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We consider the problem minger{f(z) | Az = b, € C, gj(z) <0, j =1,...,s}, where b € R™,
A € R™™ ig a full rank matrix, C is the closure of a nonempty, open and convex subset C of R”,
and g;(-), j =1,...,s, are nonlinear convex functions. Our strategy consists firstly in to introduce a
barrier-type penalty for the constraints g;(z) < 0, then endowing {z € R" | Az = b,z € C'} with the
Riemannian structure induced by the Hessian of an essentially smooth convex function A such that
C = int(dom h), and finally considering the flow generated by the Riemannian penalty gradient vector
field. Under minimal hypotheses, we investigate the well-posedness of the resulting ODE and we prove
that the value of the objective function along the trajectories, which are strictly feasible, converges
to the optimal value. Moreover, the value convergence is extended to the sequences generated by an
implicit discretization scheme which corresponds to the coupling of an inexact generalized proximal
point method with parametric barrier schemes. Specializations and simple illustrations of the general
results are given for the positive orthant, the unitary simplex and the second-order cone.

1. Introduction

In this paper we treat a general mathematical programming problem of the type
(P) v(P) =min{f(z) | Az =b, 2 € C, g;(x) <0, j €I},

where f : R* — R and g; : R — R for j € [ := {1,...,s} are continuously
differentiable convex functions, A € R™*™ is a full rank matrix with m <n, b € R™
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and C is the closure of a nonempty, open and convex set C' C R”. The idea here is
to distinguish among three kinds of constraints: linear equality constraints of the form
Az = b, polyhedral or conic constraints represented by the convex inclusion z € C,
and additional nonlinear inequality constraints g;(x) <0, j € 1.

In order to motivate our approach, let us start with the unconstrained minimization
of f. Given a starting point 2° € R", the gradient algorithm corrects the current
iterate by following the steepest descent direction, that is, z¥*? = 2% — \,Vf(2"),
where A\, > 0 is an appropriate stepsize and V f stands for the Euclidean gradient of
f. This can be viewed as a discretization of the continuous-in-time gradient method
given by 2(t) = =V f(u(t)), t > 0, see [19]. An implicit discretization of this ODE
yields to 2% = zF — A\, Vf(2*!), which for a convex function is equivalent to an
exact iteration of the Euclidean prozimal point algorithm [28]: z**! = argmin{ f(y) +
i ||y — 2*||*}. The latter makes sense even for a nonsmooth objective function. Under
several conditions, these methods share some qualitative and asymptotic convergence
properties [18, 28].

Suppose now that we are interested in minimizing f on the positive orthant R”. Ac-
cording to the ODE approach, we can consider the following scaled version of the

gradient method:
du; B of .
7 () = Uz(t)a—xi(u(t))a i=1...,n (1)

This equation generates strictly feasible trajectories: if u;(0) = z? > 0 then w;(t) > 0
for all ¢ > 0. This is also a descent method as long as w;(t) > 0; in fact <% f(u(t)) =

— > ui(t) %(u(t))’2 < 0. The dynamical system given by (1) is a special case of
the so called Hessian Riemannian gradient flows [2]. More precisely, it turns out that
(1) can be expressed as

U t) =~ h(u(t) VT (u(r) @)

where V2h(z) stands for the Hessian matrix at « of the function h(z) = Y7 | ; log z;—
;. The vector field on R” . defined by grad, f(z) = V?h(z) 'V f(z) is precisely the
gradient of f with respect to the Riemannian metric given by

Yo, w € R, (v,w), := (V?h(z)v,w). (3)

In this special case we obtain (v,w), = > .. vw;/z; for x € R, . On the other
hand, notice that & = —V?h(u)"'V f(u) & £Vh(u) + V f(u) = 0. Thus an implicit
discretization of (2) yields 5-[Vh(z"*!) = Vh(a*)]+ V f(2**!) = 0, which is is an exact
iteration of the generalized proximal point algorithm [9, 11, 12, 23].

The well-posedness, asymptotic behavior as ¢ — +o00 and other properties of au-
tonomous gradient systems as (2) are investigated in [2]; see also [5, 10]. More pre-
cisely, in [2] it is considered the case where the optimization problem is of the form
min{f(z) | Ax = b, * € C}, by assuming that there exists an essentially smooth convex
function h¢ such that in particular C' = int(dom h¢), whose Hessian matrix VZhe(z)
is used to endow the manifold {z € R" | Az = b, x € C'} with a Hessian Riemannian
metric (-, -), given by (3) for h = he. Setting

A={xeR"| Ax = b}, (4)



F. Alvarez, J. Lopez / Convergence to the Optimal Value for Barrier Methods ... 703

the corresponding gradient flow on AN C is then given by 4%(t) = — grad,,, f(u(t)),
where grad,  f : ANC — ker A is the Riemannian gradient with respect to (-,-), of
f restricted to AN C'; see Section 2 for more details. The connection of this flow with
generalized proximal point algorithms and central paths in linear programming was
first investigated in [21].

Let us return to the minimization problem (P). In order to handle the additional
nonlinear constraints g;(z) < 0 for j € J, we set

G:={reR"|gij(x) <0, jel}, (5)

which is supposed to be nonempty. Next, we introduce a barrier-type penalty function
0(:) (e.g. the inverse barrier function 0(s) = —1/s if s < 0 and 400 otherwise).
Under appropriate conditions, following the approach of [2], we may define hong(x) ==
he(x) + 3,0, 0(g9;(x)), and endow AN C NG, the relative interior of the feasible set of
(P), with the Hessian Riemannian metric induced by hcng. This yields to the following
gradient flow (GF for short) on ANCNG:

(@r) A1) = —rad, . Fu(1)

On the other hand, inspired by the coupling of the Euclidean gradient method with
penalty schemes [4, 8, 14], we introduce a parametric penalty function as follows:
fe(x) == f(x) + 32, 0(g;(x)/e), € > 0, and consider the following hybrid barrier-
gradient flow (B-GF) on ANCNG:

du

(B-GF) =

(t) = —grad,, for(u(t)),

for a suitable parameterization ¢ : [0, +00) — (0, 4+00) such that e(t) — 0 as t — co.

In this paper we focus on the non-autonomous ODE given by (B-GF') and some related
numerical discretization schemes, providing some comparisons with the alternative ap-
proach given by (GF). More precisely, in Section 2 we recall some basic definitions
concerning variable metric gradient flows and the coupling with barrier-type penalties,
and we identify some hypotheses for our results. In Section 3, we state and prove our
main result on the global existence for all ¢ > 0 of the solution u(t) to (B-GF), and the
convergence of f(u(t)) to the optimal value v(P) as t — co. In Section 4, we introduce
a generalized barrier proximal point algorithm as an implicit discretization in time of
(B-GF), and establish an analogous value convergence result. In Section 5, we discuss
some simple specializations of (GF') and (B-GF') for the positive orthant, the unitary
simplex and the second-order cone, and we also compare the behavior of these flows
through an explicit Euler’s scheme on some toy examples. Finally, in Section 6 we end
the paper with some remarks on open questions.

2. Preliminaries
2.1. Quick review on Hessian Riemannian gradient flows

Let @ C R" be a nonempty, open and convex set. We denote by S the cone of positive
definite symmetric n x n real matrices. Let h : R®™ — RU {400} be a lower semiconti-
nuous and convex function with effective domain domh = {x € R" | h(z) < +o0}. We
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assume the following conditions:

(a) @ = int(domh).

(b) hlg € C*(Q;R) and Vz € Q, V*h(zx) € SY,.

(c) The map z + V2h(z) is locally Lipschitz continuous on Q.
(d) Vz€oQ, Vo* — 7 with 2% € Q, ||Vh(2F)| — +o0.

(Hp; Q)

In particular, h is essentially smooth and of Legendre type [27, Chapter 26].

Example 2.1. Examples of functions satisfying (Hy; @) for different choices of ) are

the following:

o Iz ) = %HﬂEW =5 2 7, for Q =R".

i hz z 1 \/717 for @ ) )

o  IN(x ) lel z;logx; — z; and h4( ) — > logz;, both for Q =R,

. Let Q@ = L7, be the interior of the second-order (or Lorentz) cone L7} in R, which
is given by L7 = {z = (21,z) € RxR" ™ | [|7]| <21 }. Forz = (21,7) € RxR"!
take the following functions hs(x) = —logdet(z) for z € L7, and hg(z) =
tr(z o log(x)) — tr(z) for x € L, where det(z) = z7 — ||Z|?, tr(z) = 221 and o
denotes the Jordan product for £ which is defined by z oy = (z"y, 217 + 91 T)
(see [1] for more details).

Notice that for ho, hs and hg we have that domh = @ (under the usual convention
0log0 = 0), while for hy and hs we have dom h = Q.

Next, let us endow () with the variable metric defined by
Vo,w € R", (v,w), = (V?h(x)v,w). (6)

Let f: R" — R be a smooth function and denote by df(z) : R® — R the differential
of fat z € R". For any z € @ and v € R" we have that df(z)v = (Vf(x),v) =
(V2h(x)V2h(z) 'V f(z),v) = (V?h(z) 'V f(x),v),. Thus the gradient with respect to
the metric (-, ), of f restricted to @ is given by

grad,, f(z) = V2h(z)"'Vf(2), 7€Q. (7)

This is a special case of a Riemannian manifold. Indeed, since () is open, we can take
the manifold M = ) with the usual identification for the tangent space T,() ~ R™ for
every x € (), and the metric defined by (6) endows ) with a Riemannian structure,
which is at least locally Lipschitz continuous by virtue of (Hj;Q)(c). In general, if
M is a smooth manifold and we denote by T, M the tangent space to M at x € M,
a C* metric on M, k > 0, is a family of scalar products (-,-), on each T,M such
that (-,-), depends in a C* way on z. The pair (M, (,-),) is called a C* Riemannian
manifold. This structure permits to define a notion of gradient vector. Indeed, the
gradient grad f(x) of f at x € M is uniquely determined by the following conditions:

(g1) tangency condition: grad f(z) € T, M,
(g2) duality condition: for all v € T, M, df (x)v = (grad f(z),v),.
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If N is a submanifold of M then T, N C T, M for all x € N so that the metric (-,-),
on M induces a metric on N by restriction. So, for any full rank matrix A € R™*"
with m < n and b € R™, we can take the smooth submanifold of () defined by
N :={z e R"| Az = b, z € Q} = ANQ, where A is given by (4), so that
T,N ~ kerA = {v € R* | Av = 0} for each z € N. Definition (6) induces a
Riemannian structure on N. Conditions (g;) and (g) imply that the corresponding
gradient vector field of f restricted to A N @ is given by

grad, f(z) = I A V2h(2) 7'V f(2), (8)

where I1¥74 : R® — ker A is the (-, -),-orthogonal projection onto the linear subspace
ker A. Since A is supposed to have full rank, it is easy to see that

4 = 1 — V2h(z) AT (AV2h(2) TAT) A, (9)
and we conclude that for all z € AN Q we have
grad,, f(z) = V2h(z) ' [I — AT(AV?h(2) P AT PAV2R(z) YV f(2). (10)

Notice that in absence of linear equality constraints we can take A = 0 and we recover
(7) from (10). In any case, given = € AN Q, the vector — grad,, f(z) can be interpreted
as that direction in ker A such that f decreases the most steeply at x with respect to
the metric (-, -),, which motivates to consider the following dynamical system for the
(local) minimization of f on AN Q:

A1) = — grad, f(u), (1)

with initial condition u(0) = 2° € AN Q. For further developments about this dynam-
ical approach to optimization problems, see [2, 6, 10, 15, 21].

Example 2.2. By taking A= (1,...,1) e R b=1and Q =R", we get ANQ =
A ={zeR"|Y" ;=1 x>0} Hoe N=ANQ ={z e R"| D" & =
Lz > 0} and T,N = {v € R" | >_" v; = 0}. Take h(z) = > x;logx; — x; so
that V2h(z) = diag(1/z1,...,1/2,), then (11) amounts to % (¢) = —u;(t) [aan(u(t)) -
> uj(t)%(u(t))], i =1,...,n. See [17, 19, 22] for applications of this ODE to

optimization problems.

2.2. Gradient flows for solving (P)

The feasible solution set F of (P) is given by F = ANC NG, where A and G # () are
given by (4) and (5), respectively. From now on, the set of optimal solutions of (P) is
denoted by S(P), the optimal value of (P) is denoted by v(P), and F* = ANCNG
stands for the relative interior of F. Throughout this paper, we assume:

(Hp) (a) S(P) is nonempty and bounded.
d (b) F° £ ( (Slater’s condition).

By continuity of all data, we have that inf,cro f(2) = min.cx f(z) = v(P).
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Remark 2.3. If we replace Arz = b with two sets of inequality constraints, namely
Ar — b < 0 and b — Ax < 0, these inequalities do not satisfy the Slater condition.
Hence, under (Hp)(b) the linear equality constraint Az = b cannot be integrated into
the system of inequalities g;(z) <0, j € I.

Next, let us take a function he satisfying (Hy; C), and a barrier-type function 6 : R —
(0, +00] with dom # = (—o0,0) such that:

(a) 6:(—00,0) — R is smooth and convex.

(H,) (b) 0(s) >0, for all s € (—00,0), with h%lﬁ (s) = +oo.
(c) #'(s)>0with lim ¢'(s) =0 and lironi 0'(s) = +oo.
An example of such a function is the inverse barrier 8(s) = —1/s if s < 0 and +oc0

otherwise. We have two alternatives to derive f-based gradient flows on F°:

(A1) Riemannian gradients flow using the Hessian of the extended function given by

hona(x) = ho(x) + ) 0(g;(x (12)

ieJ

under second-order regularity conditions on 6 and all g;, j € J (at least C?).
(A2) Hybrid barrier-gradient flows using h¢ and replacing the original objective func-
tion with the penalty approximate defined by

fel@) = f(z) + e 0(g5(x)/e), (13)
jel
where € > 0 is a scalar parameter which will ultimately go to 0, and all data is
assumed to be at least continuously differentiable.

In the first alternative (A1), we notice that the extended function hong @ R" —
R U {+oc0} defined by (12) satisfies (Hy; C' N G), hence F° can be endowed with the
Riemannian structure induced by the Hessian of hgong, that is

Vhona(x) = VPhe(x) + Y 0"(9;(x))Vg;(2) V()T + Y 0'(g;(x))V2g;(x).  (14)

jel JelI

The gradient flow corresponding to (11) is given in this case by

du
(GF; uo) a(t) - gradhcmc f(u(t))v
u(0) = u’ € FO.

Here grad, ., f : F% — R" stands for the Riemannian gradient vector field of f

restricted to FY, with respect to the Hessian metric given by (6) for @ = C' N G and
h = heng. Therefore grad, . f(z) = IE"4V?heng(2) "'V f(x), and the projection
mapping [Tk 4 : R" — ker A is given by (9) for h = heng.
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On the other hand, the second alternative (A2) is inspired by previous work on the
coupling of the Euclidean steepest descent method with penalty schemes [4, 8, 14]. In
this case, we consider the non-autonomous Cauchy problem

d
(B-GF;u) d—?@) = —grad,,. fe(u(t)),

u(0) = u® € F°,

where the vector field grad,, f. : F® — R" stands for the gradient of f. restricted to
FY with respect to the Hessian Riemannian metric given by (6). Here € : [0, +00) —
(0, +00) is a continuously differentiable parameterization in time of the penalty scheme
such that

(H.) e(t) >0, £(t)<0 and lim () =0.

t—+o00

3. Global existence and convergence to the optimal value

Under (Hp), (Hp,;C) and (Hp), and provided that all data is sufficiently regular, it
follows from [2, Theorem 4.1] that the Cauchy problem (GF;u) is well-posed in the
sense that the solution trajectory wu(t) is well-defined for all ¢ > 0. Moreover, as f
is convex, it follows from [2, Proposition 4.4] that the objective function along the
trajectories f(u(t)) converges to the optimal value v(P) as t — oco. The next result
establishes that the same holds for (B-GF;u") under additional condition (H.).

Theorem 3.1. Under (Hp), (Hp;C), (Hy) and (H.), the following statements hold:

(1) The Cauchy problem (B-GF;u®) admits a unique C* solution u : [0, +00) — F°.

(1t)  The mapping t — fou)(u(t)) is nonincreasing, the trajectory {u(t) | t € [0,+00)}
is bounded, and (u, 1), € L*([0,+00);R).

(1ii) For all a € F° and for all t > 0

e (u(t))
where
Di(y,z) = h(y) — h(z) — (Vh(z),y — ) > 0. (16)
Hence

tEeroo fey(u(t)) = lim f(u(t)) = m]}.nf — u(P),

t——400

and every cluster point of {u(t) | t — 400} belongs to S(P).

Proof. Under the conditions (Hp), (Hp;C), (Hp) and (H.) the mapping (u,t) —
grad,, fe@)| 4nc 18 locally Lipschitz continuous on AN C' and satisfies the hypotheses of
the classical Cauchy-Lipschitz Theorem, which gives the existence and uniqueness of
a local solution of (B-GF;u%). The global existence of u(t) for all ¢ € [0, 400) is not



708 F. Alvarez, J. Lopez / Convergence to the Optimal Value for Barrier Methods ...

immediate because of the singular behavior of the vector field near the boundary of
ANC. Then, we first define

Tonae = sup{T > 0| 3! solution u of (B-GF;u°) on [0,T)

such that u([0,T)) C F°}. (17)

It follows that T}, > 0. Let u : [0, Thaz) — F° be a maximal solution of (B-GF;u®).
The definition of the projection IT54 (see (9)) implies that, for all ¢ € [0, Thaz),
i+ V2h(u) 'V f(u) = V2h(u) TAT (AVZh(u) PAT) TPAVER(u) TV £ (u).
Then, for all y € ker A, we get (4 + V2h(u) 'V fo(u),y + @), = 0, that is,
(V2h(u)i+ V f.(u),y 4 0) = 0. (18)

Letting y = 0 in (18) yields

(V fo(uw), i) + (Vh(u)i, i) = 0, (19)
and thus by (Hp; C')(b) one has that (V f.(u), %) < 0. On the other hand, we note that

d 0
Efe(u) = (Vfe(u),u) + a_gfe(u)e
with
0
Oe

if gj(u) < 0.

flw) =2 [9<gj<u>/e> — (g <u>/e>gf'§“>

Jel
From (Hy)(b), (c), we get %fa(u > 0, and as ¢ satisfies (H.), we have %fg(u)é <0.

)
Thus, the mapping ¢ — f.(u(t)) is nonincreasing. Moreover, as S(P) # () and
(Hp)(b) holds, we have that f..y(-) is bounded from below by v(P) and consequently
fey(u(t)) is convergent as t — T,q,. In particular, fo)(u(t)) is bounded. Moreover,
as f-»(u(t)) is nonincreasing, we have that u(t) € Ly = {y € F | f(y) < f-,(z")}, for
all t € [0, T)uax) because fo(u) > f(u). By (Hp)(a) together with convexity, it follows
that the level set L is bounded, hence {u(t) | t € [0, T)nes)} is bounded.

On the other hand, integrating (19) from 0 to ¢, with ¢ € [0, T},az), We obtain

| iy = | [%f;(wé—%fe(u} ds < Fo @) = fugo (ult).

Then, we get that
(V2h(u())i(-), () € L([0, Tnas ) R). (20)

Note that if Ti.x = 400, (i7) follows. Let us argue by contradiction and assume
that T}, < +00. Let w be the set of limit points of u, which is nonempty, and set
K = u([0, Thax)) Uw. Note that K is compact. If K € C NG, where G = {x €
R | gj(x) < 0,5 € I} as in (5), then the compactness of K implies that u(t) can be
extended for ¢ beyond T,,,,, which contradicts the maximality of T},4..
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Let us prove that K € C'N G. It suffices to prove that w C C' N G for which we will
argue by contradiction. Assume that u(t;) — u* with t; € (0, Tpas), tj — Tnaw 88
Jj — +o0 and u* € 9C N IG. First, if g;,(u*) = 0 for some iy € I, then from (Hy)(b)
and the fact that ¢(t;) — €(Tinar) > 0 we must have that

0(gio (u(ty))/e(t;)) = 6(07) = +oo as j — +oo,

80 fey)(u(ty)) = fulty)) +e(ty) D0 e, 0(g5(ulty))/e(t;)) — +oo, which contradicts the
boundedness of f.(u(t)) for all t € [0, Tmam) Hence u* € G. Since this is valid for
any cluster point, we have w C G.

Now, assume that u* € 9C. To obtain a contradiction in this case, we can apply the
arguments of [2] based on the following auxiliary lemmas:

Lemma 3.2 ([2, Lemma 4.2]). Let h be a convex functz’on with int(dom h) = C' and

{27} C C a sequence such that ¥/ — z* € OC and ||§ZE — ¢ €eR, as j — +o0.

Then, € belongs to Ng(x*), the normal cone to C at x*.

Lemma 3.3 ([2, Lemma 4.3]). Let C be a nonempty convex subset of R, and A an
affine space of R such that ANC # 0. If z* € 0ANC, then Ns(z*) N Ay = {0}, with
Ay =A— A.

Since h satisfies (Hj; C)(b), as we are assuming that u(t;) — u* € 0C, we must have
|Vh(u(t;))|| — 400, and we may assume that Vh(u(t;))/[|Vh(u(t;))|| — £ € R™ with
€]l = 1. From Lemma 3.2 it follows that §& € Ng(u*). Let & = Proji, 4& be the
Euclidean orthogonal projection of & onto ker A, and take y = & in (18). Using (19),
the expression of Vf., and integrating from 0 to ¢; gives

ittt 6) = (V) - [ Vst o)
<ZJ"9% mwmwww@> 1)

jel

By the boundedness property of u([0, T}4:)) and as w C D, the right-hand side of (21)
is bounded under the assumption 7;,,,, < +oc. Therefore, to draw a contradiction from
the latter we just have to prove that the left-hand side of (21) tends towards 400 as
j — +oo. Indeed, since (Vh(u(t;))/|Vh(u(t))|l, &) — [|&l|?, the proof of the result
is complete if we check that & # 0. We observe that & = 0 if and only if £ € (ker A)*.
But if € € (ker A)L and as £ € N5(u*), it follows from Lemma 3.3 that £ = 0, which
is a contradiction because ||£|| = 1. These contradictions arise from the assumption
u* € 0C. Hence u* € C' and consequently w C C.

Therefore, T}, = +00, which completes the proof of (i), (i7) and (7).

To conclude the proof of the Theorem, fix a € F°. For each t > 0, take y = u(t) — a
n (18) to obtain

(¥ o () + TR0, u(0) 0+ i) ) =
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By using (19), we get

(9 L (ule),u(0) = @+ { IR, ult) — ) =
From (16) we have that the solution u(t) of (B-GF;u°) satisfies

& Difa,ult)) + (¥ frg (u(t), u(t) — a) =0, ¥ 0. (22)

Then, the convexity of f. implies 4 Dy (a, u(t)) + fo)(u(t)) < fow(a). Integrating from
0 to t yields

Dh(a’>u(t)) + /0 [fz—:(s)(u<3)) - fs(s)(a)}ds < Dh(av xO)‘

Since s — f.(s)(u(s)) is nonincreasing, it follows that

tfa(t / fa (s) dS < Dh(a uO) Dh(a7u(t)) (23)
On the other hand, since () > 0 is decreasing, g;(a) < 0 and 6 is nondecreasing, one

has
fe(a) < (5) ) 0(g;(a)/e0). (24)

jeI

Hence, the estimate is obtained from (24) and (23). Moreover, letting ¢ — +oo and as
Dy (a,u(t)) > 0 by convexity of h, it follows that limsup,_, o fe@(u(t)) < f(a). Thus
limsup,_,, o, fe(u(t)) < infro f = v(P) by virtue of the continuity of all data. On the
other hand, from (Hy)(b) and (H.), we deduce f.)(u(t)) > f(u(t)) > v(P). Passing to
the limit as t — +oo we get liminf,_, o fe)(u(t)) > v(P). Thus, lim, 4o for(u(t)) =
v(P) and therefore lim;_, , f(u(t)) = v(P), which concludes the proof. O

4. Generalized barrier proximal point algorithm

The purpose of this section is to provide one discrete version of the Theorem 3.1. Let
us begin by noticing that from (9), it follows easily that the solution u(t) of (B-GF;u°)
satisfies

d

EVh(u(t)) + Vi (u) € (ker A)JF =Im AT,
u(t) € FO, (25)
u(0) = 2°.

An implicit discretization of (25) yields the following iterative scheme:
Vh(z") — Vh(x* ) + MV £, (%) € Im AT, Az" = b,

with 20 being a given starting point, £, > 0 a sequence of penalty parameters decreasing
to 0, and Ay > 0 a sequence of stepsizes. By convexity, this stationary condition is
equivalent to the generalized barrier proximal point iteration

2% € Argmin{f., (v) + A\, ' Dp(u, 2"71) | Au = b}, (26)
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where Dy, is given by (16). The constraints v € C' and g;(u) < 0, j € I, are implicit
in the definitions of Dy, (u,z*71) and f., (u), respectively. In fact, due to the behavior
of h and @, we have that ¥ € C and g(2*) < 0, j € I. In this sense, (26) is a strictly
feasible algorithm.

The iteration (26) makes sense even for nonsmooth data. More generally, for each
k=1,2,..., let generate a sequence {z*} € FV satisfying

Vh(z*) — Vh(z*F=1) + ATwk

) € =0 [, (xk), Az® =0, (27)
k

for some w* € R™ and (}, > 0 is a tolerance for the computation of approximate sub-
gradients: O f-(x) = {3 ER"|VyeR", f(z)+s"(y—x)—C< fa(y)} . In the Eu-
clidean case C' = R", Vh(z) = x and A = 0, this kind of method is studied, for
instance, in [14].

The following result, which is a discrete version of Theorem 3.1, generalizes the estimate
derived in [12, Lemma 3.3(iii)] and extends the value convergence result established

in [12, Theorem 3.4] for the exact version of (27) without penalty parameters, i.e,
er = (p = 0, Vk and also with A = 0.

Theorem 4.1. Let {z*} C F° be the sequence generated by the generalized barrier

prozimal point algorithm (27) with {e} being decreasing to 0. Set o, = > 1_ Ao If

Y e G < 00, then the following statements hold:

(i) The real sequence {f., (™)} is convergent, the sequence {z"} is bounded and we
have that Y oo | Ay (Vh(zF) — Vh(2*1), 2% — 2F71) < +oo.

(11)  For alla € F° and for alln > 1 we have

oulfor (@) = f(@) < 3 0(g5(a)/20) 3 Mex + Dila, 2°) — Dyla, ™)

jel k=1
— ZUk/\lleh(xk,wkil) + ZUka (28)
k=1 k=1

(ii) If o, — +00, then the sequence { f., (x™)}, converges to v(P), hence {f(x™)} does
so and every cluster point of {z"} belongs to S(P).

Proof. (i) Using the definition of the (-subdifferential, for all @ € F°, we have
for(a) > fo (@) + A (VA = Vh(a?) — ATwb 0 — %) — G,
= fo (") + A (VR ) — VR(2F), a — 2¥) — . (29)

Taking in particular @ = 27!, from the convexity of h it follows that f. (zF) <
feo (2%71) + ¢ Since gy is decreasing, g;(2*7!) < 0 and 6 is nondecreasing, one has
that

i (z*) < fekfl(xk_l) + G- (30)
In particular 0 < f., (z%) — v(P) < f.,_, (*') — v(P) + (, from which we conclude

that the sequence {f., (z*)} converges by virtue of part (a) of the following technical
lemma [24, 26].
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Lemma 4.2.

(a) Let {vr} and {ax} be nonnegative real sequences satisfying vy, < vg_1 + oy for
> oy < 0o. Then the sequence {vg} converges.

(b)  Let {ov} be an increasing sequence of positive numbers and {ay} a real sequence.
If 0, — +00 as n — 4o and Y ap < +oo, then ,' > ) _ opar, — 0 as n —
+00.

Next, summing (30) over k = 1,...,n, one has f., (2™) < foo(2%)+> 1, G < foo (2°) +
¢, where ¢ = > 77 (i < +00. But fe (™) > f(2™). As a consequence, z™ € Ly =
{y e F| fly) < fo,(2%) + ¢} for all n > 0. By (Hp)(a) it follows that {z"} is a
bounded sequence. On the other hand, taking a = 2*~! in (29) and using the fact that

oo @) < fo L, (@571, we get

A;1<Vh(xk) - Vh(xkil%xk - xk71> < fEk—l (xkil) - fEk (xk) + C’f
Summing over kK = 1,...,n, we obtain

n

Zxkl — Vh(a*), 2k — 251

< fz—:o(x ) fsn +Z<k<fso +Z<k

Letting n — o0 one has > po; A\, (Vh(z?) — Vh(2FY), 2% — 2%71) < +o0.

(17) Applying to (29) the three points identity [12, Lemma 3.1], which relies only on
the very definition of the pseudo-metric (16), we obtain

Ak(fak(xk) - fEk(a')) < Dh<a7$k_1) - Dh(a> xk) - Dh($k7$k_1) + >‘ka (31)

As g > 0 is decreasing, g;(a) < 0 and 6 is nondecreasing, we have that f, (a) =

f}fa) +erdjer0(gi(a)/er) < fla) +erd e, 0(g5(a)/e0). Therefore, in (31) one has
that

A (fak( - —Skze gg /50>

jel

< Dh<a7 xkil) - Dh((l,l’k> - Dh(‘rka xkil) + )‘kgk

Summing over k =1,...,n we get

Z Mofe, (%) — 00 f(a Z AkEk Z 0(gj(a)/z0)) + Dn(a,2°) — Dy(a,z™)
k=1

jel
- Z Dy(a*, 2%+ Ml (32)
h=1 k=1

Now, setting a = 2"~ in (31) yields f., (z*) — f., (z"71) < =\ 'Dy(ak, 2571 + (.
Multiplying by ox_; and using the fact that o, = A\ + op_1 (with o9 = 0), one
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has o fo, (2%) — A fe (2%) — o1 fo, (2F71) < —0p 1 A Dy (2, 2%7Y) + 031k, whence
Opfer (2%) — oy for (%71 = Ao (2F) < —0p 1 A, Di(aF, xk_1)+ak 1k, because e,
is decreasing. Summmg over k = 1,...,n we get —> _; Mefe, (@) + o fe, (27) <
— > ok Ay Du(aF 2 30 o 1§k Adding this inequality to (32) and recall-
ing that \; + ox_1 = oy, we obtain (28).
(¢i1) Dividing (28) by o,,, passing to the limit as n — +o00, using the fact that >~ ° ¢ <
00, that e, — 0 and invoking Lemma 4.2(b), we have that limsup,,_,, . f-,(z") < f(a)
for all a € F°, whence limsup,_,, . f-,(z") < infro f = v(P). By (Hp)(b) we deduce
fe (™) > f(a™) > v(P). Passing to the limit as n — +o00 we get liminf,, | f, (™) >
v(P). O

5. Some simple specializations and numerical illustrations

In this section we will present some specific instances of the Hessian Riemannian gra-
dient flow (GF;u®) and the hybrid barrier-gradient flow (B-GF;u®). Moreover, we
will illustrate them through some very simple computational examples; codes were all
written in MATLAB 7.7, Release 2008b.

In fact, we will consider a separable function he that can be expressed as

= Z Y(zi) (33)

for some suitable scalar function ¢ : R — R U {400} satisfying (Hj; (0, +00)), so that
in particular

V2he(x) = diag(¥"(z1), ..., 0" (z,)), =€ C.
From now on, we take the inverse barrier function 6(s) = —1/s if s < 0 and +oo
otherwise. This choice in (12) leads to heng(z) = Y0, (@) — Y ey ﬁ, whose

Hessian is given by
Vhena(z) = diag(¥”(21), . --»W’(ifn))

- Z Vg] )WVy;(x T Z (). (34)

On the other hand, we may consider the following reparameterization of the penalty
function (13):
>

g5(x)’

Jjel

fla,r) = flx) —r (35)

where r = £2 > 0. Notice that the Euclidean gradient V, f(z, ) is given componentwise
by

_8 1 agj .
8xi(x,r)ai(x)+r; —55. (@), i=1...,n (36)
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5.1. Positive orthant

First, suppose that the problem we want to solve is the following

(Py) min{f(z) | = >0, g;j(z) <0, j €I},

so that there is no linear equality constraint. In this case, for a separable function
(33) satisfying (Hp;R'7,), the associated ODE in (GF;u’) has the form: 2(t) =
—V2heong(u(t)) "V f(u(t)), for V2hene given by (34). On the other hand, the system

in (B-GF;u’) can be written componentwise as % (t) = —w”(ui(t))_l%(u(t),r(t)),

i = 1,...,n, for the reparametrization r(t) = &(t)* with &(-) satisfying (H.) and
g—i(x,r) given by (36). In order to illustrate the behavior of the solution trajecto-
ries of these equations we will consider a very simple explicit discretization scheme,
namely Euler’s method with constant stepsize At > 0. For (GF;u°), this takes the
form

VQhCm(;(uk)dk == —Vf(uk),
ubtl = uk + At d¥, (37)

while for (B-GF;u®) we get

af
ailfi

ubtt =l — Aty (uf) ! n,

)

(¥, r(ty)), i=1,... (38)

with ¢, = kAt for Kk =0,1,...

Example 5.1. Consider the following problem min{c'z | z >0, Y7, #7 < 1}. First,
take ¢ = (—%, %) for which the unique minimizer is (1,0). In Figure 5.1 we illustrate
the trajectories obtained through piecewise-linear interpolation of the explicit Euler
schemes (37) and (38) with starting point u® = (%, 1) and stepsize At = 0.1, for two

272
different choices of 1 and r(t).

Now, let us take n = 10, 100, 1000 with ¢ = (—%, %, c %) and starting point u) = %,
t=1,...,n. Tables 5.1 and 5.2 provide comparisons between the two iterative schemes
(37) and (38) in terms of total number of iterations as well as CPU time required to
satisfy the stopping rule f(u*) < v(P;)+Tol with Tol = 1072, which makes sense in this
case because we know that the optimal value is v(P;) = —=. We take ¢(\) = —log A,

ri(t) = m and ry(t) = 5. We consider two choices for the the constant step-size,

either At = /n/2 or At = n/2. All numerical tests were performed on a Toshiba
Satellite laptop with an Intel Pentium Core 2 Duo CPU 2.20GHz processor and 4GB
of RAM, running Microsoft Windows XP operating system.

Table 5.1: Computational results with ¢ = (==, =, ..

# Iterations CPU time
dimension n | (37) (38) (37) (38)
T1 (t) T2 (t) T1 (t) T2 (t)
10 | 825 16 | 190 | 00°00”.0871 | 00°00”.0006 | 00’00”.0046
100 | 1322 188 | 1277 | 00°017.4927 | 00°00”.0131 | 00’00”.0896
1000 | 2577 | 1959 | 2483 | 06'24”.0242 | 00°00”.8109 | 00°01”.0762
1 1

5 2), ¥(A) = —log X and At = /n/2.
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(a) Taking ¥(A\) = Alog A — A

(b) Taking (X)) = —log A

Figure 5.1: In green the trajectory of (GF; (3, 3)) for Example 5.1 with ¢ ) In red,

wh—‘

= (-3,

two trajectories of (B-GF;(3,3)) for the same problem with r1(t) = 1(t)? = (t+10)3 and
T’Q(t) = 82(t)2 = H_%O
# Iterations CPU time
dimension n | (37) (38) (37) (38)
T1 (t) 79 (t) 1 (t) T2 (t)

10 | 367 8 60 | 00°00”.0417 | 00°00”.0005 | 00’00”.0018

100 | 186 28 50 | 00°00”.2642 | 00°00”.0023 | 00°00”.0036

1000 | 115 91 93 | 00°157.9470 | 00°00”.0462 | 00’00”.0471

Table 5.2: Computational results with ¢ = (- 5 2), ¥(A) = —log A and At = n/2.

R

Notice that the results depend strongly on the choice of the step-size. In any case, (38)

is much faster for r(t) = riop than for the slow parameterization ro(t) = while

(t+10 ﬁ;
(37) has always the worst performance. In fact, even when (37) is similar to (38)-r5(t)
in terms of total number of iterations, the latter is much faster than the former in
terms of CPU time because (37) solves a linear system at each iteration for obtaining
the descent direction.

Next, consider ¢ = (0, 5) so that the optimal set is [0,1] x {0}. Figure 5.2 shows the
trajectories corresponding to three different starting points u%: (0.5,0.5), (0.3,0.85)

and (0.9,0.3).

Even for nonunique optimal solutions, the trajectories seems to converge. Notice that

the limit point of the trajectories of (GF;u") depends on the starting point. The

same behavior holds for (B-GF;u’) under the fast parameterization r1(¢). But the

trajectories of (B-GF;u’) with the slow parameterization 75 (t) appear to approach the

origin in order to minimize the penalty term in (35) which is given in this case by
1

1= g
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0.5¢ 1 05f |
s‘ /] [ri 4
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ra@®)] ri(t) / ra ()|
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(a) Taking ¥(A\) = Alog A — A (b) Taking 1(A) = —log A

Figure 5.2: For three different starting points, in green the trajectories of (GF;u) for
Example 5.1 with ¢ = (0, %), in red, the trajectories of (B-GF;u®) for the same problem with

r1(t) and ro(t) as in Figure 5.1.

5.2. Unitary simplex

Suppose now that the problem we want to solve is the following

() min{f(x) S m =L >0, g <0, j € z}.

In this case, A =[1...1] e R™" b =1 and C' = R",. Again we take a separable h
as (33). According to (10), a simple computation shows that the ODE in (B-GF';u°)
can be written as

dui
dt

(1) = - w”(ui(t))lg—i(u(t)ﬂ’(t))

PO e 0
+Z?—1¢"(W(t))_1;w (ue(t)) (‘9@( (t),r (),

for each i = 1,...,n with %(m, r) being given by (36).

1)2 < 1}. Figure 5.3 illustrates the case n = 3, ¢ = (1,3,2), u® =
At = 0.1 in an explicit Euler’s scheme for the numerical integration of (GF;u") and
(39) analogous to (37) and (38), respectively.

5.3. Second-order cone

Suppose now that the problem we want to solve is the following

(Ps) min{ f(z) |z € LY, g;(x) <0, j € I},



F. Alvarez, J. Lépez / Convergence to the Optimal Value for Barrier Methods ... 717

(a) Taking ¥(A) = Alog A — A (b) Taking 1(\) = —log A

Figure 5.3: Trajectories for (B-GF;u®) of Example 5.2 with 7 (t) =

in red, and comparison with the trajectory of (GF;u°) in green.

1 1
107 and r2(t) = 7o

where L7 = {z = (21,Z) e RxR" ! | |z]| <21 } (see Example 2.1). We will consider
the so called spectrally defined functions h satisfying (Hj; C') for C' = L7 which are
given by

hz) = Y(Ai(2) + (Aa(x) = bl = |Z]) + &z + [12]])
As before, some natural choices for ¢ are the following: 1;(\) = AlogA — A and
Pa(A) = —log(N). It is well known (see, for instance, [1]) that the Hessian of hy
corresponding to 1y is given by

.
V2hy () = - ( o det(x) 214z P det(x) vtz \\ zz" ) ;
det(@) \ —= it log (B ) s + (o — 55 10s (321 25
(40)
where det(z) = A\ (2)\2(z) = 22 — ||Z||?, while the Hessian of hy corresponding to s
is given by

V2ho(z) = 2(Q,) 7, (41)
where
0 — |z||? 20,7 "
* 7\ 227 det(x)l, y +2z2" )

In particular, as there is no linear equality constraint, for the function hy the corre-
sponding ODE is the following

du t) = — 1Qu(t)vf(u(t)a7”(75))

E( ) 2
1 ( [u(®)|2(Vf)1 + 2us(t)a(t) 'V ) (42)
2 \ 2w ()(V)ia(t) + det(u(t) V] + 2(@t) TV a(t) )’

where Vf(u(t),r(t)) = (Vf)1, V) and u(t) = (ui(t),
On the other hand, for the second approach hong(z) =

u(t)) e R x R™ 1.
(@) +(Na(2) = Yies 70
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In the case of the function 1), the Hessian of the corresponding function heng is given
by

V2hCmQ<$) = 2Q;1 — Z

jel

Vg;(x)Vy;(x Tt Z ().

2
g;(x)? =9
Example 5.3. Consider the problem min{c'z | x € £, "7 7 < 1}. The inverse
barrier penalty function is the same as in the Example 5.1. In Figure 5.4 we consider
the case n = 2, ¢ = (1, -2), u® = (0.6,0.2) and At = 0.1 for the corresponding Euler

explicit schemes.

0.8 : : : : : : : : : 0.8
0.6 0.6
0.4} 0.4}
0.2F 0.2
0 0
—0.2F —0.2F
—0.4} —0.4}

—0.6} 0.6}

—0.8 I I I I I I I I I —0.8 I I I I I I I I I
0 0.1 0.2 03 04 05 06 07 08 09 1 0 0.1 0.2 03 04 05 06 07 08 0.9 1

(a) Taking p(A\) = Alog A — A (b) Taking ©(A) = —log A

and comparison

Figure 5.4: Trajectories in Example 5.3 for r1(t) = m and ro(t) = H%,

with the trajectory (GF;u®) .

6. Concluding remarks

It would be interesting to investigate the full convergence of the trajectories (resp.
the sequences) generated by (B-GF;u®) (resp. (27)) in the degenerate case where the
optimal set S(P) is not a singleton. By virtue of Theorem 3.1 (resp. Theorem 4.1), when
h is supposed to be a Bregman function with zone C (see [9, 23]), a standard argument
[2, 12] shows that the full convergence result amounts to showing that Dy, (Z, u(t)) (resp.
Dy, (z,2%)) converges for any z € S(P), where Dy, (y, z) is given by (16) even for y € 9C.
In absence of the penalty function, such a convergence property follows easily from the
monotonicity of the (sub)gradient of the convex objective function; see, for instance, [2].
When combined with parametric barrier-penalty schemes, in general one cannot expect
to have monotonic convergence. However, motivated by the full convergence results
known for the Euclidean case where h(z) = 1||z||* (see, for instance, [3, 4, 8, 13, 14]),
it seems natural to try to find similar results for more general Bregman functions h,
possibly under additional conditions on the parameterization £(t) (resp. {ex}).

On the other hand, different explicit discretization schemes for the system (B-GF;u')
can be viewed as numerical optimization algorithms to solve (P). It would be interest-
ing to obtain convergence and rate of convergence results for some of them, following
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similar results in the autonomous case [19, 20, 25]. In this context, one may expect that
a variable step-size At according to some suitable rule may improve the algorithms’
performance. This should be supplemented with a complete numerical investigation,
as the results presented here do not allow us to infer general conclusions.

Acknowledgements. The authors would like to thank an anonymous referee for some
useful suggestions that allowed them to improve the paper presentation.
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