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This paper presents two novel second-order cone programming (SOCP) formulations that
determine a linear predictor using Support Vector Machines (SVMs). Inspired by the
soft-margin SVM formulation, our first approach (n-SOCP-SVM) proposes a relaxation of
the conic constraints via a slack variable, penalizing it in the objective function. The second
formulation (r-SOCP-SVM) is based on the LP-SVM formulation principle: the bound of the
VC dimension is loosened properly using the l1-norm, and the margin is directly maxi-
mized. The proposed methods have several advantages: The first approach constructs a
flexible classifier, extending the benefits of the soft-margin SVM formulation to second-
order cones. The second method obtains comparable results to the SOCP-SVM formulation
with less computational effort, since one conic restriction is eliminated. Experiments on
well-known benchmark datasets from the UCI Repository demonstrate that our approach
accomplishes the best classification performance compared to the traditional SOCP-SVM
formulation, LP-SVM, and to standard linear SVM.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Binary classification is one of the most important data mining tasks since the research topics and application domains are
vast, including business analytics [7] and credit scoring [23], computer vision [28], medical diagnosis [21], and document
classification [27], to name a few. Among existing classification methods, Support Vector Machines (SVMs) [24] provide the-
oretical advantages, such as adequate generalization to new objects, thanks to the Structural Risk Minimization (SRM) prin-
ciple [25], absence of local minima via convex optimization, and representation that depends on only a few parameters.
These advantages usually lead to better empirical results compared to other statistical and machine learning approaches
[12,14].

Recently, second-order cone programming (SOCP) formulations have been proposed as an alternative optimization
scheme for SVMs. These consider all possible choices of class-conditional densities with a given mean and covariance matrix,
i.e, in a worst-case setting. They therefore, avoid making assumptions about the class-conditional densities, which would
cast the generality and validity of such approach in doubt [5,8]. Moreover, these formulations provide a cost-sensitive frame-
work to handle uneven misclassification costs in binary classification intuitively [15], for instance, in the case of medical
diagnosis. These special types of non-linear convex optimization problems can be solved efficiently by interior point algo-
rithms [3,5].

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2014.01.041&domain=pdf
http://dx.doi.org/10.1016/j.ins.2014.01.041
mailto:smaldonado@uandes.cl
mailto:julio.lopez@udp.cl
http://dx.doi.org/10.1016/j.ins.2014.01.041
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins


S. Maldonado, J. López / Information Sciences 268 (2014) 328–341 329
In this work, two novel SOCP-based methods are introduced for binary classification. The first method controls the com-
plexity of the classifier by introducing slack variables related to the conic constraints, while the second one maximizes the
margin directly by replacing the l2 norm by a decision variable, r, extending the ideas of the LP-SVM method [29].

This paper is organized as follows; in Section 2, we briefly introduce Support Vector Machines and SOCP-SVM for binary
classification. Section 3 presents the proposed feature selection method based on SVM. Experimental results using bench-
mark data sets are given in Section 4. A summary of this paper can be found in Section 5, where we provide its main con-
clusions and address future developments.

2. Support Vector Machines for binary classification

In this section we describe the mathematical derivation of SVM developed by Vapnik [24], considering differing exten-
sions that are relevant for this work. We consider the simplest case first, a linear classifier for a linearly separable problem,
which leads to the hard-margin formulation. Then, we study linear classifiers for linearly non-separable problems [9]. Sub-
sequently, the LP-SVM formulation [29] is described. Finally, we present the variation of SVM based on second-order cone
programming [15,18].

2.1. Hard margin SVM

For the linearly separable case, the SVM determines the optimal hyperplane that separates the convex hulls of both train-
ing patterns. Given a set of instances with their respective labels ðxi; yiÞ, where xi 2 Rn; i ¼ 1; . . . ;m and yi 2 �1;þ1f g, the
hard-margin SVM aims at finding a classifier of the form f ðxÞ ¼ w> � xþ b that maximizes the distance from it to the nearest
training point on each class (the margin). To maximize this measure, the SVM minimizes the Euclidean norm of coefficients
w [24]. Additionally, we intend to classify the training vectors xi correctly into two different classes yi:
min
w;b

1
2

wk k2

s:t: yi � ðw> � xi þ bÞP 1; i ¼ 1; . . . ;m:
ð1Þ
2.2. Soft margin SVM

Notice that if there is no hyperplane that can split both classes, formulation (1) becomes unfeasible. Cortes and Vapnik [9]
suggested a modified formulation that allows misclassification by balancing the structural risk (minimization of the Euclid-
ean norm), and the empirical risk (minimization of misclassification errors) by introducing slack variables ni; i ¼ 1; . . . ;m,
which measure the degree of misclassification for an instance xi, and a penalty parameter C, which controls this trade-off.
For a linear penalty function, the soft margin SVM formulation becomes:
min
w;b;n

1
2

wk k2 þ C
Xm

i¼1

ni

s:t: yi � ðw> � xi þ bÞP 1� ni; i ¼ 1; . . . ;m;

ni P 0; i ¼ 1; . . . ;m:

ð2Þ
One important advantage of formulation (2) is that these slack variables do not appear in the dual formulation of the
problem, resulting only in an additional constraint on the Lagrange multipliers, upper bounding them with the parameter C.

Formulation (2) can be solved efficiently in the dual space using the Sequential Minimal Optimization (SMO) technique
[17], among others. Some studies have also been proposed for solving the primal SVM formulation efficiently, using a New-
ton-based algorithm [13] or back-fitting strategies [16], for example.

2.3. Linear Programming SVM

The method LP-SVM attempts to improve training times by loosening the bound of the VC dimension using the l1-norm,
resulting in a linear programming formulation that controls the margin maximization directly, by considering a margin var-
iable r [29]. This variable is then maximized while assuring that each instance is on the right side of the hyperplane, and is at
least at a distance r from it. The LP-SVM hard-margin formulation for linearly separable problems follows:
min
w;r;b

�r

s:t: yi � ðw> � xi þ bÞP r; i ¼ 1; . . . ;m;

�1 6 wj 6 1; j ¼ 1; . . . ;n;

r P 0:

ð3Þ
Similar to the standard SVMs, a soft-margin strategy has been proposed for non-separable cases, where a set of slack vari-
ables is introduced and penalized in the objective function:
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min
w;r;b;n

�r þ C
Xm

i¼1

ni

s:t: yi � ðw> � xi þ bÞP r � ni; i ¼ 1; . . . ;m;

�1 6 wj 6 1; j ¼ 1; . . . ; n:

ni P 0; i ¼ 1; . . . ;m:

r P 0;

ð4Þ
where C is a positive hyperparameter that can be calibrated using cross-validation. The decision function of LP-SVM is also
similar to that of the standard SVMs. The approach was tested on simulated and real data sets in Zhou et al. [29], leading to
an improvement of at least an order magnitude in the training speed and making it especially suitable for complex machine
learning tasks, such as large scale problems or feature selection. Even if the VC dimension of LP-SVM is larger than l2-SVM,
the generalization error obtained by the authors was smaller than when using SVMs in most cases, from which is was con-
cluded that the loss, in terms of structural risk, is tolerable. The dual formulation of (3) can be stated as follows: (see Appen-
dix A for details)
min
z1 ;z2

kAz1 � Bz2k1

s:t: e>z1 ¼ 1; e>z2 ¼ 1;
z1 � 0; z2 � 0:

ð5Þ
The dual problem (5) has an interesting geometrical interpretation, since it attempts to find the closest points of the train-
ing patterns using the 1-norm.

2.4. Second order cone programming SVM

The SOCP-SVM formulation provides a robust and efficient framework for classification since it considers all possible
choices of class-conditional densities with a given mean and covariance matrix, achieving great predictive results under dif-
ferent conditions of the data sets [8,18]. Let X1 and X2 be random vectors that generate the samples of the positive and neg-
ative classes respectively, with means and covariance matrices given by ðli;RiÞ for i ¼ 1;2, where Ri 2 Rn�n are symmetric
positive semidefinite matrices.

In order to construct a maximum margin linear classifier, such that the probability of false-negative and false-positive
errors does not exceed g1 2 ð0;1� and g2 2 ð0;1� respectively, Nath and Bhattacharyya [15] suggested considering the follow-
ing quadratic chance-constrained programming problem:
min
w;b

1
2
kwk2

s:t: Prfw> � X1 � b � 0gP g1;

Prfw> � X2 � b � 0gP g2:

ð6Þ
In other words, the model requires that the random variable Xi lies on the correct side of the hyperplane, with a proba-
bility greater than gi for i ¼ 1;2. In this case, we want to be able to classify each training pattern i ¼ 1;2 correctly, up to the
rate gi, even for the worst data distribution, considering mean and covariance Xi � ðli;RiÞ. For this purpose, the probability
constraints in (6) are replaced with their robust counterparts:
inf
X1�ðl1 ;R1Þ

Probfw> � X1 � b � 0gP g1; inf
X2�ðl2 ;R2Þ

Probfw> � X2 � b � 0gP g2:
Thanks to an appropriate application of the multivariate Chebyshev inequality [10, Lemma 1], this worst distribution ap-
proach leads to the following deterministic problem
min
w;b

1
2
kwk2

s:t: w> � l1 � b � 1þ j1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w> � R1w

p
;

b�w> � l2 � 1þ j2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w> � R2w

p
;

ð7Þ
where ji ¼
ffiffiffiffiffiffiffiffi
gi

1�gi

q
, for i ¼ 1;2.

By introducing a new variable t and a constraint kwk 6 t, Formulation (7) can be cast as the following problem
min
w;b;t

t

s:t: kwk 6 t

w> � l1 � b � 1þ j1kS>1 wk;
b�w> � l2 � 1þ j2kS>2 wk;
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where Ri ¼ SiS
>
i , for i ¼ 1;2. This new problem is a convex formulation with a linear objective function and three second-or-

der cone (SOC) constraints [3]. An SOC constraint on the variable x 2 Rn is of the form
kAxþ bk 6 c> � xþ d;
where d 2 R; c 2 Rn; b 2 Rm;A 2 Rm�n are given.

3. Alternative SOCP-based approaches for support vector classification

In this section, we present two novel approaches for binary classification using second-order cones and describing their
relationship with standard SVM and SOCP-SVM. A comparison between these approaches is presented in the next section.

3.1. n-SOCP Support Vector Machine

This formulation extends the ideas of the soft-margin SVM approach [9] for training data that are not linearly separable
(cf. (2)) to SOCP-SVM. The main idea is to provide a relaxation of the conic constraints by including a slack variable, penal-
izing it in the objective function. The structural risk is then controlled by the trade-off between the Euclidean norm mini-
mization and a margin variable n, as follows:
min
w;b;n

1
2 kwk

2 þ Cn

s:t: inf
X1�ðl1 ;R1Þ

Probfw> � X1 P b� ngP g1;

inf
X2�ðl2 ;R2Þ

Probfw> � X2 6 bþ ngP g2;

n � 0;
where C > 0 is a sufficiently large penalty parameter, which can be calibrated in the same form as soft-margin SVM (using
cross-validation for instance). The parameters g1;g2 are also similar to the SOCP-SVM formulation presented in previous sec-
tions, taking values in (0,1).

Again, thanks to an appropriate application of the multivariate Chebyshev inequality, the above problem can now be sta-
ted as the following quadratic SOCP problem:
min
w;b;n

1
2
kwk2 þ Cn

s:t: w> � l1 � b � 1� nþ j1kS>1 wk;
b�w> � l2 � 1� nþ j2kS>2 wk;
n P 0;

ð8Þ
where Ri ¼ SiS
>
i and ji ¼

ffiffiffiffiffiffiffiffi
gi

1�gi

q
for i ¼ 1;2. This problem will be called the n-SOCP-SVM formulation.

By introducing a new variable t and a constraint 1
2 kwk

2
6 t, Formulation (8) can be cast as the following linear SOCP

problem
min
w;b;n;t

t þ Cn

s:t:
ffiffiffi
2
p

w
1� t

 !�����
����� 6 1þ t;

w> � l1 � b � 1� nþ j1kS>1 wk;
b�w> � l2 � 1� nþ j2kS>2 wk;
n P 0:

ð9Þ
Applying the KKT conditions to the Lagrangian of Problem (8) (see Appendix B for details), we obtain the following dual
formulation results for n-SOCP-SVM:
min
z1 ;z2

1
2
kz1 � z2k2

s:t: zi 2 Biðli; Si;jiÞ; i ¼ 1;2;

kz1 � z2kP
2ffiffiffi
C
p ;

ð10Þ
where
Biðli; Si;jiÞ ¼ fzi : zi ¼ li � ð�1ÞijiSiui; kuik � 1g; i ¼ 1;2:
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The sets Biðli; Si;jiÞ are ellipsoids centered at li whose shape is determined by Si and size by ji. Thus, the dual problem
(10) can be seen as finding the minimum distance between two ellipsoids under the constraint kz1 � z2kP 2ffiffi

C
p . Note that, if C

is too small, the dual problem will not be feasible. If the ellipsoids are intersecting, and if C is too large, then we obtain w ¼ 0.
This follows since w ¼ tðz1 � z2Þ (cf. (19) in Appendix B).

In Fig. 1, we illustrate the points in the ellipsoids (in 2D) obtained by using the formulation (10) for C ¼ 2�4(blue hyper-
plane), C ¼ 2�1(red hyperplane), and C ¼ 22(violet hyperplane).

3.2. r-SOCP Support Vector Machine

The reasoning behind the r-SOCP-SVM is that we can control the complexity of the approach (and therefore reduce the
Structural risk) by maximizing a margin variable r directly, eliminating the Euclidean norm of the coefficients from the for-
mulation. This margin variable is essentially the same as n in the n-SOCP formulation, resulting in an extension of the LP-SVM
formulation presented in Section 2.3 to second-order cone programming.

The new formulation transforms a quadratic problem with conic restrictions (QSOCP) to a linear one with conic restric-
tions (SOCP), reducing the computational complexity of the approach. For this, we consider the following linear chance-con-
strained programming problem:
min
w;b;r

� r

s:t: inf
X1�ðl1 ;R1Þ

Probfw> � X1 P bþ rgP g1;

inf
X2�ðl2 ;R2Þ

Probfw> � X2 6 b� rgP g2;

� 1 6 wj 6 1; j ¼ 1; . . . ; n;

r P 0:

ð11Þ
The previous formulation can be cast into the following linear SOCP problem:
min
w;b;r

� r

s:t: w> � l1 � b P r þ j1kS>1 wk;
b�w> � l2 P r þ j2kS>2 wk;
� 1 6 wj 6 1; j ¼ 1; . . . ;n;

r P 0;

ð12Þ
where Ri ¼ SiS
>
i and ji ¼

ffiffiffiffiffiffiffiffi
gi

1�gi

q
for i ¼ 1;2.

We referred to the above formulation as r-SOCP-SVM. This approach has the advantage of needing only two conic con-
straints for classification instead of three, as in the case of standard SOCP-SVM or n-SOCP-SVM. Additionally, no tradeoff
parameter C is needed, reducing calibration times. The dual formulation for r-SOCP-SVM can be obtained (see Appendix C
for derivation), leading to the following problem:
−3 −2 −1 0 1 2 3 4 5 6
−3

−2

−1

0

1

2

3

4

B1(μ1,S1,κ1)

B2(μ2,S2,κ2)

Fig. 1. Geometric interpretation of the formulation (10) for different values of C and its optimal hyperplane.
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min
z1 ;z2

1
2
kz1 � z2k1

s:t: zi 2 Biðli; Si;jiÞ; i ¼ 1;2:
ð13Þ
Thus, the dual formulation minimizes the distance between two ellipsoids using the 1-norm. Fig. 2 shows a comparison
between SOCP-SVM, based on the 2-norm (blue hyperplane), and r-SOCP-SVM, based on the 1-norm (red hyperplane).

4. Experimental results

We applied the proposed and alternative approaches to six well-known benchmark data sets from the UCI Repository [6].
These sets have already been used for benchmarks in Support Vector Machines (see, for example, Ali and Smith-Miles [1] and
Song et al. [20]).

We provide a description of all the data sets in Section 4.1, while Section 4.2 presents a summary of the performance ob-
tained for all the proposed and alternative approaches. Finally, an empirical study regarding the influence of the different
parameters and an extended discussion of the results is presented in Section 4.3.

4.1. Description of data sets and validation procedure

A brief description of the data sets is presented here. More information on these datasets can be found in the UCI Repos-
itory [6].

	 Australian Credit (AUS): This data set contains 690 granted loans from an Australian credit company, 383 good and 307
bad payers in terms of repayment, described by 14 variables (6 numerical and 8 categorical attributes). All attribute infor-
mation has been modified to protect confidentiality of the data.
	 Wisconsin Breast Cancer (WBC): This data set contains 569 observations of tissue samples (212 diagnosed as malignant

and 357 diagnosed as benign tumors) described by 30 continuous features, computed from a digitized image of a fine nee-
dle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image, such as the perim-
eter, the area, the symmetry, and the number of concave portions of the contour.
	 Pima Indians Diabetes (DIA): The Pima Indians Diabetes data set presents 8 features and 768 instances (500 tested neg-

ative for diabetes and 268 tested positive). All patients are females at least 21 years old of Pima Indian heritage. The fea-
tures include age, number of times pregnant, diastolic blood pressure and body mass index, among others.
	 German Credit (GC): This data set presents 1000 granted loans, 700 good and 300 bad payers in terms of repayment,

described by 24 attributes. The variables include loan information (amount, duration, and purpose), credit history, per-
sonal information (sex, marital status, number of years in present employment) and other variables to assess financial
capacity and willingness to pay (properties, telephone, among others).
	 Ionosphere (ION): This radar data presents 351 instances, 225 labeled as good radar returns (evidence of some type of

structure in the ionosphere) and 126 labeled as bad radar returns (no evidence of structure, their signals pass through
the ionosphere), described by 34 continuous attributes. The targets were free electrons in the ionosphere.
−2 −1 0 1 2 3 4 5
−1

0

1

2

3

4

5

B2(μ2,S2,κ2)

B1(μ1,S1,κ1)

z1

z1
*

z2
*

z2

Geometric interpretation of the distance between two ellipsoids by using the 1-norm (red) and the 2-norm (blue). (For interpretation of the
ces to color in this figure legend, the reader is referred to the web version of this article.)
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	 Splice (SPL): This data set contains 1000 randomly selected instances (from the complete set of 3190 splice junctions), in
which 517 are labeled as IE (intron–exon) and 483 as EI (exon–intron) borders, described by 60 categorical variables (the
gene sequence). Given a DNA sequence, the problem posed in this dataset is recognizing the boundaries between exons
and introns (the parts of the sequence retained after splicing and the parts that are spliced out, respectively).
	 Colorectal Microarray (CMA): This data set contains the expression of the 2000 genes with the highest minimal intensity

across 62 tissues (40 tumor and 22 normal). The genes are placed in order of descending minimal intensity. More infor-
mation about this data set can be found in Alon et al. [4].
	 Lymphoma Microarray (LMA): The lymphoma problem contains the gene expression of 96 samples (61 malignant and

35 normal) described by 4026 features. The problem refers to the diffuse large B-cell lymphoma (DLBCL), the most com-
mon subtype of non-Hodgkin’s lymphoma. More information about this data set can be found in Alizadeh et al. [2].

Table 1 summarizes the relevant information for each benchmark data set.
Results for the classification approaches SVM in its standard version, LP-SVM, SOCP-SVM (Formulation (7)), and the pro-

posed approaches n-SOCP-SVM (Formulation (8)) and r-SOCP-SVM (Formulation (12)) are presented next. The following
model selection procedure was performed: training and test subsets were constructed using 10-fold cross-validation for
the first six datasets and leave-one-out validation for the microarray data. For this work we studied the metric area under
the curve defined by one run, which is widely known as balanced accuracy [19], as the main performance measure. This met-
ric is simply the average between the sensitivity and the specificity.

A grid search is performed to study the influence of the parameters C for soft-margin models and g for SOCP approaches.
In this case, we consider g ¼ g1 ¼ g2 and study the following values of g ¼ f0:2;0:4;0:6;0:8g. We use the following set of
values for hyperparameter C:
Table 1
Numbe

Data

AUS
WBC
DIA
GEC
ION
SPL
CMA
LMA
C ¼ f2�7;2�6;2�5;2�4;2�3;2�2;2�1;20;21;22;23;24;25;26;27g:
For the best C value in terms of AUC we performed a finer grid search around this value, dividing the interval given by the
previous and the subsequent point into 10 parts.

For the above procedure, we used the Spider Toolbox for Matlab [26] for standard SVM approaches, and the SeDuMi Mat-
lab Toolbox for SOCP-based classifiers [22].

4.2. Summary of classification results

In Table 2, we present the results for all eight data sets. Table 2 summarizes the best performance (using the AUC mea-
sure) of all the approaches along the different values of C and g. (The best method is in bold type).

In Table 2 we observe that the best predictive results were achieved using n-SOCP-SVM in seven out of eight datasets,
while standard SVM had better AUC in one dataset (Wisconsin Breast Cancer). n-SOCP-SVM had the second best performance
in this dataset, demonstrating its effectiveness and robustness. The r-SOCP-SVM method is not far from the best value in
most cases. Its advantages are due to its simplicity, resulting in faster iterations during the optimization process and avoid-
ing the calibration of an extra parameter C.

4.3. Influence of the parameters and discussion

In this subsection we report the performance of the proposed methodologies by performing sensitivity analysis of the rel-
evant parameters, characterizing their influence on the final solution. Our goal was to assess whether the results are stable
along different values of the parameters C and/or g. If this is the case, a less rigorous validation strategy can be used. In con-
trast, a high variance in the performance will require more exhaustive model selection in order to find the best combination
of parameters.

Table 3 summarizes the predictive performance in terms of the AUC for SOCP-SVM, n-SOCP-SVM (best performance along
the different values of C) and r-SOCP-SVM, respectively. The average, the minimum, and the maximum performance along
different values of g are computed and presented in this table. Best results for each dataset are presented in bold.
r of features, number of examples, percentage of each class, and Imbalance Ratio (IR) for all data sets.

set #Features #Examples %Class (min.,maj.) IR

14 690 (55.5,44.5) 1.2
30 569 (62.7,37.3) 1.7

8 768 (65.1,34.9) 1.9
24 1000 (70.0,30.0) 2.3
34 351 (64.1,35.9) 1.8
60 1000 (51.7,48.3) 1.1

2000 62 (64.5,35.5) 1.8
4026 96 (63.5,36.5) 1.7



Table 2
Mean AUC, in percentage, for all data sets. Best performance along all parameters.

AUS WBC DIA GEC ION SPL CMA LMA

SVM 85.9 97.4 70.6 66.6 83.1 80.7 83.4 93.9
LP-SVM 86.3 96.5 73.3 69.4 84.1 80.7 86.9 94.1
SOCP 86.9 96.8 74.2 72.3 83.8 81.3 85.9 94.1
n-SOCP 87.7 97.3 75.4 72.8 84.9 81.5 90.0 94.6
r-SOCP 86.3 96.5 72.7 72.3 83.5 80.9 86.3 86.3

Table 3
Mean AUC, in percentage, for all data sets. Sensitivity analysis for parameter g.

AUS WBC DIA GEC ION SPL CMA LMA

SOCPg¼0:2 86.2 94.3 74.2 72.3 82.7 81.3 85.9 94.1
SOCPg¼0:4 86.2 95.6 71.1 72.0 82.7 81.1 85.9 94.1
SOCPg¼0:6 86.3 96.7 45.9 62.1 83.8 78.3 85.9 94.1
SOCPg¼0:8 86.9 96.8 73.4 65.4 78.3 32.4 85.9 94.1
n-SOCPg¼0:2 87.3 94.3 74.3 72.8 82.7 81.3 86.3 91.7
n-SOCPg¼0:4 87.7 95.6 74.3 72.6 82.9 81.1 86.3 94.6
n-SOCPg¼0:6 87.2 96.7 74.4 72.6 84.3 81.5 88.8 94.6
n-SOCPg¼0:8 87.1 97.3 75.4 71.6 84.9 80.8 90.0 94.6
r-SOCPg¼0:2 83.9 93.6 72.7 72.3 80.6 74.6 85.0 83.9
r-SOCPg¼0:4 85.1 94.4 63.8 70.3 82.6 80.9 86.3 85.1
r-SOCPg¼0:6 86.3 96.5 70.1 69.5 83.5 78.0 86.3 86.3
r-SOCPg¼0:8 78.8 96.1 62.4 55.9 81.9 76.3 79.6 78.9
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An important influence of parameter g can be observed in Table 3. The optimal g value varies along the different methods
and datasets, and predictive performance is strongly affected by this parameter. Since no clear rule can be defined in order to
obtain this value, it is important to set it using cross-validation considering the values presented in this work (or a broader
range of them). Nevertheless, the results are relatively stable along all different g values.

In order to study the influence of hyperparameter C in the solution, Figs. 3 and 4 present the predictive performance in
terms of AUC for standard SVM, LP-SVM, and n-SOCP-SVM, by varying this parameter along the set of different values de-
scribed earlier. Fig. 3 presents the first four datasets, while Fig. 4 shows the latter four.

Figs. 3 and 4 show similar results for all eight datasets while varying the parameter C. While standard SVM and LP-SVM
present very stable results, n-SOCP-SVM has very high variance along the different values of C. A finer grid search is per-
formed around the optimal value for this method, and the results are stable in this search.

Although the results obtained with our approach are better in terms of balanced performance in five out of six trials (in
the remaining case AUC is slightly low, and the difference is not significant), the parameter C shows a very strong influence in
the final outcome of the proposed method, which makes it even more influential than the parameter g. Performing an ade-
quate grid search is highly recommended, varying the parameters C and g along the suggested values in order to obtain the
desired results.

The proposed approaches are based on SOCP formulations, which are known to be more time-consuming than linear and
quadratic programming, and are therefore, in general, less suitable for machine learning where huge datasets are to be ana-
lyzed. Table 4 provides a comparison for one run of the proposed method (one fold using 10-fold cross-validation or leave-
one-out in the case of microarray datasets). The mean running time (in seconds) is obtained by averaging all running times
for different folds. Additionally, the average number of iterations required for all SOCP approaches is presented in
parenthesis.

It is important to notice that all running times are tractable and reasonable. All presented times are relatively similar for
all methods, with the approach r-SOCP-SVM being the only exception, since it is significantly slower than the others, espe-
cially for the lymphoma microarray data. The reason for this is the number of iterations required for convergence for this
approach (presented in parenthesis), which is higher than that for the other SOCP methods. n-SOCP-SVM is consistently fas-
ter than standard SOCP-SVM, and even faster than traditional SVM in seven out of eight datasets, which seems contradictory
given the additional decision variable. The method’s ability to find a better initial solution and to reach convergence in fewer
iterations makes it not only the most accurate one, but also the fastest among the SOCP methods, although the grid search
requires more experiments for an adequate parameter setting. Considering 25 and 4 experiments for the grid search of C and
g, respectively, a total of 250 experiments were performed for standard SVM and LP-SVM, 40 experiments for standard SOCP
and r-SOCP-SVM, and 1000 experiments for n-SOCP-SVM, considering 10-fold cross-validation. The most time-consuming
family of experiments is n-SOCP-SVM for the LMA dataset, which requires 100 experiments using LOO-cross-validation
(96 instances), resulting in approximately 100 � 96 � 1:35 ¼ 3:6 h. The remaining experiments were always below one hour’s
duration.
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5. Conclusions

In this work, we presented two binary classification approaches based on second-order cone programming and Support
Vector Machines. The main idea is to provide alternative SOCP formulations adapting two SVM-based methods, namely soft-
margin l2-SVM and LP-SVM, to improve the well-known SOCP-SVM in terms of predictive performance and computational
complexity. While the first proposed approach, n-SOCP-SVM, focuses on the first challenge, adjusting better to data by con-
trolling the complexity of the model via a slack variable, the second one, r-SOCP-SVM, focuses on the second objective,
reducing the complexity of SOCP-SVM by loosening the bound of the VC dimension. A comparison with other SVM-based
classification approaches shows the advantages of the proposed methods:

	 The method n-SOCP-SVM outperforms other SVM-based classification techniques in terms of predictive performance,
based on its ability to generalize better by assuming the worst distribution of the data, and directly controlling the error
rate via the parameter g.
	 They provide more efficient implementations, leading to a reduction in terms of running times.
	 They can be extended to variations of SVM, such as Multi-class SOCP-SVM or kernel-based SOCP-SVM.

Several conclusions can be drawn from the experimental section of this work. Predictive performance (in terms of AUC) is
significantly improved with SOCP-SVM classifiers, compared to standard SVM. This result demonstrates the advantage of
treating the training patterns as two different (conic) constraints. This is particularly important in imbalanced data sets with
uneven error costs, where accuracy becomes an ineffective measure of predictive performance. Additionally, the n-SOCP-
SVM method achieves better overall performance than all benchmark approaches used in these experiments, achieving best
or second best performance for all datasets. By contrast, the r-SOCP-SVM formulation leads to comparable results with re-
duced computational times and without the need for the calibration of an extra hyperparameter C, which has proved to be
necessary in order to achieve the desired results, according to our experiments.

There are several opportunities for future work. These methods can be extended to other machine learning tasks which
are beyond the scope of this work but could be handled well by the proposed formulations. For instance, the extension of



Table 4
Average running times, in seconds, and number of iterations for all datasets.

AUS WBC DIA GEC ION SPL CMA LMA

SVM 0.5 0.3 0.3 0.5 0.3 0.7 0.8 1.2
LP-SVM 0.2 0.1 0.1 0.3 0.1 0.4 0.4 0.7
SOCP 0.24(8) 0.25(8) 0.29(10) 0.46(10) 0.27(9) 0.61(9) 0.69(10) 1.91(11)
n-SOCP 0.19(6) 0.21(6) 0.2(6) 0.24(6) 0.21(6) 0.47(6) 0.55(6) 1.35(7)
r-SOCP 0.83(13) 0.82(10) 0.84(11) 1.05(16) 0.91(13) 1.32(15) 1.85(19) 7.39(23)
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these methods to kernel approaches might lead to better performance, thanks to the ability of constructing non-linear clas-
sifiers. SOCP-SVM also presents interesting properties for classification on highly imbalanced data sets, and a redefinition of
the margin variable r can be considered to adjust the hyperplane, and to favor the target data in the construction of the
classifier.

There is a pressing need for more efficient implementations of second-order cone programming formulations. Our formu-
lations were solved by using SeDuMi solver. An ad hoc algorithm for SOCP-SVM, however, would potentially improve their
running times. For instance, an iterative scheme (e.g. [11]) could be implemented to find the distance between two ellip-
soids, thus solving the formulations (10) and (13). Faster implementations are necessary for the method to become a viable
alternative to traditional SVM for large scale datasets.
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Appendix A. Dual formulation for LP-SVM

Let us denote the number of elements of the positive and negative class by m1 and m2, respectively; by A 2 Rn�m1 a data
matrix for the positive class; by B 2 Rn�m2 a data matrix for the negative class; and by e ¼ ð1; . . . ;1Þ a vector of ones of appro-
priate dimension. We denote the vectors in Rm1 by a subscript 1; those in Rm2 by a subscript 2; and those in Rn without a
subscript. With this notation, the problem (3) can be rewritten as
min
w;r;b

�r

s:t: A>wþ ðb� rÞe P 0;
�B>w� ðbþ rÞe P 0;

�1 6 wj 6 1; j ¼ 1; . . . ;n;

r P 0:

ð14Þ
The Lagrangian function associated with problem (14) is given by
Lðw; b; r; z1; z2; t;u;vÞ ¼ �r � hA>wþ ðb� rÞe; z1i � h�B>w� ðbþ rÞe; z2i � rt � he�w;ui � heþw;vi:
Therefore, the dual problem of the linear one (14) is the following:
max Lðw; b; r; z1; z2; t;u;vÞ
s:t: rwL ¼ �Az1 þ Bz2 þ u� v ¼ 0;
@L
@b
¼ �e>z1 þ e>z2 ¼ 0;

@L
@r
¼ �1þ e>z1 þ e>z2 � t ¼ 0;

z1 � 0; z2 � 0; t � 0; u � 0; v � 0;
where rwL denotes the gradient of L with respect to the vector w. Simplifying, one has
max
u;v;z1 ;z2

� e>ðuþ vÞ

s:t: u� v ¼ Az1 � Bz2;

e>z1 ¼ 1; e>z2 ¼ 1;
z1 � 0; z2 � 0; u � 0; v � 0:

ð15Þ
Hence, the dual can be stated as follows:
max
z1 ;z2

� kAz1 � Bz2k1

s:t: e>z1 ¼ 1; e>z2 ¼ 1;
z1 � 0; z2 � 0:
The above problem finding the closest points of the convex hulls of the sets A and B, using the 1-norm.

Appendix B. Dual formulation for n-SOCP-SVM

We denote by
giðw; b; nÞ ¼ ð�1Þi�1l>i ð�1Þi 1

jiS
>
i 0 0

 ! w
b

n

0
B@

1
CAþ �1

0

� �
; ð17Þ
for i ¼ 1;2. Thus, the two conic constraints in (8) can be written as giðw; b; nÞ 2 Knþ1 for i ¼ 1;2, where
Knþ1 :¼ fy ¼ ðy1; �yÞ 2 R�Rn : k�yk 6 y1g. This set is called second-order cone or Lorentz cone.

The Lagrangian functional associated with problem (8) is given by
Lðw; b; n; k1; k2; sÞ ¼
1
2
kwk2 þ Cn�

X2

i¼1

hgiðw; b; nÞ; kii � ns: ð18Þ
Thus, the dual of the SOCP problem (8) is the following
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max Lðw; b; n; k1; k2; sÞ
s:t: rwL ¼ w� ðl1k11 þ j1S1

�k1Þ � ð�l2k21 þ j2S2
�k2Þ ¼ 0;

@L
@b
¼ k11 � k21 ¼ 0;

@L
@n
¼ C � k11 � k21 � s ¼ 0;

k1 ¼ ðk11; �k1Þ; k2 ¼ ðk21; �k2Þ 2 Knþ1; s � 0:
From the second and third equality it follows that s ¼ C � 2t with t ¼ k11 ¼ k21. Then,
w ¼ ðl1t þ j1S1
�k1Þ � tðl2t � j2S2

�k2Þ; ð19Þ
and, t 6 C
2 since s � 0. Consequently, the dual problem can be written as
max
t;u1 ;u2 ;z1 ;z2

� t2

2
kz1 � z2k2 þ 2t

s:t: z1 ¼ l1 þ j1S1u1; z2 ¼ l2 � j2S2u2

ku1k � 1; ku2k � 1; 0 6 t 6
C
2
:

ð20Þ
It is clear that the objective function, in the variable t, is maximized at the point
t ¼ 2

kz1 � z2k2 ; whenever kz1 � z2kP
2ffiffiffi
C
p ; ð21Þ
and with maximum value 2
kz1�z2k2. Then, by using (21) the dual problem of (8) can be stated as follows
min
z1 ;z2

1
2
kz1 � z2k2

s:t: zi 2 Biðli; Si;jiÞ; i ¼ 1;2;

kz1 � z2kP
2ffiffiffi
C
p ;

ð22Þ
where
Biðli; Si;jiÞ ¼ fzi : zi ¼ li � ð�1ÞijiSiui; kuik � 1g; i ¼ 1;2: ð23Þ
Lemma 1. The Lagrange multipliers associated with the conic constraints of the SOC problem (8) are always different from zero.
Proof. The Karush–Kuhn–Tucker (KKT) conditions for the problem (8) are the following:
rwL ¼ 0;
@L
@b
¼ 0;

@L
@n
¼ 0; ð24Þ

k>i � giðw; b; nÞ ¼ 0; i ¼ 1;2; ð25Þ
ns ¼ 0; ð26Þ
ki; giðw; b; nÞ 2 Knþ1; i ¼ 1;2; ð27Þ
n; s � 0: ð28Þ
From the expression rwL ¼ 0, we obtain
kwk2 � ðk11l>1 �wþ j1
�k>1 � S

>
1 wÞ � ð�k21l>2 �wþ j2

�k>2 � S
>
2 wÞ ¼ 0: ð29Þ
And, from (25) and (17) one has
k11w> � l1 þ j1
�k>1 � S

>
1 w ¼ k11ð�nþ bþ 1Þ;

� k21w> � l2 þ j2
�k>2 � S

>
2 w ¼ k21ð�n� bþ 1Þ:

ð30Þ
Substituting (30) in (29) we get
kwk2 � k11ð�nþ bþ 1Þ � k21ð�n� bþ 1Þ ¼ 0:
But k11 ¼ k21 (cf. (24)), so
kwk2 ¼ 2k11ð1� nÞ; ð31Þ

Julio
Highlight
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which together with (28) implies that n 2 ½0;1�. Indeed, if k11 ¼ 0, then w ¼ 0 and from the second equality in (24) and (26) it
follows that n ¼ 0. Moreover, note that in this last case we obtain that �b � 1 and b � 1 from the two first constraints of the
problem (8), which is a contradiction. Thus, we have also proven that the Lagrange multipliers k1; k2 associated with the
conic constraints are always different from zero. h
Appendix C. Dual formulation for r-SOCP-SVM

The Lagrangian associated with formulation (12) is given by:
Lðw; b; r; k1; k2; z1; z2; sÞ ¼ �r �
X2

i¼1

hgiðw; b; nÞ; kii � rs� he�wÞ; z1i � heþwÞ; z2i;
where
giðw; b; rÞ ¼ ð�1Þi�1l>i ð�1Þi �1

jiS
>
i 0 0

 ! w
b

r

0
B@

1
CA; for i ¼ 1;2: ð32Þ
Thus, the dual formulation of the linear SOCP problem (12) is
max Lðw; b; r; k1; k2; z1; z2; sÞ
s:t: rwL ¼ �ðl1k11 þ j1S1

�k1Þ � ð�l2k21 þ j2S2
�k2Þ þ z1 � z2 ¼ 0;
@L
@b
¼ k11 � k21 ¼ 0;

@L
@r
¼ �1þ k11 þ k21 � s ¼ 0;

k1 ¼ ðk11; �k1Þ; k2 ¼ ðk21; �k2Þ 2 Knþ1; s � 0; z1; z2 � 0:
Simplifying, one has
max
k;z1 ;z2 ;u1 ;u2

� e>ðz1 þ z2Þ

s:t: z1 � z2 ¼ kð~z1 � ~z2Þ;
~zi ¼ li � ð�1ÞijiSiui; kuik � 1; i ¼ 1;2;

k P
1
2
; z1 � 0; z2 � 0:
Then, the dual problem of (12) can be stated as follows:
�min
~z1 ;~z2

1
2
k~z1 � ~z2k1

s:t: ~zi 2 Biðli; Si;jiÞ; i ¼ 1;2;
where Bi is defined in (23).
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