examples
respectively [5,28].

3.3. One-class learning

When negative examples greatly outnumber the positive ones,
certain classifiers based on discriminative approaches tend to
overfit [9]. In this case, one-class strategies may lead to better
predictive performance [26]. A one-class SVM formulation for
unbalanced data has been proposed by Tax and Duin [34], namely
Support Vector Data Description (SVDD). This method finds the
smallest sphere of radius R that contains most of the data
instances. Outliers in the training set result in quite a large sphere
which will not represent the data very well, therefore slack
variables ξ are introduced.

3.4. Assessment metrics for imbalanced classification

Traditionally, the most frequently used metric for binary
classification performance is the accuracy, which represents the
proportion of true results:

Accuracy¼ TPþTN
TPþTNþFPþFN

ð10Þ

where TP¼true positives, TN¼true negatives, FP¼false positives
and FN¼false negatives. This measure provides a simple way of
describing the classification performance. However, it is not appro-
priate for imbalanced classification [14]. For instance, if a given data
set includes 1% of the minority class examples and 99% of majority
instances, a naive approach that classifies every example as a
majority class instance would provide an accuracy of 99%, which
can be considered quite accurate. However, this metric fails to
reflect the fact that all target examples are misclassified, which is
assumed to have a higher misclassification cost [14].

Alternatively, a few assessment metrics are frequently adopted
in the research community for imbalanced learning problems. The
most common one is the Area Under the Curve (AUC) [30], in
which version defined by one run is explained as follows:

AUC ¼
1þ TP

TPþFN
� FP
FPþTN

2
ð11Þ

We consider this metric, which is widely known as balanced
accuracy [30], to be the main performance measure in this work.

4. The proposed SOCP-SVM approach for imbalanced data
classification

In this section, a cost-sensitive formulation for SOCP-SVM is
presented. The reasoning behind this approach is that we can
improve classification performance in unbalanced data by control-
ling the distance to both training patterns separately. The main
idea is to adapt the LP-SVM formulation to a robust one based on
second-order cones, and, in a second step, to modify it by splitting
the problem into two margin variables.

Let us consider the following linear chance-constrained pro-
gramming problem:

min
w;b;r

�r

s:t: inf
X1 � ðμ1 ;Σ1Þ

Probfw> � X1ZbþrgZη1;

inf
X2 � ðμ2 ;Σ2Þ

Probfw> � X2rb�rgZη2;

�1rwjr1; j¼ 1;…;n:

rZ0: ð12Þ
Formulation 12 relates to LP-SVM since the Euclidean norm

minimization is replaced by a margin variable r, maximized in the
objective function, while the chance constraints impose the
probability that the random variable Xi lies on the correct side of
the hyperplane, including variable r, does not exceed ηi for i¼1,2.
Equal to the derivation of SOCP-SVM, the problem (12) can be
stated as the following linear SOCP formulation, thanks to an
appropriate application of the multivariate Chebyshev inequality:

min
w;b;r

�r

s:t: w> � μ1�bZrþκ1 JS
>
1 wJ ;

b�w> � μ2Zrþκ2 JS>
2 wJ ;

�1rwjr1; j¼ 1;…;n:

rZ0; ð13Þ
where Σi ¼ SiS

>
i and κi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηi=ð1�ηiÞ

p
for i¼1,2. We refer to the

above formulation as r-SOCP-SVM.
Comparing SOCP-SVM (Formulation (6)) with the previous one,

the latter replaces the Euclidean norm minimization for a (positive)
margin variable r, which works as a slack variable for the conic
constraints (the first two in Formulation 13). Additional constraints
are introduced in order to bound the weights. This approach has the
advantage that only two conic constraints are needed for classifica-
tion instead of three, as in the case of the standard SOCP-SVM.
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As we described previously in this section, themain idea is to adapt
the previous formulation to imbalanced classification. The margin
variable r is then replaced by r1 and r2, one for each conic constraint,
and simultaneously maximized in the objective function. The trade-off
between both values is managed by a positive parameter C:

min
w;b;r1 ;r2

�r1�Cr2

s:t: w> � μ1�bZr1þκ1 JS>
1 wJ ;

b�w> � μ2Zr2þκ2 JS>
2 wJ ;

�1rwjr1; j¼ 1;…;n;

r1; r2Z0: ð14Þ
We refer to formulation (14) as r1r2�SOCP� SVM, which is inspired
by the cost-sensitive SVM formulation for imbalanced data (cf. (9)).
The penalty parameter C can be set using crossvalidation, and relates
to the costs of misclassification for both classes. The advantage of this
formulation compared to CS-SVM is that only two objectives are
considered instead of three, making the model selection step more
tractable.

The dual formulation associated with r1r2�SOCP� SVM (see
Appendix B for derivation) is given by

min
z1 ;z2

λ̂ Jz1�z2 J1

s:t: ziABiðμi; Si; κiÞ; i¼ 1;2; ð15Þ
where

Biðμi; Si; κiÞ ¼ fzi : zi ¼ μiþð�1ÞiSiui; Jui Jr1g; i¼ 1;2: ð16Þ
The sets Biðμi; Si; κiÞ are ellipsoids centered at μi, whose shape is

determined by Si and sized by κi. Thus, the dual formulation
minimizes the distance between two ellipsoids using the 1-norm.

5. Experimental results

We applied the r-SOCP-SVM and r1r2�SOCP� SVM approaches
on class-imbalanced data sets to assess their performance com-
pared to well-known SVM-based classification methods. The main
goal was to study whether our approaches perform better in terms
of AUC compared to SVM in its standard version, to the cost-
sensitive version of this approach, and finally to SOCP-SVM. The
importance of this comparison rests on having a broad enough
range of classification approaches to verify if the proposed mod-
ifications have a positive effect on the classification performance,
compared to the original methods. In this context, the comparison
with CS-SVM, a method designed for the class imbalance problem,
and SOCP-SVM, whose design provides a natural way to adequately
obtain balanced classifiers, is particularly important.

We first provide a description of the data sets in Section 5.1,
while Section 5.2 presents a summary of the predictive perfor-
mance obtained for the proposed and alternative approaches.
Finally, an empirical study regarding the influence of the different
parameters and an extended discussion of the results are pre-
sented in Section 5.3.

5.1. Description of data sets and validation procedure

The proposed approach has been applied to six benchmark data
sets from the UCI data repository [4]. Two data sets are class-
imbalanced binary-classification problems, while the remaining four
are adapted multiclass classification problems, in which the target and
majority classes were constructed by grouping some of the labels, as
described in [1] and [11]. Next, we briefly describe these data sets:

� Ecoli: This data set studies the localization site of the E. coli
protein in eukaryotic cells. The original data set from the UCI

Repository is studied since it is a natural two-class imbalanced
problem.

� Abalone_7: This data set studies the classification of 29 types of
Abalone, according to variables such as sex, length, diameter,
and weight. We study class 7 against all other Abalone types.

� Balance: The Balance Scale Weight and Distance data base were
generated to model this psychological phenomena. Each exam-
ple is classified as having the balance scale tipped to the right,
the left, or in balance. We study the balanced scale class against
both the tipped left and right scale.

� Car_34: The Car Evaluation data set studies the four levels of
acceptability of various used cars. Classes 3 (good) and 4 (very
good) are studied together against the other classes.

� Solar_M: The Solar Flare data set studies the number of times a
certain type of solar flare occurs in 1 day. We considered
M-class flares (moderate ones), and two classes were obtained
by studying zero M-class flares in 24 h against one or more.

� Yeast_ME2: This multi-class data set also considers the problem
of protein localization, and class ME2 (membrane protein with
cleaved signal) was studied as the target class against all the
remaining labels.

Table 1 summarizes the relevant information for each bench-
mark data set:

In this section, we study the following classification approaches:
SVM in its standard version, cost-sensitive SVM, and the proposed
approaches r-SOCP-SVM (Formulation (13)) and r1r2-SOCP-SVM
(Formulation (14)). The following model selection procedure was
performed: training and test subsets were constructed using 10-fold
crossvalidation, the average accuracy (proportion of true results, Eq.
(10)) and the AUC was computed.

A grid search was performed to study the influence of the
parameters C for soft-margin models, and η for SOCP approaches.
In this case, we studied all combinations of the following η values:
η1 ¼ f0:2;0:4;0:6;0:8g and η2 ¼ f0:2;0:4;0:6;0:8g. We used the
following set of values for hyperparameter C:

C ¼ f2�7;2�6;2�5;2�4;2�3;2�2;2�1;20;21;22;23;24;25;26;27g:
For the above procedure, we used the Spider Toolbox for

Matlab [38] for standard SVM approaches, and the SeDuMI Matlab
Toolbox for SOCP-based classifiers [31].

5.2. Summary of classification results for imbalanced datasets

In this section, we present a summary of the results obtained
from our experiments to facilitate assessing the best performance
of the respective approaches. Table 2 summarizes the best perfor-
mance (using the AUC measure) of all the approaches along the
different values of C and η for all six data sets.

In previously mentioned table, we observe that the best
predictive results were achieved using r1r2-SOCP-SVM in four
out of six data sets, while r-SOCP-SVM, SOCP-SVM and CS-SVM

Table 1
Number of variables, number of examples, percentage of each class and imbalanced
ratio for all six data sets.

Dataset # variables # examples (min.,maj.) IR

Ecoli 7 (35,301) 8.6
Abalone_7 8 (391,3786) 9.7
Balance 4 (49,576) 11.8
Car_34 6 (134,1594) 11.9
Solar_M 10 (68,1321) 19.4
Yeast_ME2 8 (51,1433) 28.1
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performed best in one out of six data sets each. Additionally, both
proposed approaches are among the three best methods in all the
data sets, demonstrating their effectiveness and robustness. We
also observe quite a poor performance for SVM and CS-SVM for
imbalanced and overlapped data. For those data sets with higher
levels of noise (Abalone_7, Balance, Solar_M and Yeast_ME2,
where the best predictive performance is below an AUC of 0.9),
it was impossible to find a linear classifier that correctly discrimi-
nates between both classes, leading to an AUC close to 0.5 (all
instances classified as the majority class). CS-SVM does not
represent a real improvement in such cases, requiring the use of
resampling techniques in order to achieve a reasonable perfor-
mance [14]. In contrast, SOCP-based approaches achieved excel-
lent performance without the need of data re-balancing.

5.3. Influence of the parameters and discussion

In this subsection we study the performance of the proposed
methodologies by performing sensitivity analysis of the relevant
parameters, characterizing their influence on the final solution.
Our goal is to assess whether the results are stable along different
values of the parameters C and/or η. If this is the case, a less
rigorous validation strategy can be used. In contrast, a high
variance in the performance will require more exhaustive model
selection in order to find the best combination of parameters.

Table 3 summarizes the predictive performance in terms of the
AUC for SOCP-SVM, r-SOCP-SVM and r1r2-SOCP-SVM (best perfor-
mance along the different values of C). The average, the minimum,
and the maximum performance along different values of η are
computed and presented in this table. Additionally, a Student's t
test is constructed to assess if the maximum value is significantly
higher than the respective mean value. The detailed results of the
model selection procedure are presented in Appendix C.

An important influence of parameter η can be observed in
Table 3. There is an important gap between the minimum and the

maximum AUC in all methods and for each data set, and the
maximum value is always significantly higher than the mean,
according to the p values associated with the Student's t tests. In
this experiment we wanted to test the null hypothesis in which
the mean performance is similar to the maximum value.

The optimal η value varies among the different methods, and
different data sets, where predictive performance is strongly
affected by this parameter. Since no clear rule can be defined in
order to obtain this value, it is important to set it using cross-
validation considering the values presented in this work (or a
broader rank of values).

In order to facilitate studying the influence of hyperparameter C
in the solution, Fig. 1 presents the predictive performance in terms
of the AUC for standard SVM, CS-SVM, and r1r2�SOCP� SVM by
varying this parameter along the set of different values described
earlier.

Fig. 1 shows very stable results for r1r2�SOCP� SVM along the
different values of C in four out of six data sets. Only in the two
most overlapped data sets (Balance and Solar_M), the parameter C
shows quite a strong influence in the final outcome of the proposed
method, and the wrong choice of this parameter may lead to poor
performance (AUC below 0.5). The gain using of the proposed
model compared to SVM was significant, with the only exception of
the Car_34 dataset, where almost perfect classification performance
is achieved with all methods. Notice that for Car_34, the results
with the suggested approach are much more stable. We still
conclude that it is highly recommended to perform an adequate
grid search, varying the parameters C along the suggested values in
order to obtain desired results for r1r2�SOCP� SVM.

6. Conclusions

In this work, we present a cost-sensitive approach for classifying
imbalanced data via direct margin maximization, where this task is

Table 2
Mean AUC, in percentage, for all data sets.

Ecoli Abalone_7 Balance Car_34 Solar_M Yeast_ME2

SVM 78.6 50.0 50.0 98.3 50.0 50.0
CS-SVM 73.8 50.1 50.0 98.7 50.6 50.0
SOCP-SVM 89.2 78.4 71.6 98.3 73.4 85.0
r-SOCP-SVM 90.0 77.9 74.6 98.5 72.0 84.7
r1r2�SOCP�SVM 90.8 78.7 74.1 98.7 71.6 85.1

Table 3
Max, Min and Mean AUC along different values of η, and t test for model selection stability, for all data sets.

Ecoli Abalone_7 Balance Car_34 Solar_M Yeast_ME2

SOCP-SVM
Max 89.2 78.4 71.6 98.3 73.4 85.0
Min 82.4 67.4 33.9 79.9 60.8 57.3
Mean 87.0 75.0 49.2 93.5 67.7 77.7
p value o0.01 o0.01 o0.01 o0.01 o0.01 o0.01

r-SOCP-SVM
Max 90.0 77.9 74.6 98.5 72.0 84.7
Min 80.3 66.4 29.7 80.2 61.9 48.6
Mean 86.3 73.7 51.5 93.6 67.8 74.9
p value o0.01 o0.01 o0.01 o0.01 o0.01 o0.01

r1r2�SOCP�SVM
Max 90.8 78.7 74.1 98.7 71.6 85.1
Min 84.6 50.0 51.1 80.3 64.4 71.3
Mean 87.7 71.6 64.9 93.5 68.7 80.5
p value o0.01 o0.01 o0.01 o0.01 o0.01 o0.01
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performed separately for each class, and which benefits the correct
prediction of the target class.

Empirically, we observed that the proposed approach achieves
better results in five out of six benchmark data sets. The gain is
particularly important compared to standard and cost-sensitive
SVM, since these methods fail at constructing a discriminative
function that correctly classifies the target class, leading to high
accuracy but an AUC close to 0.5. This phenomenon occurs when
the degree of noise in the data set is high, and the best hyperplane
under the SVM criterion is the one that predicts all instances as the
majority class. These methods performed well only in data sets
where the classification accuracy that can be achieved is near 100%.

A comparison with other SOCP-SVM formulations shows the
advantages of the proposed method. Even if standard SOCP-SVM
achieves significantly better results compared to the standard SVM

formulation, and given the structure of the problem, still a gain in
terms of predictive performance can be obtained by considering
r1r2�SOCP� SVM, the proposed method. Additionally, the
improvement that this approach presents compared to r-SOCP-
SVM demonstrates the importance of classification models that
are specially designed for imbalanced data.

The model selection procedure is studied extensively in order
to measure and understand the influence of the hyperparameters
C and η. We conclude that model selection should be performed
carefully, using the suggested values presented in Section 5, in
order to obtain the best predictive performance, although results
are relatively stable with variations of both parameters.

There are several opportunities for future work. First, the exten-
sion of these methods to kernel approaches may lead to better
performance, thanks to the ability of constructing non-linear
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Fig. 1. CV AUC by varying parameter C for standard SVM, CS-SVM and r1r2�SOCP�SVM, in all datasets. (a) Ecoli dataset. (b) Abalone_7 dataset. (c) Balance dataset.
(d) Car_34 dataset. (e) Solar_M dataset. (f) Yeast_ME2 dataset.
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classifiers. Secondly, there is a pressing need for more efficient
implementations of second order cone programming formulations.
While r-SOCP-SVM represents one step in that direction, faster
implementations are necessary for the method to become a real
alternative to traditional SVM for large scale datasets. Finally, some
approaches have been proposed for feature selection in imbalanced
data (see, e.g. Van Hulse et al. [15]). An interesting challenge,
however, is to consider advanced feature selection strategies, such
as wrapper and embedded methods [19,20], in order to address the
interactions between SOCP-SVM and the predictors when facing
imbalanced data.

Conflict of interest

None declared.

Acknowledgements

The first author was supported by FONDECYT project 11121196,
while the second was funded by FONDECYT project 11110188 and
by CONICYT Anillo ACT1106.

Appendix A. Dual formulation for LP-SVM

Let us denote the number of elements of the positive and
negative class by m1 and m2, respectively, by AARn�m1 a data
matrix for the positive class, by BARn�m2 a data matrix for the
negative class, and by e¼ ð1;…;1Þ a vector of ones of appropriate
dimension. We denote the vectors in Rm1 by a subscript 1, those in
Rm2 by a subscript 2, and those in Rn without a subscript. With
this notation, the problem (3) can be rewritten as

min
w;r;b;ξ1 ;ξ2

�rþCðe> � ξ1þe> � ξ2Þ

s:t: A>wþðb�rÞeþξ1Z0;

�B>w�ðbþrÞeþξ2Z0;
�1rwjr1; j¼ 1;…;n;

ξ1Z0; ξ2Z0; rZ0: ð17Þ
The Lagrangian function associated with the problem (17) is given
by

Lðw; b; r; ξi; t;u; v; zi; siÞ ¼ �rþCðe> � ξ1þe> � ξ2Þ�rt

�〈A>wþðb�rÞeþξ1; z1〉

�〈�B>w�ðbþrÞeþξ2; z2〉� 〈s1; ξ1〉
�〈s2; ξ2〉� 〈e�w;u〉� 〈eþw; v〉; ð18Þ
where t;u; v; zi; siZ0; i¼ 1;2. Thus, the formulation (17) can be
equivalently written as

min
w;r;b;ξi

max
t;u;v;zi ;si

fLðw;b; r; ξi; t;u; v; zi; siÞ : t;u; v; zi; siZ0; i¼ 1;2g:

ð19Þ
Hence, the dual problem of (17) is given by

max
t;u;v;zi ;si

min
w;r;b;ξi

fLðw;b; r; ξi; t;u; v; zi; siÞ : t;u; v; zi; siZ0; i¼ 1;2g:

ð20Þ
This expression now enables us to eliminate the primal variables.
Taking partial derivatives of L with respect to w, r, b, ξ1, ξ2, and
using the first order optimality conditions we get

∇wL¼ �Az1þBz2þu�v¼ 0; ð21Þ

∂L
∂b

¼ �e> � z1þe> � z2 ¼ 0; ð22Þ

∂L
∂r

¼ �1�tþe> � z1þe> � z2 ¼ 0; ð23Þ

∇ξ1L¼ Ce�z1�s1 ¼ 0; ð24Þ

∇ξ2L¼ Ce�z2�s2 ¼ 0; ð25Þ
where ∇w , ∇ξ1 , ∇ξ2 denote the gradient of L with respect to the
vectors w, ξ1 and ξ2, respectively.

Using (22) and (23) and the constraint tZ0, one has

e> � z1 ¼ e> � z2Z1
2 : ð26Þ

Also, by using (24) and (25) and the constraints siZ0, for i¼1,2,
we get

0rz1rCe; 0rz2rCe: ð27Þ
Then, substituting (21)–(25) in (18) subject to the relevant con-
straints together with (26) and (27) yields the dual formulation
stated as follows:

max
u;v;z1 ;z2

�e> ðuþvÞ
s:t: u�v¼ Az1�Bz2;
e> � z1 ¼ e> � z2Z1

2 ;

uZ0; vZ0; 0rz1rCe; 0rz2rCe: ð28Þ
Since the relationship

z¼ u�v; JzJ1 ¼ e> � ðuþvÞ; u; vZ0; ð29Þ
holds, the dual problem (28) can be written as

max
z1 ;z2

� JAz1�Bz2 J1

s:t: e> � z1 ¼ e> � z2Z1
2 ;

0rz1rCe; 0rz2rCe: ð30Þ

Remark 1. Without loss of generality, we can suppose that
e> � z1 ¼ e> � z2 ¼ 1, thus (30) can be cast as

max
z1 ;z2

� JAz1�Bz2 J1

s:t: e> � z1 ¼ 1; e> � z2 ¼ 1;
0rz1rCe; 0rz2rCe: ð31Þ

Appendix B. Dual formulation for r1r2-SOCP-SVM

The Lagrangian function associated with problem (14) is given
by

Lðw; b; ri; ti; λi; ziÞ ¼ �r1�Cr2�t1r1�t2r2
�λ1ðw> � μ1�b�r1�κ1 JS>

1 wJ Þ
�λ2ðb�w> � μ2�r2�κ2 JS>

2 wJ Þ
� 〈e�wÞ; z1〉�〈eþwÞ; z2〉; ð32Þ
where λ1; λ2; t1; t2; z1; z2Z0. Since the relationship JvJ ¼ sup
JuJr1u> � v holds for any vARn, we can modify the Lagrangian
as follows:

L1ðw; b; ri; ti; λi; zi;uiÞ ¼ �r1�Cr2�t1r1�t2r2
�λ1ðw> � μ1�b�r1�κ1u>

1 � S>
1 wÞ

�λ2ðb�w> � μ2�r2�κ2u>
2 � S>

2 wÞ
� 〈e�wÞ; z1〉�〈eþwÞ; z2〉; ð33Þ
where λ1; λ2; t1; t2; z1; z2Z0 and Jui Jr1; i¼ 1;2. Then

Lðw; b; ri; ti; λi; ziÞ ¼max
ui

fL1ðw; b; ri; ti; λi; zi;uiÞ : Jui Jr1; i¼ 1;2g:

ð34Þ
Thus, Problem (14) can be equivalently written as

min
w;b;ri

max
ti ;λi ;zi ;ui

fL1ðw; b; ri; ti; λi; zi;uiÞ : Jui Jr1; λi; ti; ziZ0; i¼ 1;2g:

ð35Þ
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Hence, the dual problem of (14) is given by

max
ti ;λi ;zi ;ui

min
w;b;ri

fL1ðw; b; ri; ti; λi; zi;uiÞ : Jui Jr1; λi; ti; ziZ0; i¼ 1;2g:

ð36Þ
The expression (36) now enables us to eliminate the primal
variables to give the dual formulation. Taking partial derivatives
of L1 with respect to w, b, r1 and r2 yields

∇wL1 ¼ �λ1μ1þλ1κ1S1u1þλ2μ2þλ2κ2S2u2þz1�z2; ð37Þ

∂L1
∂b

¼ λ1�λ2; ð38Þ

∂L1
∂r1

¼ �1�t1þλ1; ð39Þ

∂L1
∂r2

¼ �C�t2þλ2: ð40Þ

The Karush–Kuhn–Tucker (KKT) conditions with Eqs. (38)–(40)
imply that

λ1 ¼ λ2 ¼ λ; t1 ¼ λ�1; t2 ¼ λ�C: ð41Þ

and with Eq. (37) imply that

z1�z2 ¼ λðμ1�κ1S1u1�μ2�κ2S2u2Þ: ð42Þ
From (41), (42) and (33) the dual problem can be stated as follows:

max
z1 ;z2 ;u1 ;u2 ;λ

�e> � ðz1þz2Þ

s:t: z1�z2 ¼ λð ~z1� ~z2Þ;
~z i ¼ μiþð�1ÞiκiSiui; Jui Jr1; i¼ 1;2;

λZmaxf1;Cg; z1Z0; z2Z0: ð43Þ

Remark 2. It follows from the relation (41) that the Lagrange
multipliers associated with the conic constraints of the linear SOC
problem (14) are always different from zero.

Again, since the relationship (29) holds, the dual problem (43)
can be written as

max
~z1 ; ~z2 ;λ

�λJ ~z1� ~z2 J1

s:t: ~z iABiðμi; Si; κiÞ; i¼ 1;2;

λZmax f1;Cg; ð44Þ

Table C1
Mean accuracy and AUC, in percentages, for all data sets varying parameter η. SOCP-SVM Model.

η value Ecoli Abalone_7 Balance Car_34 Solar_M Yeast_ME2

Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC

η¼(0.2,0.2) 82.7 88.2 72.4 75.1 52.6 55.1 90.1 94.6 74.2 70.3 85.9 85.0
η¼(0.2,0.4) 86.3 89.1 76.9 76.1 52.7 71.6 93.7 96.6 79.4 69.5 88.1 82.2
η¼(0.2,0.6) 89.3 87.8 75.4 73.9 51.1 35.1 97.6 97.6 84.7 66.0 90.0 81.3
η¼(0.2,0.8) 92.5 85.5 80.6 67.4 7.8 50.0 96.8 79.9 84.1 65.8 74.7 57.3

η¼(0.4,0.2) 81.8 87.7 70.2 76.2 72.0 68.3 90.3 94.8 68.4 70.1 82.7 83.3
η¼(0.4,0.4) 85.1 88.4 75.0 76.9 55.7 33.9 93.3 96.4 74.2 70.1 85.5 81.9
η¼(0.4,0.6) 89.3 87.8 77.9 75.5 42.7 36.1 96.8 98.3 78.0 70.2 87.9 81.2
η¼(0.4,0.8) 91.7 82.4 79.9 68.2 7.8 50.0 97.3 84.2 90.2 65.4 79.3 71.9

η¼(0.6,0.2) 81.2 87.3 67.3 78.4 82.4 44.7 90.7 95.0 63.0 71.0 77.2 80.5
η¼(0.6,0.4) 84.5 89.2 71.3 77.6 75.2 42.6 92.1 95.7 70.1 69.5 81.0 81.5
η¼(0.6,0.6) 88.7 87.4 73.4 76.5 72.9 46.2 94.9 97.2 66.5 73.4 69.2 62.5
η¼(0.6,0.8) 89.6 82.4 79.5 72.2 9.9 39.7 98.0 89.4 88.9 62.0 90.2 83.3

η¼(0.8,0.2) 78.6 85.8 62.3 77.0 90.6 49.1 91.1 95.2 62.3 60.8 74.6 83.0
η¼(0.8,0.4) 81.2 87.3 67.1 78.3 89.0 48.3 91.1 95.2 56.4 71.0 51.4 64.2
η¼(0.8,0.6) 85.1 88.4 75.1 76.4 85.0 49.8 91.1 95.2 68.0 66.2 72.7 82.0
η¼(0.8,0.8) 80.9 87.2 75.9 74.4 58.6 67.5 98.2 91.2 55.5 61.4 88.4 81.5

Table C2
Mean accuracy and AUC, in percentages, for all data sets varying parameter η. r-SOCP-SVM Model.

η value Ecoli Abalone_7 Balance Car_34 Solar_M Yeast_ME2

Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC

η¼(0.2,0.2) 82.1 87.8 71.3 72.8 53.6 67.5 87.4 92.5 74.2 71.8 83.6 82.8
η¼(0.2,0.4) 84.8 87.8 76.7 76.1 64.8 71.8 92.1 94.4 79.7 69.0 87.3 80.9
η¼(0.2,0.6) 86.9 85.3 76.9 73.0 68.1 67.2 96.9 95.6 84.9 67.4 89.8 81.2
η¼(0.2,0.8) 91.7 85.4 82.0 67.3 72.8 41.3 96.8 80.2 87.7 66.9 82.8 68.9

η¼(0.4,0.2) 82.4 88.0 71.1 75.9 48.2 60.9 87.8 93.4 69.5 72.0 81.7 80.9
η¼(0.4,0.4) 83.3 87.0 74.8 75.8 56.5 72.7 94.6 97.1 74.8 69.2 85.5 81.9
η¼(0.4,0.6) 87.5 86.8 80.2 74.7 61.6 74.6 97.3 98.5 79.1 68.7 84.2 79.3
η¼(0.4,0.8) 90.5 80.3 82.6 67.3 58.6 34.5 97.0 83.0 88.0 67.0 69.1 62.0

η¼(0.6,0.2) 81.2 87.3 66.7 77.9 50.1 50.3 91.1 95.2 63.3 68.7 77.6 80.7
η¼(0.6,0.4) 82.4 86.5 72.0 76.3 55.8 72.4 91.7 95.5 67.5 71.9 69.6 71.7
η¼(0.6,0.6) 87.5 86.8 78.2 75.9 54.4 57.4 94.8 97.2 74.5 67.6 85.4 84.7
η¼(0.6,0.8) 89.0 82.0 82.4 66.4 50.6 31.1 96.8 91.4 86.7 64.2 59.0 48.6

η¼(0.8,0.2) 79.5 86.3 61.9 76.7 52.3 30.2 91.1 95.2 63.2 64.7 67.8 80.4
η¼(0.8,0.4) 81.5 86.0 69.0 77.1 50.1 31.7 91.1 95.2 82.5 61.9 78.6 80.2
η¼(0.8,0.6) 86.0 90.0 76.2 76.1 43.7 30.1 91.1 95.2 69.0 69.2 51.9 66.4
η¼(0.8,0.8) 88.1 88.2 76.1 69.4 46.4 29.7 98.5 97.5 83.4 64.6 54.8 67.9
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where

Biðμi; Si; κiÞ ¼ f ~z i : ~z i ¼ μiþð�1ÞiSiui; Jui Jr1g; i¼ 1;2:

Note that the objective function is maximized when λ¼ λ̂ ¼
maxf1;Cg. Then, the dual problem (44) can be stated as follows:

max
~z1 ; ~z2

� λ̂ J ~z1� ~z2 J1

s:t: ~z iABiðμi; Si; κiÞ; i¼ 1;2: ð45Þ

Appendix C. Model selection performance along different
values of η

Tables C1–C3 present the predictive performance in terms of
accuracy and AUC for SOCP-SVM, r-SOCP-SVM, and r1r2-SOCP-
SVM (best performance along the different values of C) respec-
tively, considering all combinations for η¼ ðη1; η2Þ.
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η¼(0.4,0.6) 90.5 88.4 90.1 76.5 83.4 74.1 97.7 98.7 89.9 68.2 88.5 80.6
η¼(0.4,0.8) 92.2 86.8 90.6 54.9 91.7 62.3 97.2 83.9 92.7 67.9 94.8 71.5

η¼(0.6,0.2) 83.0 87.5 67.4 78.3 88.4 65.8 91.1 95.2 65.1 69.6 76.9 81.3
η¼(0.6,0.4) 86.9 89.1 68.8 77.4 90.3 72.6 92.4 95.9 85.8 69.4 83.1 82.7
η¼(0.6,0.6) 89.0 87.6 82.0 76.3 81.6 71.3 96.0 97.8 79.3 69.7 87.0 83.5
η¼(0.6,0.8) 89.3 90.8 90.6 56.9 91.2 62.7 97.6 86.4 92.3 64.4 92.7 81.7

η¼(0.8,0.2) 79.2 86.2 62.8 77.0 69.4 54.8 91.1 95.2 68.1 69.1 74.7 80.2
η¼(0.8,0.4) 83.0 87.7 88.3 74.9 73.3 64.2 91.1 95.2 78.5 71.3 94.0 71.3
η¼(0.8,0.6) 87.2 86.6 88.1 75.8 85.4 58.7 92.2 95.8 67.1 71.6 84.4 80.7
η¼(0.8,0.8) 89.3 84.6 90.6 64.3 92.0 67.6 97.9 89.4 95.1 69.1 94.5 79.3
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