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Centro de Modelamiento Matemático (CNRS UMI 2807), FCFM,
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We consider the problem minx∈Rn{f(x) | Ax = b, x ∈ C, gj(x) ≤ 0, j = 1, . . . , s}, where b ∈ R
m,

A ∈ R
m×n is a full rank matrix, C is the closure of a nonempty, open and convex subset C of Rn,

and gj(·), j = 1, . . . , s, are nonlinear convex functions. Our strategy consists firstly in to introduce a
barrier-type penalty for the constraints gj(x) ≤ 0, then endowing {x ∈ R

n | Ax = b, x ∈ C} with the
Riemannian structure induced by the Hessian of an essentially smooth convex function h such that
C = int(domh), and finally considering the flow generated by the Riemannian penalty gradient vector
field. Under minimal hypotheses, we investigate the well-posedness of the resulting ODE and we prove
that the value of the objective function along the trajectories, which are strictly feasible, converges
to the optimal value. Moreover, the value convergence is extended to the sequences generated by an
implicit discretization scheme which corresponds to the coupling of an inexact generalized proximal
point method with parametric barrier schemes. Specializations and simple illustrations of the general
results are given for the positive orthant, the unitary simplex and the second-order cone.

1. Introduction

In this paper we treat a general mathematical programming problem of the type

(P ) v(P ) ≡ min{f(x) | Ax = b, x ∈ C, gj(x) ≤ 0, j ∈ I},

where f : R
n → R and gj : R

m → R for j ∈ I := {1, . . . , s} are continuously
differentiable convex functions, A ∈ R

m×n is a full rank matrix with m ≤ n, b ∈ R
m
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and C is the closure of a nonempty, open and convex set C ⊂ R
n. The idea here is

to distinguish among three kinds of constraints: linear equality constraints of the form
Ax = b, polyhedral or conic constraints represented by the convex inclusion x ∈ C,
and additional nonlinear inequality constraints gj(x) ≤ 0, j ∈ I.

In order to motivate our approach, let us start with the unconstrained minimization
of f . Given a starting point x0 ∈ R

n, the gradient algorithm corrects the current
iterate by following the steepest descent direction, that is, xk+1 = xk − λk∇f(x

k),
where λk > 0 is an appropriate stepsize and ∇f stands for the Euclidean gradient of
f . This can be viewed as a discretization of the continuous-in-time gradient method

given by du
dt
(t) = −∇f(u(t)), t > 0, see [19]. An implicit discretization of this ODE

yields to xk+1 = xk − λk∇f(x
k+1), which for a convex function is equivalent to an

exact iteration of the Euclidean proximal point algorithm [28]: xk+1 = argmin
{

f(y) +
1

2λk
‖y−xk‖2

}

. The latter makes sense even for a nonsmooth objective function. Under
several conditions, these methods share some qualitative and asymptotic convergence
properties [18, 28].

Suppose now that we are interested in minimizing f on the positive orthant Rn
+. Ac-

cording to the ODE approach, we can consider the following scaled version of the
gradient method:

dui
dt

(t) = −ui(t)
∂f

∂xi
(u(t)), i = 1, . . . , n. (1)

This equation generates strictly feasible trajectories: if ui(0) = x0i > 0 then ui(t) > 0
for all t > 0. This is also a descent method as long as ui(t) > 0; in fact d

dt
f(u(t)) =

−
∑n

i=1 ui(t)
∣

∣

∂f

∂xi
(u(t))

∣

∣

2
≤ 0. The dynamical system given by (1) is a special case of

the so called Hessian Riemannian gradient flows [2]. More precisely, it turns out that
(1) can be expressed as

du

dt
(t) = −∇2h(u(t))−1∇f(u(t)) (2)

where∇2h(x) stands for the Hessian matrix at x of the function h(x) =
∑n

i=1 xi logxi−
xi. The vector field on R

n
++ defined by gradh f(x) = ∇2h(x)−1∇f(x) is precisely the

gradient of f with respect to the Riemannian metric given by

∀v, w ∈ R
n, (v, w)x := 〈∇2h(x)v, w〉. (3)

In this special case we obtain (v, w)x =
∑n

i=1 viwi/xi for x ∈ R
n
++. On the other

hand, notice that du
dt

= −∇2h(u)−1∇f(u) ⇔ d
dt
∇h(u) +∇f(u) = 0. Thus an implicit

discretization of (2) yields 1
λk
[∇h(xk+1)−∇h(xk)]+∇f(xk+1) = 0, which is is an exact

iteration of the generalized proximal point algorithm [9, 11, 12, 23].

The well-posedness, asymptotic behavior as t → +∞ and other properties of au-
tonomous gradient systems as (2) are investigated in [2]; see also [5, 10]. More pre-
cisely, in [2] it is considered the case where the optimization problem is of the form
min{f(x) | Ax = b, x ∈ C}, by assuming that there exists an essentially smooth convex
function hC such that in particular C = int(domhC), whose Hessian matrix ∇2hC(x)
is used to endow the manifold {x ∈ R

n | Ax = b, x ∈ C} with a Hessian Riemannian
metric (·, ·)x given by (3) for h = hC . Setting

A = {x ∈ R
n | Ax = b}, (4)
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the corresponding gradient flow on A ∩ C is then given by du
dt
(t) = − gradhC

f(u(t)),
where gradhC

f : A ∩ C → kerA is the Riemannian gradient with respect to (·, ·)x of
f restricted to A ∩ C; see Section 2 for more details. The connection of this flow with
generalized proximal point algorithms and central paths in linear programming was
first investigated in [21].

Let us return to the minimization problem (P ). In order to handle the additional
nonlinear constraints gj(x) ≤ 0 for j ∈ J , we set

G := {x ∈ R
n | gj(x) < 0, j ∈ I}, (5)

which is supposed to be nonempty. Next, we introduce a barrier-type penalty function
θ(·) (e.g. the inverse barrier function θ(s) = −1/s if s < 0 and +∞ otherwise).
Under appropriate conditions, following the approach of [2], we may define hC∩G(x) :=
hC(x)+

∑

i∈J θ(gj(x)), and endow A∩C ∩G, the relative interior of the feasible set of
(P ), with the Hessian Riemannian metric induced by hC∩G. This yields to the following
gradient flow (GF for short) on A ∩ C ∩G:

(GF )
du

dt
(t) = − gradhC∩G

f(u(t))

On the other hand, inspired by the coupling of the Euclidean gradient method with
penalty schemes [4, 8, 14], we introduce a parametric penalty function as follows:
fε(x) := f(x) + ε

∑

j∈I θ(gj(x)/ε), ε > 0, and consider the following hybrid barrier-
gradient flow (B-GF ) on A ∩ C ∩G:

(B-GF )
du

dt
(t) = − gradhC

fε(t)(u(t)),

for a suitable parameterization ε : [0,+∞) → (0,+∞) such that ε(t) → 0 as t→ ∞.

In this paper we focus on the non-autonomous ODE given by (B-GF ) and some related
numerical discretization schemes, providing some comparisons with the alternative ap-
proach given by (GF ). More precisely, in Section 2 we recall some basic definitions
concerning variable metric gradient flows and the coupling with barrier-type penalties,
and we identify some hypotheses for our results. In Section 3, we state and prove our
main result on the global existence for all t ≥ 0 of the solution u(t) to (B-GF ), and the
convergence of f(u(t)) to the optimal value v(P ) as t→ ∞. In Section 4, we introduce
a generalized barrier proximal point algorithm as an implicit discretization in time of
(B-GF ), and establish an analogous value convergence result. In Section 5, we discuss
some simple specializations of (GF ) and (B-GF ) for the positive orthant, the unitary
simplex and the second-order cone, and we also compare the behavior of these flows
through an explicit Euler’s scheme on some toy examples. Finally, in Section 6 we end
the paper with some remarks on open questions.

2. Preliminaries

2.1. Quick review on Hessian Riemannian gradient flows

LetQ ⊂ R
n be a nonempty, open and convex set. We denote by Sn

++ the cone of positive
definite symmetric n× n real matrices. Let h : Rn → R∪ {+∞} be a lower semiconti-
nuous and convex function with effective domain domh = {x ∈ R

n | h(x) < +∞}. We
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assume the following conditions:

(Hh;Q)



















(a) Q = int(domh).

(b) h|Q ∈ C2(Q;R) and ∀x ∈ Q,∇2h(x) ∈ Sn
++.

(c) The map x 7→ ∇2h(x) is locally Lipschitz continuous on Q.

(d) ∀x̄ ∈ ∂Q, ∀xk → x̄ with xk ∈ Q, ‖∇h(xk)‖ → +∞.

In particular, h is essentially smooth and of Legendre type [27, Chapter 26].

Example 2.1. Examples of functions satisfying (Hh;Q) for different choices of Q are
the following:

• h1(x) =
1
2
‖x‖2 = 1

2

∑n

i=1 x
2
i , for Q = R

n.

• h2(x) = −
∑n

i=1

√

1− x2i , for Q = (−1, 1)n.

• h3(x) =
∑n

i=1 xi logxi − xi and h4(x) = −
∑n

i=1 logxi, both for Q = R
n
++.

• LetQ = Ln
++ be the interior of the second-order (or Lorentz) cone Ln

+ in R
n, which

is given by Ln
+ = {x = (x1, x̄) ∈ R×R

n−1 | ‖x̄‖ ≤ x1 }. For x = (x1, x̄) ∈ R×R
n−1

take the following functions h5(x) = − log det(x) for x ∈ Ln
++ and h6(x) =

tr(x ◦ log(x)) − tr(x) for x ∈ Ln
+, where det(x) = x21 − ‖x̄‖2, tr(x) = 2x1 and ◦

denotes the Jordan product for Ln
+ which is defined by x ◦ y = (x⊤y, x1ȳ + y1x̄)

(see [1] for more details).

Notice that for h2, h3 and h6 we have that domh = Q (under the usual convention
0 log 0 = 0), while for h4 and h5 we have domh = Q.

Next, let us endow Q with the variable metric defined by

∀v, w ∈ R
n, (v, w)x := 〈∇2h(x)v, w〉. (6)

Let f : Rn → R be a smooth function and denote by df(x) : Rn → R the differential
of f at x ∈ R

n. For any x ∈ Q and v ∈ R
n we have that df(x)v = 〈∇f(x), v〉 =

〈∇2h(x)∇2h(x)−1∇f(x), v〉 = (∇2h(x)−1∇f(x), v)x. Thus the gradient with respect to
the metric (·, ·)x of f restricted to Q is given by

gradh f(x) = ∇2h(x)−1∇f(x), x ∈ Q. (7)

This is a special case of a Riemannian manifold. Indeed, since Q is open, we can take
the manifold M = Q with the usual identification for the tangent space TxQ ≃ R

n for
every x ∈ Q, and the metric defined by (6) endows Q with a Riemannian structure,
which is at least locally Lipschitz continuous by virtue of (Hh;Q)(c). In general, if
M is a smooth manifold and we denote by TxM the tangent space to M at x ∈ M ,
a Ck metric on M , k ≥ 0, is a family of scalar products (·, ·)x on each TxM such
that (·, ·)x depends in a Ck way on x. The pair (M, (·, ·)x) is called a Ck Riemannian
manifold. This structure permits to define a notion of gradient vector. Indeed, the
gradient grad f(x) of f at x ∈M is uniquely determined by the following conditions:

(g1) tangency condition: grad f(x) ∈ TxM,

(g2) duality condition: for all v ∈ TxM , df(x)v = (grad f(x), v)x.
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If N is a submanifold of M then TxN ⊂ TxM for all x ∈ N so that the metric (·, ·)x
on M induces a metric on N by restriction. So, for any full rank matrix A ∈ R

m×n

with m ≤ n and b ∈ R
m, we can take the smooth submanifold of Q defined by

N := {x ∈ R
n | Ax = b, x ∈ Q} = A ∩Q, where A is given by (4), so that

TxN ≃ kerA = {v ∈ R
n | Av = 0} for each x ∈ N . Definition (6) induces a

Riemannian structure on N . Conditions (g1) and (g2) imply that the corresponding
gradient vector field of f restricted to A ∩Q is given by

gradh f(x) = ΠkerA
x ∇2h(x)−1∇f(x), (8)

where ΠkerA
x : Rn → kerA is the (·, ·)x-orthogonal projection onto the linear subspace

kerA. Since A is supposed to have full rank, it is easy to see that

ΠkerA
x = I −∇2h(x)−1A⊤(A∇2h(x)−1A⊤)−1A, (9)

and we conclude that for all x ∈ A ∩Q we have

gradh f(x) = ∇2h(x)−1[I − A⊤(A∇2h(x)−1A⊤)−1A∇2h(x)−1]∇f(x). (10)

Notice that in absence of linear equality constraints we can take A = 0 and we recover
(7) from (10). In any case, given x ∈ A ∩Q, the vector − gradh f(x) can be interpreted
as that direction in kerA such that f decreases the most steeply at x with respect to
the metric (·, ·)x, which motivates to consider the following dynamical system for the
(local) minimization of f on A ∩Q:

du

dt
(t) = − gradh f(u(t)), (11)

with initial condition u(0) = x0 ∈ A ∩Q. For further developments about this dynam-
ical approach to optimization problems, see [2, 6, 10, 15, 21].

Example 2.2. By taking A = (1, . . . , 1) ∈ R
1×n, b = 1 and Q = R

n
++, we get A∩Q =

∆n−1 := {x ∈ R
n |
∑n

i=1 xi = 1, x ≥ 0}. Here N = A ∩ Q = {x ∈ R
n |
∑n

i=1xi =
1, x > 0} and TxN = {v ∈ R

n |
∑n

i=1vi = 0}. Take h(x) =
∑n

i=1 xi logxi − xi so
that ∇2h(x) = diag(1/x1, . . . , 1/xn), then (11) amounts to dui

dt
(t) = −ui(t)

[

∂f

∂xi
(u(t))−

∑n

j=1 uj(t)
∂f

∂xj
(u(t))

]

, i = 1, . . . , n. See [17, 19, 22] for applications of this ODE to

optimization problems.

2.2. Gradient flows for solving (P )

The feasible solution set F of (P ) is given by F = A∩C ∩G, where A and G 6= ∅ are
given by (4) and (5), respectively. From now on, the set of optimal solutions of (P ) is
denoted by S(P ), the optimal value of (P ) is denoted by v(P ), and F0 = A ∩ C ∩ G
stands for the relative interior of F . Throughout this paper, we assume:

(HP )

{

(a) S(P ) is nonempty and bounded.

(b) F0 6= ∅ (Slater’s condition).

By continuity of all data, we have that infx∈F0 f(x) = minx∈F f(x) = v(P ).
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Remark 2.3. If we replace Ax = b with two sets of inequality constraints, namely
Ax − b ≤ 0 and b − Ax ≤ 0, these inequalities do not satisfy the Slater condition.
Hence, under (HP )(b) the linear equality constraint Ax = b cannot be integrated into
the system of inequalities gj(x) ≤ 0, j ∈ I.

Next, let us take a function hC satisfying (Hh;C), and a barrier-type function θ : R →
(0,+∞] with dom θ = (−∞, 0) such that:

(Hθ)















(a) θ : (−∞, 0) → R is smooth and convex.

(b) θ(s) > 0, for all s ∈ (−∞, 0), with lim
s→0−

θ(s) = +∞.

(c) θ′(s) > 0 with lim
s→−∞

θ′(s) = 0 and lim
s→0−

θ′(s) = +∞.

An example of such a function is the inverse barrier θ(s) = −1/s if s < 0 and +∞
otherwise. We have two alternatives to derive θ-based gradient flows on F0:

(A1) Riemannian gradients flow using the Hessian of the extended function given by

hC∩G(x) := hC(x) +
∑

i∈J
θ(gj(x)), (12)

under second-order regularity conditions on θ and all gj, j ∈ J (at least C2).

(A2) Hybrid barrier-gradient flows using hC and replacing the original objective func-
tion with the penalty approximate defined by

fε(x) = f(x) + ε
∑

j∈I
θ(gj(x)/ε), (13)

where ε > 0 is a scalar parameter which will ultimately go to 0, and all data is
assumed to be at least continuously differentiable.

In the first alternative (A1), we notice that the extended function hC∩G : R
n →

R ∪ {+∞} defined by (12) satisfies (Hh;C ∩ G), hence F0 can be endowed with the
Riemannian structure induced by the Hessian of hC∩G, that is

∇2hC∩G(x) = ∇2hC(x) +
∑

j∈I
θ′′(gj(x))∇gj(x)∇gj(x)

⊤ +
∑

j∈I
θ′(gj(x))∇

2gj(x). (14)

The gradient flow corresponding to (11) is given in this case by

(GF ;u0)







du

dt
(t) = − gradhC∩G

f(u(t)),

u(0) = u0 ∈ F0.

Here gradhC∩Q
f : F0 → R

n stands for the Riemannian gradient vector field of f

restricted to F0, with respect to the Hessian metric given by (6) for Q = C ∩ G and
h = hC∩G. Therefore gradhC∩G

f(x) = ΠkerA
x ∇2hC∩G(x)

−1∇f(x), and the projection
mapping ΠkerA

x : Rn → kerA is given by (9) for h = hC∩G.
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On the other hand, the second alternative (A2) is inspired by previous work on the
coupling of the Euclidean steepest descent method with penalty schemes [4, 8, 14]. In
this case, we consider the non-autonomous Cauchy problem

(B-GF ;u0)







du

dt
(t) = − gradhC

fε(t)(u(t)),

u(0) = u0 ∈ F0,

where the vector field gradh fε : F0 → R
n stands for the gradient of fε restricted to

F0 with respect to the Hessian Riemannian metric given by (6). Here ε : [0,+∞) →
(0,+∞) is a continuously differentiable parameterization in time of the penalty scheme
such that

(Hε) ε(t) > 0, �ε(t) ≤ 0 and lim
t→+∞

ε(t) = 0.

3. Global existence and convergence to the optimal value

Under (HP ), (HhC
;C) and (Hθ), and provided that all data is sufficiently regular, it

follows from [2, Theorem 4.1] that the Cauchy problem (GF ;u0) is well-posed in the
sense that the solution trajectory u(t) is well-defined for all t > 0. Moreover, as f
is convex, it follows from [2, Proposition 4.4] that the objective function along the
trajectories f(u(t)) converges to the optimal value v(P ) as t → ∞. The next result
establishes that the same holds for (B-GF ;u0) under additional condition (Hε).

Theorem 3.1. Under (HP ), (Hh;C), (Hθ) and (Hε), the following statements hold:

(i) The Cauchy problem (B-GF ;u0) admits a unique C1 solution u : [0,+∞) → F0.

(ii) The mapping t 7→ fε(t)(u(t)) is nonincreasing, the trajectory {u(t) | t ∈ [0,+∞)}
is bounded, and ( �u, �u)u ∈ L1([0,+∞);R).

(iii) For all a ∈ F0 and for all t > 0

fε(t)(u(t))

≤ f(a) +
1

t

[

Dh(a, x
0)−Dh(a, u(t)) +

∑

j∈I
θ(gj(a)/ε0)

∫ t

0

ε(s)ds

]

,
(15)

where

Dh(y, x) = h(y)− h(x)− 〈∇h(x), y − x〉 ≥ 0. (16)

Hence,

lim
t→+∞

fε(t)(u(t)) = lim
t→+∞

f(u(t)) = min
F
f = v(P ),

and every cluster point of {u(t) | t→ +∞} belongs to S(P ).

Proof. Under the conditions (HP ), (Hh;C), (Hθ) and (Hε) the mapping (u, t) 7→
gradh fε(t)|A∩C

is locally Lipschitz continuous on A ∩ C and satisfies the hypotheses of
the classical Cauchy-Lipschitz Theorem, which gives the existence and uniqueness of
a local solution of (B-GF ;u0). The global existence of u(t) for all t ∈ [0,+∞) is not
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immediate because of the singular behavior of the vector field near the boundary of
A ∩ C. Then, we first define

Tmax = sup{T > 0 | ∃! solution u of (B-GF ;u0) on [0, T )

such that u([0, T )) ⊂ F0}.
(17)

It follows that Tmax > 0. Let u : [0, Tmax) → F0 be a maximal solution of (B-GF ;u0).
The definition of the projection ΠkerA

x (see (9)) implies that, for all t ∈ [0, Tmax),

�u+∇2h(u)−1∇fε(u) = ∇2h(u)−1A⊤(A∇2h(u)−1A⊤)−1A∇2h(u)−1∇fε(u).

Then, for all y ∈ kerA, we get ( �u+∇2h(u)−1∇fε(u), y + �u)u = 0, that is,

〈∇2h(u) �u+∇fε(u), y + �u〉 = 0. (18)

Letting y = 0 in (18) yields

〈∇fε(u), �u〉+ 〈∇2h(u) �u, �u〉 = 0, (19)

and thus by (Hh;C)(b) one has that 〈∇fε(u), �u〉 ≤ 0. On the other hand, we note that

d

dt
fε(u) = 〈∇fε(u), �u〉+

∂

∂ε
fε(u) �ε

with
∂

∂ε
fε(u) =

∑

j∈I

[

θ(gj(u)/ε)− �θ(gj(u)/ε)
gj(u)

ε

]

if gj(u) < 0.

From (Hθ)(b), (c), we get ∂
∂ε
fε(u) ≥ 0, and as ε satisfies (Hε), we have ∂

∂ε
fε(u) �ε ≤ 0.

Thus, the mapping t 7→ fε(t)(u(t)) is nonincreasing. Moreover, as S(P ) 6= ∅ and
(Hθ)(b) holds, we have that fε(·)(·) is bounded from below by v(P ) and consequently
fε(t)(u(t)) is convergent as t → Tmax. In particular, fε(t)(u(t)) is bounded. Moreover,
as fε(t)(u(t)) is nonincreasing, we have that u(t) ∈ Lf = {y ∈ F | f(y) ≤ fε0(x

0)}, for
all t ∈ [0, Tmax) because fε(u) ≥ f(u). By (HP )(a) together with convexity, it follows
that the level set Lf is bounded, hence {u(t) | t ∈ [0, Tmax)} is bounded.

On the other hand, integrating (19) from 0 to t, with t ∈ [0, Tmax), we obtain

∫ t

0

〈∇2h(u) �u, �u〉ds =

∫ t

0

[

∂

∂ε
fε(u) �ε−

d

ds
fε(u)

]

ds ≤ fε0(x
0)− fε(t)(u(t)).

Then, we get that
〈∇2h(u(·)) �u(·), �u(·)〉 ∈ L1([0, Tmax);R). (20)

Note that if Tmax = +∞, (ii) follows. Let us argue by contradiction and assume
that Tmax < +∞. Let ω be the set of limit points of u, which is nonempty, and set
K = u([0, Tmax)) ∪ ω. Note that K is compact. If K ⊂ C ∩ G, where G = {x ∈
R

n | gj(x) < 0, j ∈ I} as in (5), then the compactness of K implies that u(t) can be
extended for t beyond Tmax, which contradicts the maximality of Tmax.
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Let us prove that K ⊂ C ∩ G. It suffices to prove that ω ⊂ C ∩ G for which we will
argue by contradiction. Assume that u(tj) → u∗ with tj ∈ (0, Tmax), tj → Tmax as
j → +∞ and u∗ ∈ ∂C ∩ ∂G. First, if gi0(u

∗) = 0 for some i0 ∈ I, then from (Hθ)(b)
and the fact that ε(tj) → ε(Tmax) > 0 we must have that

θ(gi0(u(tj))/ε(tj)) → θ(0−) = +∞ as j → +∞,

so fε(tj)(u(tj)) = f(u(tj)) + ε(tj)
∑

j∈I θ(gj(u(tj))/ε(tj)) → +∞, which contradicts the
boundedness of fε(t)(u(t)) for all t ∈ [0, Tmax). Hence u∗ ∈ G. Since this is valid for
any cluster point, we have ω ⊂ G.

Now, assume that u∗ ∈ ∂C. To obtain a contradiction in this case, we can apply the
arguments of [2] based on the following auxiliary lemmas:

Lemma 3.2 ([2, Lemma 4.2]). Let h be a convex function with int(domh) = C and

{xj} ⊂ C a sequence such that xj → x∗ ∈ ∂C and
∇h(xj)

‖∇h(xj)‖ → ξ ∈ R, as j → +∞.

Then, ξ belongs to NC(x
∗), the normal cone to C at x∗.

Lemma 3.3 ([2, Lemma 4.3]). Let C be a nonempty convex subset of R, and A an

affine space of R such that A ∩ C 6= ∅. If x∗ ∈ ∂A ∩ C, then NC(x
∗)∩A⊥

0 = {0}, with
A0 = A−A.

Since h satisfies (Hh;C)(b), as we are assuming that u(tj) → u∗ ∈ ∂C, we must have
‖∇h(u(tj))‖ → +∞, and we may assume that ∇h(u(tj))/‖∇h(u(tj))‖ → ξ ∈ R

n with
‖ξ‖ = 1. From Lemma 3.2 it follows that ξ ∈ NC(u

∗). Let ξ0 = ProjkerAξ be the
Euclidean orthogonal projection of ξ onto kerA, and take y = ξ0 in (18). Using (19),
the expression of ∇fε, and integrating from 0 to tj gives

〈∇h(u(tj)), ξ0〉 =

〈

∇h(u0)−

∫ tj

0

∇f(u(s))ds, ξ0

〉

−

〈

∑

j∈I

∫ tj

0

θ′(gj(u(s))/ε(s))∇gj(u(s))ds, ξ0

〉

(21)

By the boundedness property of u([0, Tmax)) and as ω ⊂ D, the right-hand side of (21)
is bounded under the assumption Tmax < +∞. Therefore, to draw a contradiction from
the latter we just have to prove that the left-hand side of (21) tends towards +∞ as
j → +∞. Indeed, since 〈∇h(u(tj))/‖∇h(u(tj))‖, ξ0〉 → ‖ξ0‖

2, the proof of the result
is complete if we check that ξ0 6= 0. We observe that ξ0 = 0 if and only if ξ ∈ (kerA)⊥.
But if ξ ∈ (kerA)⊥ and as ξ ∈ NC(u

∗), it follows from Lemma 3.3 that ξ = 0, which
is a contradiction because ‖ξ‖ = 1. These contradictions arise from the assumption
u∗ ∈ ∂C. Hence u∗ ∈ C and consequently ω ⊂ C.

Therefore, Tmax = +∞, which completes the proof of (i), (ii) and (iii).

To conclude the proof of the Theorem, fix a ∈ F0. For each t ≥ 0, take y = u(t) − a
in (18) to obtain

〈

∇fε(t)(u(t)) +
d

dt
∇h(u(t)), u(t)− a+ �u(t)

〉

= 0.
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By using (19), we get

〈∇fε(t)(u(t)), u(t)− a〉+

〈

d

dt
∇h(u(t)), u(t)− a

〉

= 0.

From (16) we have that the solution u(t) of (B-GF ;u0) satisfies

d

dt
Dh(a, u(t)) + 〈∇fε(t)(u(t)), u(t)− a〉 = 0, ∀t ≥ 0. (22)

Then, the convexity of fε implies d
dt
Dh(a, u(t))+fε(t)(u(t)) ≤ fε(t)(a). Integrating from

0 to t yields

Dh(a, u(t)) +

∫ t

0

[fε(s)(u(s))− fε(s)(a)]ds ≤ Dh(a, x
0).

Since s 7→ fε(s)(u(s)) is nonincreasing, it follows that

tfε(t)(u(t))−

∫ t

0

fε(s)(a)ds ≤ Dh(a, u0)−Dh(a, u(t)). (23)

On the other hand, since ε(·) > 0 is decreasing, gj(a) ≤ 0 and θ is nondecreasing, one
has

fε(s)(a) ≤ f(a) + ε(s)
∑

j∈I
θ(gj(a)/ε0). (24)

Hence, the estimate is obtained from (24) and (23). Moreover, letting t→ +∞ and as
Dh(a, u(t)) ≥ 0 by convexity of h, it follows that lim supt→+∞ fε(t)(u(t)) ≤ f(a). Thus
lim supt→+∞ fε(t)(u(t)) ≤ infF0 f = v(P ) by virtue of the continuity of all data. On the
other hand, from (Hθ)(b) and (Hε), we deduce fε(t)(u(t)) ≥ f(u(t)) ≥ v(P ). Passing to
the limit as t→ +∞ we get lim inft→+∞ fε(t)(u(t)) ≥ v(P ). Thus, limt→+∞ fε(t)(u(t)) =
v(P ) and therefore limt→+∞ f(u(t)) = v(P ), which concludes the proof.

4. Generalized barrier proximal point algorithm

The purpose of this section is to provide one discrete version of the Theorem 3.1. Let
us begin by noticing that from (9), it follows easily that the solution u(t) of (B-GF ;u0)
satisfies















d

dt
∇h(u(t)) +∇fε(t)(u(t)) ∈ (kerA)⊥ = ImA⊤,

u(t) ∈ F0,

u(0) = x0.

(25)

An implicit discretization of (25) yields the following iterative scheme:

∇h(xk)−∇h(xk−1) + λk∇fεk(x
k) ∈ Im A⊤, Axk = b,

with x0 being a given starting point, εk > 0 a sequence of penalty parameters decreasing
to 0, and λk > 0 a sequence of stepsizes. By convexity, this stationary condition is
equivalent to the generalized barrier proximal point iteration

xk ∈ Argmin{fεk(u) + λ−1
k Dh(u, x

k−1) | Au = b}, (26)
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where Dh is given by (16). The constraints u ∈ C and gj(u) ≤ 0, j ∈ I, are implicit
in the definitions of Dh(u, x

k−1) and fεk(u), respectively. In fact, due to the behavior
of h and θ, we have that xk ∈ C and g(xk) < 0, j ∈ I. In this sense, (26) is a strictly
feasible algorithm.

The iteration (26) makes sense even for nonsmooth data. More generally, for each
k = 1, 2, . . . , let generate a sequence {xk} ∈ F0 satisfying

∇h(xk)−∇h(xk−1) + A⊤wk

λk
∈ −∂ζkfεk(x

k); Axk = b, (27)

for some wk ∈ R
m and ζk ≥ 0 is a tolerance for the computation of approximate sub-

gradients: ∂ζfε(x) =
{

s ∈ R
n | ∀y ∈ R

n, fε(x) + s⊤(y − x)− ζ ≤ fε(y)
}

. In the Eu-
clidean case C = R

n, ∇h(x) = x and A = 0, this kind of method is studied, for
instance, in [14].

The following result, which is a discrete version of Theorem 3.1, generalizes the estimate
derived in [12, Lemma 3.3(iii)] and extends the value convergence result established
in [12, Theorem 3.4] for the exact version of (27) without penalty parameters, i.e,
εk = ζk = 0, ∀k and also with A = 0.

Theorem 4.1. Let {xk} ⊂ F0 be the sequence generated by the generalized barrier

proximal point algorithm (27) with {εk} being decreasing to 0. Set σn =
∑n

k=1 λk. If
∑∞

k=1 ζk <∞, then the following statements hold:

(i) The real sequence {fεn(x
n)} is convergent, the sequence {xn} is bounded and we

have that
∑∞

k=1 λ
−1
k 〈∇h(xk)−∇h(xk−1), xk − xk−1〉 < +∞.

(ii) For all a ∈ F0 and for all n ≥ 1 we have

σn(fεn(x
n)− f(a)) ≤

∑

j∈I
θ(gj(a)/ε0)

n
∑

k=1

λkεk +Dh(a, x
0)−Dh(a, x

n)

−
n
∑

k=1

σkλ
−1
k Dh(x

k, xk−1) +
n
∑

k=1

σkζk. (28)

(iii) If σn → +∞, then the sequence {fεn(x
n)}, converges to v(P ), hence {f(xn)} does

so and every cluster point of {xn} belongs to S(P ).

Proof. (i) Using the definition of the ζ-subdifferential, for all a ∈ F0, we have

fεk(a) ≥ fεk(x
k) + λ−1

k 〈∇h(xk−1)−∇h(xk)− A⊤wk, a− xk〉 − ζk

= fεk(x
k) + λ−1

k 〈∇h(xk−1)−∇h(xk), a− xk〉 − ζk. (29)

Taking in particular a = xk−1, from the convexity of h it follows that fεk(x
k) ≤

fεk(x
k−1) + ζk. Since εk is decreasing, gj(x

k−1) < 0 and θ is nondecreasing, one has
that

fεk(x
k) ≤ fεk−1

(xk−1) + ζk. (30)

In particular 0 ≤ fεk(x
k) − v(P ) ≤ fεk−1

(xk−1) − v(P ) + ζk, from which we conclude
that the sequence {fεk(x

k)} converges by virtue of part (a) of the following technical
lemma [24, 26].
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Lemma 4.2.

(a) Let {vk} and {αk} be nonnegative real sequences satisfying vk ≤ vk−1 + αk for
∑

αk <∞. Then the sequence {vk} converges.

(b) Let {σk} be an increasing sequence of positive numbers and {ak} a real sequence.

If σn → +∞ as n → +∞ and
∑

ak < +∞, then σ−1
n

∑n

k=1 σkak → 0 as n →
+∞.

Next, summing (30) over k = 1, . . . , n, one has fεn(x
n) ≤ fε0(x

0)+
∑n

k=1 ζk ≤ fε0(x
0)+

ζ̄ , where ζ̄ =
∑∞

k=1 ζk < +∞. But fεn(x
n) ≥ f(xn). As a consequence, xn ∈ Lf =

{y ∈ F | f(y) ≤ fε0(x
0) + ζ̄} for all n ≥ 0. By (HP )(a) it follows that {xn} is a

bounded sequence. On the other hand, taking a = xk−1 in (29) and using the fact that
fεk(x

k−1) ≤ fεk−1
(xk−1), we get

λ−1
k 〈∇h(xk)−∇h(xk−1), xk − xk−1〉 ≤ fεk−1

(xk−1)− fεk(x
k) + ζk.

Summing over k = 1, . . . , n, we obtain

n
∑

k=1

λ−1
k 〈∇h(xk)−∇h(xk−1), xk − xk−1〉

≤ fε0(x
0)− fεn(x

n) +
n
∑

k=1

ζk ≤ fε0(x
0)− v(P ) +

n
∑

k=1

ζk.

Letting n→ +∞ one has
∑∞

k=1 λ
−1
k 〈∇h(xk)−∇h(xk−1), xk − xk−1〉 < +∞.

(ii) Applying to (29) the three points identity [12, Lemma 3.1], which relies only on
the very definition of the pseudo-metric (16), we obtain

λk(fεk(x
k)− fεk(a)) ≤ Dh(a, x

k−1)−Dh(a, x
k)−Dh(x

k, xk−1) + λkζk. (31)

As εk > 0 is decreasing, gj(a) < 0 and θ is nondecreasing, we have that fεk(a) =
f(a) + εk

∑

j∈I θ(gj(a)/εk) ≤ f(a) + εk
∑

j∈I θ(gj(a)/ε0). Therefore, in (31) one has
that

λk

(

fεk(x
k)− f(a)− εk

∑

j∈I
θ(gj(a)/ε0)

)

≤ Dh(a, x
k−1)−Dh(a, x

k)−Dh(x
k, xk−1) + λkζk

Summing over k = 1, . . . , n we get

n
∑

k=1

λkfεk(x
k)− σnf(a) ≤

n
∑

k=1

λkεk
∑

j∈I
θ(gj(a)/ε0)) +Dh(a, x

0)−Dh(a, x
n)

−
n
∑

k=1

Dh(x
k, xk−1) +

n
∑

k=1

λkζk. (32)

Now, setting a = xk−1 in (31) yields fεk(x
k) − fεk(x

k−1) ≤ −λ−1
k Dh(x

k, xk−1) + ζk.
Multiplying by σk−1 and using the fact that σk = λk + σk−1 (with σ0 = 0), one
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has σkfεk(x
k) − λkfεk(x

k) − σk−1fεk(x
k−1) ≤ −σk−1λ

−1
k Dh(x

k, xk−1) + σk−1ζk, whence
σkfεk(x

k)− σk−1fεk−1
(xk−1)− λkfεk(x

k) ≤ −σk−1λ
−1
k Dh(x

k, xk−1) + σk−1ζk, because εk
is decreasing. Summing over k = 1, . . . , n we get −

∑n

k=1 λkfεk(x
k) + σnfεn(x

n) ≤
−
∑n

k=1 σk−1λ
−1
k Dh(x

k, xk−1)+
∑n

k=1 σk−1ζk. Adding this inequality to (32) and recall-
ing that λk + σk−1 = σk, we obtain (28).

(iii) Dividing (28) by σn, passing to the limit as n→ +∞, using the fact that
∑∞

k=1 ζk <
∞, that εk → 0 and invoking Lemma 4.2(b), we have that lim supn→+∞ fεn(x

n) ≤ f(a)
for all a ∈ F0, whence lim supn→+∞ fεn(x

n) ≤ infF0 f = v(P ). By (Hθ)(b) we deduce
fεn(x

n) ≥ f(xn) ≥ v(P ). Passing to the limit as n→ +∞ we get lim infn→+∞ fεn(x
n) ≥

v(P ).

5. Some simple specializations and numerical illustrations

In this section we will present some specific instances of the Hessian Riemannian gra-
dient flow (GF ;u0) and the hybrid barrier-gradient flow (B-GF ;u0). Moreover, we
will illustrate them through some very simple computational examples; codes were all
written in MATLAB 7.7, Release 2008b.

In fact, we will consider a separable function hC that can be expressed as

hC(x) =
n
∑

i=1

ψ(xi) (33)

for some suitable scalar function ψ : R → R ∪ {+∞} satisfying (Hh; (0,+∞)), so that
in particular

∇2hC(x) = diag(ψ′′(x1), . . . , ψ
′′(xn)), x ∈ C.

From now on, we take the inverse barrier function θ(s) = −1/s if s < 0 and +∞
otherwise. This choice in (12) leads to hC∩G(x) =

∑n

i=1 ψ(xi) −
∑

i∈J
1

gj(x)
, whose

Hessian is given by

∇2hC∩G(x) = diag(ψ′′(x1), . . . , ψ
′′(xn))

−
∑

j∈I

2

gj(x)3
∇gj(x)∇gj(x)

⊤ +
∑

j∈I

1

gj(x)2
∇2gj(x).

(34)

On the other hand, we may consider the following reparameterization of the penalty
function (13):

f(x, r) = f(x)− r
∑

j∈I

1

gj(x)
, (35)

where r = ε2 > 0. Notice that the Euclidean gradient∇xf(x, r) is given componentwise
by

∂f

∂xi
(x, r) =

∂f

∂xi
(x) + r

∑

j∈I

1

gj(x)2
∂gj
∂xi

(x), i = 1, . . . , n. (36)
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5.1. Positive orthant

First, suppose that the problem we want to solve is the following

(P1) min{f(x) | x ≥ 0, gj(x) ≤ 0, j ∈ I},

so that there is no linear equality constraint. In this case, for a separable function
(33) satisfying (Hh;R

n
++), the associated ODE in (GF ;u0) has the form: du

dt
(t) =

−∇2hC∩G(u(t))
−1∇f(u(t)), for ∇2hC∩G given by (34). On the other hand, the system

in (B-GF ;u0) can be written componentwise as dui

dt
(t) = −ψ′′(ui(t))

−1 ∂f

∂xi
(u(t), r(t)),

i = 1, . . . , n, for the reparametrization r(t) = ε(t)2 with ε(·) satisfying (Hε) and
∂f

∂xi
(x, r) given by (36). In order to illustrate the behavior of the solution trajecto-

ries of these equations we will consider a very simple explicit discretization scheme,
namely Euler’s method with constant stepsize ∆t > 0. For (GF ;u0), this takes the
form

∇2hC∩G(u
k)dk = −∇f(uk),

uk+1 = uk +∆t dk,
(37)

while for (B-GF ;u0) we get

uk+1
i = uki −∆t ψ′′(uki )

−1 ∂f

∂xi
(uk, r(tk)), i = 1, . . . , n, (38)

with tk = k∆t for k = 0, 1, . . .

Example 5.1. Consider the following problem min{c⊤x | x ≥ 0,
∑n

i=1 x
2
i ≤ 1}. First,

take c = (−1
2
, 1
2
) for which the unique minimizer is (1, 0). In Figure 5.1 we illustrate

the trajectories obtained through piecewise-linear interpolation of the explicit Euler
schemes (37) and (38) with starting point u0 = (1

2
, 1
2
) and stepsize ∆t = 0.1, for two

different choices of ψ and r(t).

Now, let us take n = 10, 100, 1000 with c = (− 1
n
, 1
n
, . . . , 1

n
) and starting point u0i =

1√
2n
,

i = 1, . . . , n. Tables 5.1 and 5.2 provide comparisons between the two iterative schemes
(37) and (38) in terms of total number of iterations as well as CPU time required to
satisfy the stopping rule f(uk) < v(P1)+Tol with Tol = 10−2, which makes sense in this
case because we know that the optimal value is v(P1) = − 1

n
. We take ψ(λ) = − logλ,

r1(t) =
1

(t+10)3
and r2(t) =

1
t+10

. We consider two choices for the the constant step-size,

either ∆t =
√

n/2 or ∆t = n/2. All numerical tests were performed on a Toshiba
Satellite laptop with an Intel Pentium Core 2 Duo CPU 2.20GHz processor and 4GB
of RAM, running Microsoft Windows XP operating system.

# Iterations CPU time
dimension n (37) (38) (37) (38)

r1(t) r2(t) r1(t) r2(t)
10 825 16 190 00’00”.0871 00’00”.0006 00’00”.0046

100 1322 188 1277 00’01”.4927 00’00”.0131 00’00”.0896
1000 2577 1959 2483 06’24”.0242 00’00”.8109 00’01”.0762

Table 5.1: Computational results with c = (− 1
n
, 1
n
, . . . , 1

n
), ψ(λ) = − logλ and ∆t =

√

n/2.
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(b) Taking ψ(λ) = − logλ

Figure 5.1: In green the trajectory of (GF ; (12 ,
1
2)) for Example 5.1 with c = (−1

2 ,
1
2). In red,

two trajectories of (B-GF ; (12 ,
1
2)) for the same problem with r1(t) = ε1(t)

2 = 1
(t+10)3

and

r2(t) = ε2(t)
2 = 1

t+10 .

# Iterations CPU time
dimension n (37) (38) (37) (38)

r1(t) r2(t) r1(t) r2(t)
10 367 8 60 00’00”.0417 00’00”.0005 00’00”.0018

100 186 28 50 00’00”.2642 00’00”.0023 00’00”.0036
1000 115 91 93 00’15”.9470 00’00”.0462 00’00”.0471

Table 5.2: Computational results with c = (− 1
n
, 1
n
, . . . , 1

n
), ψ(λ) = − logλ and ∆t = n/2.

Notice that the results depend strongly on the choice of the step-size. In any case, (38)
is much faster for r1(t) =

1
(t+10)3

than for the slow parameterization r2(t) =
1

t+10
, while

(37) has always the worst performance. In fact, even when (37) is similar to (38)-r2(t)
in terms of total number of iterations, the latter is much faster than the former in
terms of CPU time because (37) solves a linear system at each iteration for obtaining
the descent direction.

Next, consider c = (0, 1
2
) so that the optimal set is [0, 1] × {0}. Figure 5.2 shows the

trajectories corresponding to three different starting points u0: (0.5, 0.5), (0.3, 0.85)
and (0.9, 0.3).

Even for nonunique optimal solutions, the trajectories seems to converge. Notice that
the limit point of the trajectories of (GF ;u0) depends on the starting point. The
same behavior holds for (B-GF ;u0) under the fast parameterization r1(t). But the
trajectories of (B-GF ;u0) with the slow parameterization r2(t) appear to approach the
origin in order to minimize the penalty term in (35) which is given in this case by

1
1−
∑n

i=1 x
2
i

.
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(b) Taking ψ(λ) = − logλ

Figure 5.2: For three different starting points, in green the trajectories of (GF ;u0) for
Example 5.1 with c = (0, 12); in red, the trajectories of (B-GF ;u0) for the same problem with
r1(t) and r2(t) as in Figure 5.1.

5.2. Unitary simplex

Suppose now that the problem we want to solve is the following

(P2) min

{

f(x) |
n
∑

i=1

xi = 1, x ≥ 0, gj(x) ≤ 0, j ∈ I

}

.

In this case, A = [1 . . . 1] ∈ R
1×n, b = 1 and C = R

n
++. Again we take a separable h

as (33). According to (10), a simple computation shows that the ODE in (B-GF ;u0)
can be written as

dui
dt

(t) = − ψ′′(ui(t))
−1 ∂f

∂xi
(u(t), r(t))

+
ψ′′(ui(t))

−1

∑n

ℓ=1 ψ
′′(uℓ(t))−1

n
∑

ℓ=1

ψ′′(uℓ(t))
−1 ∂f

∂xℓ
(u(t), r(t)),

(39)

for each i = 1, . . . , n with ∂f

∂xi
(x, r) being given by (36).

Example 5.2. Consider the problem min{c⊤x |
∑n

i=1 xi = 1, x ≥ 0,
∑n−1

i=1 x
2
i + (xn −

1)2 ≤ 1}. Figure 5.3 illustrates the case n = 3, c = (1, 3, 2), u0 = (1
4
, 1
4
, 1
2
) and

∆t = 0.1 in an explicit Euler’s scheme for the numerical integration of (GF ;u0) and
(39) analogous to (37) and (38), respectively.

5.3. Second-order cone

Suppose now that the problem we want to solve is the following

(P3) min{f(x) | x ∈ Ln
+, gj(x) ≤ 0, j ∈ I},
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(a) Taking ψ(λ) = λ logλ− λ
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Figure 5.3: Trajectories for (B-GF ;u0) of Example 5.2 with r1(t) =
1

(t+10)3
and r2(t) =

1
t+10

in red, and comparison with the trajectory of (GF ;u0) in green.

where Ln
+ = {x = (x1, x̄) ∈ R×R

n−1 | ‖x̄‖ ≤ x1 } (see Example 2.1). We will consider
the so called spectrally defined functions h satisfying (Hh;C) for C = Ln

++ which are
given by

h(x) = ψ(λ1(x)) + ψ(λ2(x)) = ψ(x1 − ‖x̄‖) + ψ(x1 + ‖x̄‖)

As before, some natural choices for ψ are the following: ψ1(λ) = λ logλ − λ and
ψ2(λ) = − log(λ). It is well known (see, for instance, [1]) that the Hessian of h1
corresponding to ψ1 is given by

∇2h1(x) =
2

det(x)

(

x1 −x̄⊤

−x̄ det(x)
2‖x̄‖ log

(

x1+‖x̄‖
x1−‖x̄‖

)

In−1 +
(

x1 −
det(x)
2‖x̄‖ log

(

x1+‖x̄‖
x1−‖x̄‖

))

x̄x̄⊤

‖x̄‖2

)

,

(40)
where det(x) = λ1(x)λ2(x) = x21 − ‖x̄‖2, while the Hessian of h2 corresponding to ψ2

is given by
∇2h2(x) = 2(Qx)

−1, (41)

where

Qx =

(

‖x‖2 2x1x̄
⊤

2x1x̄ det(x)In−1 + 2x̄x̄⊤

)

.

In particular, as there is no linear equality constraint, for the function h2 the corre-
sponding ODE is the following

du

dt
(t) = −

1

2
Qu(t)∇f(u(t), r(t))

= −
1

2

(

‖u(t)‖2(∇f)1 + 2u1(t)ū(t)
⊤∇f

2u1(t)(∇f)1ū(t) + det(u(t))∇f + 2(ū(t)⊤∇f)ū(t)

)

, (42)

where ∇f(u(t), r(t)) = ((∇f)1,∇f) and u(t) = (u1(t), ū(t)) ∈ R× R
n−1.

On the other hand, for the second approach hC∩Q(x) = ψ(λ1(x))+ψ(λ2(x))−
∑

i∈J
1

gj(x)
.
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In the case of the function ψ2, the Hessian of the corresponding function hC∩Q is given
by

∇2hC∩Q(x) = 2Q−1
x −

∑

j∈I

2

gj(x)3
∇gj(x)∇gj(x)

⊤ +
∑

j∈I

1

gj(x)2
∇2gj(x).

Example 5.3. Consider the problem min{c⊤x | x ∈ Ln
+,
∑n

i=1 x
2
i ≤ 1}. The inverse

barrier penalty function is the same as in the Example 5.1. In Figure 5.4 we consider
the case n = 2, c = (1,−2), u0 = (0.6, 0.2) and ∆t = 0.1 for the corresponding Euler
explicit schemes.
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(b) Taking ψ(λ) = − logλ

Figure 5.4: Trajectories in Example 5.3 for r1(t) =
1

(t+10)3
and r2(t) =

1
t+10 , and comparison

with the trajectory (GF ;u0) .

6. Concluding remarks

It would be interesting to investigate the full convergence of the trajectories (resp.
the sequences) generated by (B-GF ;u0) (resp. (27)) in the degenerate case where the
optimal set S(P ) is not a singleton. By virtue of Theorem 3.1 (resp. Theorem 4.1), when
h is supposed to be a Bregman function with zone C (see [9, 23]), a standard argument
[2, 12] shows that the full convergence result amounts to showing thatDh(x̄, u(t)) (resp.
Dh(x̄, x

k)) converges for any x̄ ∈ S(P ), where Dh(y, x) is given by (16) even for y ∈ ∂C.
In absence of the penalty function, such a convergence property follows easily from the
monotonicity of the (sub)gradient of the convex objective function; see, for instance, [2].
When combined with parametric barrier-penalty schemes, in general one cannot expect
to have monotonic convergence. However, motivated by the full convergence results
known for the Euclidean case where h(x) = 1

2
‖x‖2 (see, for instance, [3, 4, 8, 13, 14]),

it seems natural to try to find similar results for more general Bregman functions h,
possibly under additional conditions on the parameterization ε(t) (resp. {εk}).

On the other hand, different explicit discretization schemes for the system (B-GF ;u0)
can be viewed as numerical optimization algorithms to solve (P ). It would be interest-
ing to obtain convergence and rate of convergence results for some of them, following
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similar results in the autonomous case [19, 20, 25]. In this context, one may expect that
a variable step-size ∆tk according to some suitable rule may improve the algorithms’
performance. This should be supplemented with a complete numerical investigation,
as the results presented here do not allow us to infer general conclusions.

Acknowledgements. The authors would like to thank an anonymous referee for some

useful suggestions that allowed them to improve the paper presentation.
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