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Abstract In this note, we correct a mistake in the paper (López et al., J Optim Theory
Appl 159(3):741–768, 2013).
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1 Introduction

Recently, López et al. [1] introduced new classes of linear transformations on sym-
metric cones, in particular, the class of García’s transformation. With this new class,
they established coercive and noncoercive existence results for the symmetric cone
linear complementarity problem (SCLCP). Unfortunately, the statement of Lemma
4.1, Parts (d), (e), and (f) in [1], which has been used to prove some results, is not true
in general. In this note, we give the correct Proposition 2.1 and modify the formula-
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tions of the corresponding results. We also give a counterexample in the semidefinite
programming (SDP) case to illustrate that Theorem 4.1 in [1] is not true for general
Euclidean Jordan Algebras.

2 Errata Corrige

The following statement appears in Lemma 4.1 of [1].

Lemma 2.1 Let {xk} be a sequence of solutions to (ASCLCPk):

yk := L(xk) + q + θkd ∈ K, 〈d, xk〉 ≤ σk, 〈yk, xk〉 = 0 and θk(σk − 〈d, xk〉) = 0.

such that 〈d, xk〉 = σk for all k ∈ N and xk

σk
→ v for some v ∈ K. Then

(a) v ∈ SOL(L ,K, τvd) with τv = −〈L(v), v〉 ≥ 0. Moreover, there exists a non-
empty subindex set Jv ⊆ {1, . . . , r}, a Jordan frame {e1, . . . , er } and a subse-
quence {km} such that

(b) {ekm
1 , . . . , ekm

r } → {e1, . . . , er } and λ( xkm

σkm
) → λ(v) as m → +∞; thus γ km →

γ := (λ1(v)〈d, e1〉, . . . , λr (v)〈d, er 〉) ∈ �.

(c) γ km ∈ ri(�Jv ); i.e., supp{λ( xkm

σkm
)} = Jv and λ(ykm )

∣
∣
∣

Jv

= 0 for all m ∈ N.

As a consequence, vectors λ(ykm ) have at least |Jv| zeros, which implies that
λ

↑
i (ykm ) = 0 for all i = 1, . . . , |Jv|, and supp{λ(v)} ⊆ Jv . Finally, for every

z ∈ K \ {0} with supp{λ(z)} ⊆ Jv one has
(d) 〈ykm , z〉 = 0 for all m ∈ N;

(e)
〈

L(xkm ) + q, z
〈d,z〉

〉

= 〈L(xkm ) + q, v〉 for all m ∈ N;

(f) 〈L(v), z
〈d,z〉 〉 = 〈L(v), v〉.

Parts (a), (b), and (c) above have been properly proved. However, the proof of Part
(d) contains a mistake. Therein, one needs that λ

↑
i (z) = 0 for all i = 1, . . . , r − |Jv|

be fulfilled instead of λ
↑
i (z) = 0 for all i = |Jv| + 1, . . . , r , where λ↑(z) denotes

the vector of eigenvalues of z, whose components are arranged in the nondecreasing
order. Consequently, items (e) and (f) are no longer true.

The latter leads to the following wrong sentence appearing in Proposition 4.2 of [1].

Proposition 2.1 If L ∈ G#, then SOL(L ,K, q)∞ ⊆ SOL(L ,K, 0) ∩ {−q}+.

Indeed, the proof given in [1] correctly shows that SOL(L ,K, q)∞ ⊆ {−q}+
provided that Parts (e) and (f) of Lemma 4.1 are true. Hence, since Parts (d), (e), and
(f) are no longer true, the corrected version of Proposition 4.2 in [1] now reads as
follows.

Proposition 2.2 If L ∈ G, then SOL(L ,K, q)∞ ⊆ SOL(L ,K, 0).

Finally, the proof of the following sentences, appearing in Theorem 4.1 of [1], also
uses Lemma 4.1.
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Theorem 2.1 Let q ∈ V and L ∈ G#.

(a) If q ∈ SOL(L ,K, 0)+, then SOL(L ,K, q) is nonempty (possibly unbounded);
(b) If q ∈ int[SOL(L ,K, 0)+], then SOL(L ,K, q) is nonempty and compact.

It is interesting to note that this result is indeed true when K = R
n+ (cf. [[2],

Theorems 9, 11]). However, this is not necessarily true for other Euclidean Jordan
Algebras. This is shown via the next counterexample in the SDP case.

Example 2.1 Let

A =
(

0 1
1 0

)

and C =
(

1 0
0 0

)

.

The pair of primal and dual SDP problems

min{〈C, X〉 : 〈A, X〉 ≥ 2, X ∈ S2+} (1)

and
max{2t : C − t A ∈ S2+, t ≥ 0}, (2)

do not have a primal-dual optimal solution. Indeed, it is easy to check that t = 0 is the
only feasible solution of (2). If we denote by Xi j the (i, j)-th entry of X, it is easy as
well to check that X is feasible for (1) iff

X12 = X21 ≥ 1, X11 ≥ 0, X22 ≥ 0 and X11 X22 ≥ 1.

Hence, (1) is feasible but does not have an optimal solution (because its optimal
value is 0 but it is never achieved).

Now, let L : S3 → S3 be a linear transformation and Q ∈ S3 be defined as follows:

L

(

X u
u� t

)

:=
(−t A 0

0� 〈A, X〉
)

and Q :=
(

C 0
0� −2

)

.

It is easy to check that L is monotone (hence L ∈ G#). Moreover, Feas(L , Sn+, Q) =
∅ since

(

X 0
0� 0

)

∈ Feas(L , Sn+, Q) for X =
(

1 1
1 1

)

.

The solution of the corresponding SDLCP satisfies

X ∈ S2+, t ≥ 0, C − t A ∈ S2+, 〈A, X〉 − 2 ≥ 0, 〈X, C − t A〉 = 0

and
t (〈A, X〉 − 2) = 0,

or equivalently, any solution of SDLCP(L , S3+, Q) yields an (X, t) one for the above
pair of primal and dual SDPs. Since this pair do not have primal-dual solutions, we
conclude that S(L , Sn+, Q) = ∅.
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The above example shows that Theorem 2.1, Part (a) [and consequently Part (b)]
is not true. Once again, the problem comes from the fact that its proof is based on
Lemma 2.1, Part (e).

It is important to note that Corollary 4.1 in [1] is still correct. Let us recall this
result.

Corollary 2.1 If L ∈ G, then L ∈ R0 iff L ∈ Qb.

Indeed, L ∈ Qb clearly implies that L ∈ R0. In the opposite direction, it suffices
to note that if L ∈ R0 ∩ G, then L ∈ Q (see [3]).
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