
This article was downloaded by: [201.17.109.196]
On: 18 July 2011, At: 15:21
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Optimization Methods and Software
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/goms20

Interior proximal algorithm with
variable metric for second-order
cone programming: applications to
structural optimization and support
vector machines
Felipe Alvarez a , Julio López a & C. Héctor Ramírez a
a Departamento de Ingeniería Matemática, Centro de
Modelamiento Matemático (CNRS UMI 2807), FCFM, Universidad de
Chile, Blanco Encalada 2120, Santiago, Chile

Available online: 04 Mar 2010

To cite this article: Felipe Alvarez, Julio López & C. Héctor Ramírez (2010): Interior proximal
algorithm with variable metric for second-order cone programming: applications to structural
optimization and support vector machines, Optimization Methods and Software, 25:6, 859-881

To link to this article: http://dx.doi.org/10.1080/10556780903483356

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-
conditions

This article may be used for research, teaching and private study purposes. Any
substantial or systematic reproduction, re-distribution, re-selling, loan, sub-licensing,
systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation
that the contents will be complete or accurate or up to date. The accuracy of any
instructions, formulae and drug doses should be independently verified with primary
sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand or costs or damages whatsoever or howsoever caused arising directly or
indirectly in connection with or arising out of the use of this material.

http://www.tandfonline.com/loi/goms20
http://dx.doi.org/10.1080/10556780903483356
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions

Optimization Methods & Software
Vol. 25, No. 6, December 2010, 859–881

Interior proximal algorithm with variable metric for
second-order cone programming: applications to structural

optimization and support vector machines

Felipe Alvarez, Julio López* and C. Héctor Ramírez

Departamento de Ingeniería Matemática, Centro de Modelamiento Matemático (CNRS UMI 2807),
FCFM, Universidad de Chile, Blanco Encalada 2120, Santiago, Chile

(Received 30 October 2008; final version received 5 November 2009)

In this work, we propose an inexact interior proximal-type algorithm for solving convex second-order
cone programs. This kind of problem consists of minimizing a convex function (possibly nonsmooth) over
the intersection of an affine linear space with the Cartesian product of second-order cones. The proposed
algorithm uses a variable metric, which is induced by a class of positive-definite matrices and an appropriate
choice of regularization parameter. This choice ensures the well definedness of the proximal algorithm and
forces the iterates to belong to the interior of the feasible set. Also, under suitable assumptions, it is proven
that each limit point of the sequence generated by the algorithm solves the problem. Finally, computational
results applied to structural optimization and support vector machines are presented.

Keywords: proximal method; second-order cone programming; variable metric; structural optimization;
multiload model; support vector machines; robust classifier

1. Introduction

In this paper, we consider the following convex second-order cone programming (SOCP) problem

(SOCP) f∗ = min
x∈Rn

f (x); Bx = d, wj (x) = Ajx + bj ∈ Lmj

+ , j = 1, . . . , J,

where f : R
n → R ∪ {+∞} is a convex function (possibly nonsmooth), B is a full rank r × n real

matrix with r ≤ n, d ∈ R
r , Aj are full rank mj × n real matrices, and bj ∈ R

mj , j = 1, . . . , J .
For an integer m ≥ 2, the set Lm+ denotes the second-order cone (SOC) (also called the Lorentz
cone or ice-cream cone) of dimension m defined as Lm+ = {y = (y1, ȳ) ∈ R × R

m−1 : ‖ȳ‖ ≤ y1},
where ‖ · ‖ denotes the Euclidean norm. Since the norm is not differentiable at 0, (SOCP) is not
in the class of smooth convex programs. On the other hand, a Lorentz cone can be rewritten as
the smooth nonconvex constraint Lm+ = {y ∈ R

m : y2
2 + · · · + y2

m ≤ y2
1 , y1 ≥ 0}. However, this

constraint is not qualified at 0 [17, Definition 3.20].

*Corresponding author. Email: jclopez@dim.uchile.cl

ISSN 1055-6788 print/ISSN 1029-4937 online
© 2010 Taylor & Francis
DOI: 10.1080/10556780903483356
http://www.informaworld.com

D
ow

nl
oa

de
d

by
 [

20
1.

17
.1

09
.1

96
]

at
 1

5:
21

 1
8

Ju
ly

 2
01

1

860 F. Alvarez et al.

In recent years, SOCP has received considerable attention because of its wide range of
applications in engineering, control and robust optimization (see, for instance [2,25,35] and the
references therein). It is known that Lm+, like R

m+ and the cone Sm+ of m × m real symmetric
positive-semidefinite matrices, belong to the class of symmetric cones to which a Jordan algebra
may be associated [15]. Using this connection, interior-point methods have been developed for
solving linear programs with SOC constraints [25,37].

In this work, we propose an inexact interior proximal point algorithm (PPA) with variable metric
for solving a convex SOCP whose objective function is not required to be smooth. The standard
PPA was introduced by Martinet [26] based on previous work by Moreau [27], and it was then
further developed and studied by Rockafellar [33] for the problem of finding zeros of a maximal
monotone operator. Later, several authors [11,12,14] generalized PPA for convex programming
with nonnegative constraints, replacing the quadratic regularization term by a Bregman distance
or φ-divergence distance. Recently, Auslender and Teboulle [6] have dealt with general types of
constraints, including SOC and semidefinite ones, via a unified proximal distance framework. In
all these works, the pseudo-distances are used to force the iterates to stay in the interior of the
feasible set.

The idea of PPA with variable metric was originally studied by Qian [31] for monotone operators
and by Bonnans et al. [8] for convex programming [23]. Since then, this idea has been exploited
in different articles [9,10]. Oliveira et al. [28] considered the matrix H(x) = diag(x−r

1 , . . . , x−r
n),

r ≥ 2, in order to define a variable metric on R
n+: 〈·, ·〉Hx , for all x ∈ R

n++. They defined a new
class of variable metric interior PPA for the minimization of a continuous proper convex function
on R

n+. This algorithm uses a regularization parameter appropriately chosen so that the iter-
ates are interior points. Moreover, the convergence to a Karush–Khun–Tucker (KKT) point is
obtained.

In this paper, we investigate a variable metric proximal-type algorithm for solving convex SOCP
problems, where the metric is induced by a general class of positive-definite matrices, such that
the iterates are strictly feasible.The outline of this paper is as follows. In Section 2, we recall some
basic notions and properties associated with SOC. In Section 3, we present our algorithm with
variable metric and prove its convergence properties. In Section 4, we present the notion of quasi-
nonincreasing metrics and we prove the convergence of our method under some suitably chosen
assumptions. In Section 5, we describe the case of the metric induced by the Hessian of the spectral
logarithm, which is not covered by the analysis in Section 4. Finally, in Section 6, we consider
two different applications of linear SOCP (LSOCP), we discuss MATLAB implementations of
the proposed algorithms, and we present some computational experiments; this is an intermediate
step towards more general and possibly nonsmooth convex problems, which are not addressed in
this paper from the numerical point of view.

Notation: For a closed proper convex function f , its effective domain is defined by dom f =
{x : f (x) < +∞} and ∂f denotes its subdifferential [31]. The superscript � denotes the transpose
operator and Id denotes the identity matrix in R

d×d . For a symmetric matrix M , we denote its
smallest and largest eigenvalues by λmin(M) and λmax(M), respectively. Given a matrix A ∈
R

p×q , the smallest and largest singular value of A will be denoted by σmin(A) and σmax(A),
respectively. If we have a finite number of matrices A1, . . . , AJ such that each Aj ∈ R

mj ×n,
we define σmin(A) = min{σmin(A

j): j = 1, . . . , J } and A := (A1; . . . ; AJ) ∈ R
q×n whose rows

are those of A1 to AJ , where q = ∑J
j=1 mj . We also denote by K := Lm1+ × · · · × LmJ+ . The

set Lm++ = {y = (y1, ȳ) ∈ R × R
m−1: ‖ȳ‖ < y1} is the interior of the SOC K = Lm+ and the set

∂Lm+ = {y ∈ Lm+ : y1 = ‖ȳ‖} denotes its boundary. We denote by X∗ the optimal solution set of
(SOCP). Finally, we define by w(x) := (w1(x), . . . , wJ (x)) ∈ R

q , where wj(x) = Ajx + bj for
j = 1, . . . , J .

D
ow

nl
oa

de
d

by
 [

20
1.

17
.1

09
.1

96
]

at
 1

5:
21

 1
8

Ju
ly

 2
01

1

Optimization Methods & Software 861

2. Algebra preliminaries

Let us recall some basic concepts and properties about the Jordan algebra associated with the
SOC Lm+ with m ≥ 2 (see [15] for more details). The Jordan product of any pair v = (v1, v̄),
w = (w1, w̄) ∈ R × R

m−1 is defined by v ◦ w = (v�w, v1w̄ + w1v̄). This can be written as v ◦
w = Arw(v)w, where

Arw(v) :=
(

v1 v̄�
v̄ v1Im−1

)
is the arrow matrix of v. The bilinear mapping (v, w) �→ v ◦ w has as the unit element
e = (1, 0, . . . , 0) ∈ R

m and is commutative but not associative in general. However, ◦ is power
associative, that is, for all w ∈ R

m, wk can be unambiguously defined as wk = wp ◦ wq for any
p, q ∈ N with p + q = k. If w ∈ Lm+, then there exists a unique vector in Lm+, which we denote
by w1/2, such that (w1/2)2 = w1/2 ◦ w1/2 = w.

We next introduce the spectral factorization of vectors in R
m associated with Lm+. For any

w = (w1, w̄) ∈ R × R
m−1, we can decompose w as

w = λ1(w)u1(w) + λ2(w)u2(w), (1)

where λi(w) and ui(w) are the spectral values and spectral vectors of w given by

λi(w) = w1 + (−1)i‖w̄‖ and ui(w) =

⎧⎪⎪⎨⎪⎪⎩
1

2

(
1, (−1)i

w̄

‖w̄‖
)

, if w̄ �= 0,

1

2
(1, (−1)i v̄), if w̄ = 0,

(2)

for i = 1, 2 and v̄ being any unit vector in R
m−1 (satisfying ‖v̄‖ = 1). Notice that λ1(w) ≤

λ2(w) and set λmin(w) = λ1(w), λmax(w) = λ2(w). Some basic properties of these definitions
are summarized below [15,16].

Proposition 2.1 For any w = (w1, w̄) ∈ R × R
m−1, we have

(a) If w̄ �= 0, then the decomposition (1) and (2) is unique.
(b) ‖ui(w)‖ = 1/

√
2 and ui(w) ∈ ∂Lm+ for i = 1, 2.

(c) u1(w) and u2(w) are orthogonal for the Jordan product: u1(w) ◦ u2(w) = 0.

(d) ui(w) is idempotent for the Jordan product: ui(w) ◦ ui(w) = ui(w) for i = 1, 2.
(e) λmin(w), λmax(w) are nonnegative (resp., positive) iff w ∈ Lm+ (resp., w ∈ Lm++).
(f) The Euclidean norm of w can be represented as ‖w‖2 = 1/2(λmin(w)2 + λmax(w)2).

The next result provides some interesting inequalities [4, Proposition 3.1].

Proposition 2.2 Let v, w ∈ R
m, then λmin(v) + λmin(w) ≤ λmin(v + w) ≤ λmin(v) + λmax(w),

and λmax(v) + λmin(w) ≤ λmax(v + w) ≤ λmax(v) + λmax(w).

For each w = (w1, w̄) ∈ R × R
m−1, the trace and determinant of w with respect to Lm+ are

defined as

tr(w) := λmin(w) + λmax(w) = 2w1; det(w) := λmin(w)λmax(w) = w2
1 − ‖w̄‖2. (3)

These are the analogues of the trace and determinant of matrices. In order to avoid any mislead-
ing, the smallest and largest eigenvalue of a symmetric matrix M are denoted by bold symbols
λmin(M) and λmax(M), respectively. A vector w = (w1, w̄) ∈ R × R

m−1 is said to be nonsingular

D
ow

nl
oa

de
d

by
 [

20
1.

17
.1

09
.1

96
]

at
 1

5:
21

 1
8

Ju
ly

 2
01

1

862 F. Alvarez et al.

if det(w) �= 0. If w is nonsingular, then there exists a unique v = (v1, v̄) ∈ R × R
m−1 such that

w ◦ v = v ◦ w = e. We call this v the inverse of w and denote it by w−1. Direct calculations yields
w−1 = (1/(w2

1 − ‖w̄‖2))(w1, −w̄) = (1/ det(w))(tr(w)e − w).

Following [24], for any function g : R → R ∪ {+∞}, we consider the spectrally defined
function �g: R

m → R ∪ {+∞} given by

�g(w) = g(λmin(w)) + g(λmax(w)), if λmin(w), λmax(w) ∈ dom(g) (4)

and �g(w) = +∞ otherwise. If λmin(w), λmax(w) ∈ dom(g) then �g(w) = tr(gsoc(w)) where
gsoc is the corresponding SOC function defined by

gsoc(w) = g(λmin(w))u1(w) + g(λmax(w))u2(w), w ∈ R × R
m−1.

We have the following result (see [16, Proposition 5.2; 30, Lemma 2.10]).

Proposition 2.3 Let g be continuously differentiable on int(dom(g)) = R++. Then �g is con-
tinuously differentiable on int(dom(�g)) = Lm++ and for all w ∈ Lm++, ∇�g(w) = 2(g′)soc(w).
If in addition g′ is continuously differentiable in R++ then the Hessian of �g at w ∈ Lm++ is given
by the formula ∇2�g(w) = 2g′′(w1)I if w̄ = 0, and otherwise is given by

∇2�g(w) = 2

(
b cw̄�/‖w̄‖

cw̄/‖w̄‖ aIm−1 + (b − a)w̄w̄�/‖w̄‖2

)
, x̄2 �= 0,

where a = (g′(λ2) − g′(λ1))/(λ2 − λ1), b = (g′′(λ1) + g′′(λ2))/2 and c = (g′′(λ2) − g′′(λ1))/2.

If g′′(t) > 0 for all t ∈ R++, then ∇2�g(w) is positive-definite for all w ∈ Lm++.

If, for example, we consider the logarithm barrier function g(t) = − ln(t) with dom(g) = R++,
then its spectrally defined function is given by

�ln(w) = − ln(w2
1 − ‖w̄‖2) = − ln(det(w)) if w ∈ Lm

++; +∞ otherwise.

We get ∇�ln(w) = −2w−1, w ∈ Lm++. Also, we have an explicit expression for the Hessian of
�ln in w ∈ Lm++ given by ∇2�ln(w) = 2(Qw)−1, where

Qw =
(‖w‖2 2w1w̄

�
2w1w̄ det(w)Im−1 + 2w̄w̄�

)
. (5)

As g′′(t) = 1/t2 > 0, it follows that Qw is positive-definite ∀w ∈ Lm++. The matrix Qw is called
the quadratic representation of w, which exists for any w ∈ R

m. The next result gives some useful
properties of Qw [2, Theorems 3 and 9].

Theorem 2.4 Let w ∈ R
m be arbitrary.

(1) If w is decomposed as in (1) then λ2
min(w) and λ2

max(w) are eigenvalues of Qw. Furthermore,
if λmin(w) �= λmax(w), then each one has multiplicity 1. In addition, det(w) is an eigenvalue
of Qw and has multiplicity m − 2 when w is nonsingular and λmin(w) �= λmax(w).

(2) If w is nonsingular, then Qw(Lm+) = Lm+; likewise, Qw(Lm++) = Lm++.

From this theorem, one has in particular that Qw is nonsingular if and only if w is nonsingular.
The following result is obtained from [37, Proposition 2.1].

D
ow

nl
oa

de
d

by
 [

20
1.

17
.1

09
.1

96
]

at
 1

5:
21

 1
8

Ju
ly

 2
01

1

Optimization Methods & Software 863

Lemma 2.5 Letw ∈ Lm+. Then, there exists a matrixQw1/2 which maps e tow (that isQw1/2e = w),
given explicitly by

Qw1/2 =
⎛⎝w1 w̄�

w̄ det(w)1/2Im−1 + w̄w̄�

det(w)1/2 + w1

⎞⎠ . (6)

This matrix is positive-semidefinite and satisfies that Qw1/2 = Q1/2
w . Moreover, when w ∈ Lm++,

Qw1/2 turns out to be a positive-definite matrix. If in addition w̄ �= 0, then the matrix Qw1/2 can
be written as follows:

Qw1/2 = Arw(w) −
⎛⎝0 0

0 (w1 − det(w)1/2)

(
I − w̄w̄�

‖w̄‖2

)⎞⎠ . (7)

3. Proximal algorithm with variable metric

Let F = {x ∈ R
n: wj(x) = Ajx + bj ∈ Lmj

++, j = 1, . . . , J }, B = {x ∈ R
n: Bx = d} and C =

B ∩ F . The feasible set of (SOCP) is C̄, the closure of C in R
n. From now on, we suppose that

the following assumptions hold true:

(A1) f∗ > −∞.
(A2) dom f ∩ C �= ∅ (Slater’s condition).

3.1 Algorithm PAVM

We denote by M = diag(M1, . . . , MJ) a block diagonal matrix with Mj ∈ R
mj ×mj being sym-

metric and positive-definite for each j = 1, . . . , J . We suppose that A has rank n. Set 〈·, ·〉M :=
〈A�MA·, ·〉, and let us define the following induced norms ‖u‖2

M := 〈u, u〉M = 〈MAu,Au〉 and
‖u‖∗2

M := 〈(A�MA)−1u, u〉, ∀u ∈ R
n. The proximal algorithm with variable metric (PAVM) for

solving the problem (SOCP) is defined as follows:
For each k = 1, 2, . . ., take δk > 0 and ηk > 0 with

∑∞
k=1 δk < ∞ and

∑∞
k=1 ηk < ∞.

Step 0. Start with some initial point x0 ∈ C, g0 ∈ ∂f (x0) and block diagonal matrix M0. Set
k = 0

Step 1. Given xk ∈ C, gk ∈ ∂f (xk) and an appropriate matrix Mk and suitable parameter γk > 0,
find xk+1, gk+1 ∈ R

n and ωk+1 ∈ R
r such that

gk+1 ∈ ∂f (xk+1), (8)

gk+1 + γkA�MkA(xk+1 − xk) + B�ωk+1 = εk+1, (9)

Bxk+1 = d, (10)

where the associated error εk+1 satisfies the following conditions:

‖εk+1‖ ≤ δk, ‖εk+1‖ max(‖xk+1‖, ‖xk‖) ≤ ηk. (11)

Step 2. If xk+1 satisfies a prescribed stopping rule, then stop.
Step 3. Update Mk+1. Replace k by k + 1 and go to step 1.

D
ow

nl
oa

de
d

by
 [

20
1.

17
.1

09
.1

96
]

at
 1

5:
21

 1
8

Ju
ly

 2
01

1

864 F. Alvarez et al.

Remark 3.1 Set Fk(x) := f (x) + (1/2)γk‖x − xk‖2
Mk

. Since f is a closed proper convex func-
tion, it directly follows that Fk has bounded sublevel sets. Therefore, the optimal set of inf{Fk(x) :
Bx = d} is nonempty and compact and (8)–(11) hold with εk+1 = 0. Thus, the sequence gener-
ated by PAVM is well defined. The second condition on {εk} in (11) is similar to IPA1 in [6]. This
is motivated by the inexact minimization of Fk . Notice that one may compute xk+1 by using the
bundle method or by applying some iterations of a standard descent method for the unconstrained
minimization of the strongly convex function Fk , depending on the regularity of f .

Remark 3.2 Note that the matrix Mk defines the shape of the level curves of the variable metric
considered in our PAVM algorithm while the regularization parameter γk decides indirectly the
step length of the next iterate taking into account this choice of Mk . If we rescale our metric by
using αMk , for some α > 0, instead of Mk , this is equivalent to keeping Mk but replacing γk with
αγk in (9).

3.2 Strictly feasible iterates

The largest eigenvalue of a block diagonal matrix M = diag(M1, . . . , MJ) is given by λmax(M) =
max{λmax(M

j): j = 1, . . . , J }. For any element z ∈ R
m, we set Qz := diag(Qz1 , . . . ,QzJ

), where
Qzj

∈ R
mj ×mj is defined by (5). By virtue of Theorem 2.4, when z ∈ Lm++ we get λmax(Qz) =

λ2
max(z), obtaining then

λmax(Qz) = max
j=1,...,J

{λmax(Qzj
)} = max{λ2

max(zj): j = 1, . . . , J }. (12)

Similarly λmax(Q−1
z M−1) = max{λmax(Q−1/2

zj
Mj −1Q−1/2

zj
): j = 1, . . . , J }. Analogous defini-

tions can be stated for the smallest eigenvalue λmin(·).
Proposition 3.3 Suppose that for every k = 0, 1, . . ., the parameter γk satisfies

γk >
√

2(σmin(A))−1λmax(Qw(xk))
1/2λmax(Q−1

w(xk)
M−1

k)[‖gk‖ + δk]. (13)

Then the sequence {xk} generated by PAVM is contained in C.

Proof (By induction) This is true for k = 0. Now, assume that xk ∈ C. By construction, xk+1

satisfies Bxk+1 = d. On the other hand, from the monotonicity of ∂f , it follows that 〈gk+1 −
gk, xk+1 − xk〉 ≥ 0, which together with (9) yields to

〈γkA�MkA(xk+1 − xk) + B�ωk+1, xk+1 − xk〉 ≤ 〈gk, xk − xk+1〉 + 〈εk+1, xk+1 − xk〉.
From (10) and the Cauchy–Schwarz inequality, it follows that

γk〈MkA(xk+1 − xk),A(xk+1 − xk)〉 ≤ ‖gk‖‖xk − xk+1‖ + ‖εk+1‖‖xk+1 − xk‖
≤ [‖gk‖ + δk]‖xk+1 − xk‖, (14)

where we used (11). As each M
j

k is a positive-definite matrix, we have that

〈MkA(xk+1 − xk),A(xk+1 − xk)〉 =
J∑

j=1

〈Q1/2
wj (xk)

M
j

k Aj (xk+1 − xk), Q−1/2
wj (xk)

Aj (xk+1 − xk)〉

≥
J∑

j=1

λmin(Q1/2
wj (xk)

M
j

k Q1/2
wj (xk)

)‖Q−1/2
wj (xk)

Aj (xk+1 − xk)‖2.

(15)

D
ow

nl
oa

de
d

by
 [

20
1.

17
.1

09
.1

96
]

at
 1

5:
21

 1
8

Ju
ly

 2
01

1

Optimization Methods & Software 865

By Lemma 2.5, Q1/2
wj (xk)

is positive-definite. Thus, ‖Q−1/2
wj (xk)

Aj (xk+1 − xk)‖ ≥ λmin(Q−1/2
wj (xk)

)‖Aj

(xk+1 − xk)‖ = λmin(Q−1
wj (xk)

)
1/2‖Aj(xk+1 − xk)‖. Using this lower bound once in (15), it fol-

lows that 〈MkA(xk+1 − xk),A(xk+1 − xk)〉 ≥ ∑J
j=1 λmin(Q−1

wj (xk)
)

1/2
λmin(Q1/2

wj (xk)
M

j

k Q1/2
wj (xk)

)‖
Q−1/2

wj (xk)
Aj (xk+1 − xk)‖‖Aj(xk+1 − xk)‖. From (14) and the well-known property λmax(M

−1) =
λmin(M)−1 for any symmetric nonsingular matrix M , it follows that

γk

J∑
j=1

‖Q−1/2
wj (xk)

Aj (xk+1 − xk)‖‖Aj(xk+1 − xk)‖

≤ λmax(Qw(xk))
1/2λmax(Q−1

w(xk)
M−1

k)[‖gk‖ + δk]‖xk+1 − xk‖. (16)

Since Aj has full rank, we get ‖Aj(xk+1 − xk)‖ ≥ 1/‖Aj †‖spec‖xk+1 − xk‖, where Aj †
denotes

the pseudoinverse of Moore–Penrose of Aj and ‖A‖spec = σmax(A) denotes the spectral norm of

a given matrix A. By the identity σmax(A
j †

) = (σmin(A
j))−1 [20, p. 421, Exercise 7], we get from

(16) that γk

∑J
j=1 σmin(A

j)‖Q−1/2
wj (xk)

Aj (xk+1 − xk)‖ ≤ λmax(Qw(xk))
1/2λmax(Q−1

w(xk)
M−1

k)[‖gk‖ +
δk], which implies that

J∑
j=1

‖Q−1/2
wj (xk)

Aj (xk+1 − xk)‖ ≤ 1

γk

(σmin(A))−1λmax(Qw(xk))
1/2λmax(Q−1

w(xk)
M−1

k)[‖gk‖ + δk]

<
1√
2
.

For the last inequality, we have used (13). On the other hand, it holds from Lemma 2.5 that
Q−1/2

wj (xk)
wj (xk) = ej , which yields ‖Q−1/2

wj (xk)
Aj (xk+1 − xk)‖ = ‖Q−1/2

wj (xk)
(wj (xk+1) − wj(xk))‖

= ‖Q−1/2
wj (xk)

wj (xk+1) − ej‖, and by virtue of Proposition 2.1(d), it follows that

‖Q−1/2
wj (xk)

Aj (xk+1 − xk)‖ ≥ 1√
2
|λmin(Q−1/2

wj (xk)
wj (xk+1) − ej)|

for all j = 1, . . . , J. Therefore, for each j = 1, . . . , J , we get |λmin(Q−1/2
wj (xk)

wj (xk+1) − ej)| < 1,

which implies that

−1 < λmin(Q−1/2
wj (xk)

wj (xk+1) − ej) < 1

for all j = 1, . . . , J. By using Weyl’s theorem (cf. Proposition 2.2) in both inequalities, we
get 0 < λmin(Q−1/2

wj (xk)
wj (xk+1)) < 2, ∀j = 1, . . . , J. This implies that Q−1/2

wj (xk)
wj (xk+1) ∈ Lmj

++,

that is, wj(xk+1) ∈ Qwj (xk)1/2(Lmj

++) for all j = 1, . . . , J. Therefore, by Theorem 2.4 and (10), it
follows that xk+1 ∈ C. �

3.3 Boundedness and some related results

Let us recall a technical lemma, which will be useful in the sequel [30].

Lemma 3.4 (i) Let {vk} and {αk} be nonnegative real sequences satisfying vk+1 ≤ vk + αk for∑
αk < ∞. Then the sequence {vk} converges.

(ii) Let {λk} be a sequence of positive numbers, {ak} a real sequence and bn = σ−1
n

∑n
k=0 λkak,

where σn = ∑n
k=0 λk . If σn → ∞, one has lim inf an ≤ lim inf bn ≤ lim sup bn ≤ lim sup an.

D
ow

nl
oa

de
d

by
 [

20
1.

17
.1

09
.1

96
]

at
 1

5:
21

 1
8

Ju
ly

 2
01

1

866 F. Alvarez et al.

Proposition 3.5 Let {xk} ⊂ C be a sequence generated by PAVM under (13). Then the following
hold:

(i) {f (xk)} converges and
∑∞

k=0(γk

∑J
j=1 ‖xk+1 − xk‖2

M
j

k

) < ∞.

(ii) If X∗ is nonempty and bounded, then the sequence {xk} is bounded.

Proof

(i) From (9) and (10), and since gk+1 ∈ ∂f (xk+1), we have f (xk) + 〈εk+1, xk+1 − xk〉 ≥
f (xk+1) + γk

∑J
j=1 ‖xk+1 − xk‖2

M
j

k

≥ f (xk+1). By (11), and using 〈εk+1, xk+1 − xk〉 ≤
‖εk+1‖(‖xk‖ + ‖xk+1‖) ≤ 2‖εk+1‖ max(‖xk+1‖, ‖xk‖), we obtain

f (xk+1) + γk

J∑
j=1

‖xk+1 − xk‖2
M

j

k

≤ f (xk) + 2ηk. (17)

Thus, 0 ≤ f (xk+1) − f∗ ≤ f (xk) − f∗ + 2ηk. Hence, using Lemma 3.4(i), we deduce that
the sequence {f (xk)} converges. From (17), we get

∑N
k=0(γk

∑J
j=1 ‖xk+1 − xk‖2

M
j

k

) ≤
f (x0) − f (xN+1) + 2

∑N
k=0 ηk ≤ f (x0) − f∗ + 2

∑N+1
k=1 ηk. Letting N → +∞, we obtain

the result.
(ii) Summing (17) over k = 0, . . . , l, one has f (xl+1) − f (x0) ≤ 2

∑l
k=0 ηk. Since

∑∞
k=1 ηk

exists, it follows that for some η̄ ≥ 0 we have f (xl+1) ≤ f (x0) + 2η̄ < ∞, for all l ≥ 0. As
X∗ is bounded, f is level bounded over C. Thus, one has that {xk} is a bounded sequence.

�

Remark 3.6 As a consequence of above proposition, it follows that {gk} is bounded when the
function f is defined everywhere.

The next result is similar to [12, Lemma 3.2].

Lemma 3.7 Let {xk} be a sequence generated by PAVM. Then for all x ∈ C̄ ∩ dom f, the
following inequality holds:

2

γk

(f (xk+1) − f (x)) ≤ ‖x − xk‖2
Mk

− ‖x − xk+1‖2
Mk

− ‖xk+1 − xk‖2
Mk

+ 2

γk

〈εk+1, xk+1 − x〉.

Proof For any x ∈ C̄, because gk+1 ∈ ∂f (xk+1), we have f (xk+1) + 〈gk+1, x − xk+1〉 ≤ f (x).

Using (9) and (10) and the inequality above, we get

f (xk+1) − f (x) ≤ 〈εk+1, xk+1 − x〉 − γk〈A�MkA(xk+1 − xk), xk+1 − x〉. (18)

Since Mk is symmetric, we have ‖x − xk‖2
Mk

= ‖x − xk+1‖2
Mk

+ ‖xk+1 − xk‖2
Mk

+ 2〈A�MkA
(xk+1 − xk), x − xk+1〉. Then the result follows directly from (18). �

4. Quasi-nonincreasing metrics

We consider the following hypotheses on the matrices M
j

k :

(H-i) The sequences {Mj

k

−1} are bounded, for each j = 1, . . . , J .

D
ow

nl
oa

de
d

by
 [

20
1.

17
.1

09
.1

96
]

at
 1

5:
21

 1
8

Ju
ly

 2
01

1

Optimization Methods & Software 867

(H-ii) For each j = 1, . . . , J , there exists a nonnegative sequence {νj

k } such that (M
j

k − M
j

k+1 +
ν

j

k I) ∈ Smj

+ and
∑∞

k=1 ν
j

k < ∞.

Remark 4.1 Since each M
j

k is positive definite, (H-i) is equivalent to saying that there exists a
η

j
> 0 such that λmin(M

j

k) > η
j
, for all k ∈ N and j = 1, . . . , J . Notice that (H-ii) implies that

sequences {Mj

k } are bounded.

Lemma 4.2 Let {xk} be a sequence generated by the PAVM under

γk ≥ √
2(σmin(A))−1λmax(Qw(xk))

1/2λmax(Q−1
w(xk)

M−1
k)[‖gk‖ + δk] + βk (19)

for some βk ≥ β > 0. Assume that (H-i) holds. Then,
∑∞

k=0 ‖xk+1 − xk‖2 < ∞ and, in particular,
limk→+∞ ‖xk+1 − xk‖ = 0.

Proof As each M
j

k is positive-definite and each Aj is full rank, one has ‖xk+1 − xk‖2
M

j

k

≥
λmin(M

j

k)‖Aj(xk+1 − xk)‖2 ≥ λmin(M
j

k)σmin(A
j)2‖xk+1 − xk‖2, whence ‖xk+1 − xk‖2

Mk
=∑J

j=1 ‖xk+1 − xk‖2
M

j

k

≥ ∑J
j=1 λmin(M

j

k)σmin(A
j)2‖xk+1 − xk‖2. Now, by the boundedness of

the sequence {Mj

k } for each j = 1, . . . , J , there exists η
j

> 0 such that λmin(M
j

k) > η
j
, for all j =

1, . . . , J . Taking η = β minj=1,...,J η
j
σmin(A

j)2, we obtain
∑∞

k=0(γk

∑J
j=1 ‖xk+1 − xk‖2

M
j

k

) ≥
Jη

∑∞
k=0 ‖xk+1 − xk‖2, and the result follows from Proposition 3.5(iii). �

From now on, we define: σn =
n−1∑
j=0

γ −1
j , for all n ∈ N.

Lemma 4.3 Let {xk} be the sequence generated by algorithm (PAVM). Assume that (H-ii) holds.
For any x ∈ C̄ ∩ dom f , the following hold:

−2σnf (x) +
n−1∑
k=0

2

γk

f (xk+1) ≤ ‖x − x0‖2
M0

− ‖xn − x‖2
Mn

−
n−1∑
k=0

⎛⎝‖xk+1 − xk‖2
Mk

− 2

γk

〈εk+1, xk+1 − x〉 −
J∑

j=1

ν
j

k ‖Aj(xk+1 − x)‖2

⎞⎠ . (20)

Proof Since (M
j

k − M
j

k+1 + ν
j

k I) ∈ Smj

+ , one has ‖xk+1 − x‖2
M

j

k

+ ν
j

k ‖A(xk+1 − x)‖2 ≥
‖xk+1 − x‖2

M
j

k+1

. By using this inequality in the estimate of Lemma 3.7, we have

2

γk

(f (xk+1) − f (x)) ≤ ‖x − xk‖2
Mk

− ‖xk+1 − x‖2
Mk+1

− ‖xk+1 − xk‖2
Mk

+ 2

γk

〈εk+1, xk+1 − x〉 +
J∑

j=1

ν
j

k ‖Aj(xk+1 − x)‖2. (21)

Summing for k = 0, . . . , n − 1 the result follows immediately. �

D
ow

nl
oa

de
d

by
 [

20
1.

17
.1

09
.1

96
]

at
 1

5:
21

 1
8

Ju
ly

 2
01

1

868 F. Alvarez et al.

Theorem 4.4 Let {xk} be the sequence generated by algorithm (PAVM) under (19) for some
βk ≥ β > 0. Assume that (H-ii) holds and that X∗ is nonempty and bounded. If limn→∞ σn = +∞,

then the following hold:

(i) The sequence {f (xk)} converges to f∗.
(ii) The limit points of {xk} belong to X∗.

(iii) The sequence {‖xk − u‖2
Mk

} converges for all u ∈ X∗.
(iv) Furthermore, if (H-i) holds then {xk} converges to some x∗ ∈ X∗.

Proof

(i) Let θk+1(x) = 〈εk+1, xk+1 − x〉 and ϑ
j

k+1(x) = ν
j

k ‖Aj(xk+1 − x)‖2 for j = 1, . . . , J . Using
(11), one has θk+1(x) ≤ �k+1, where �k+1 = ηk + ‖x‖δk , which satisfies

∑∞
k=0 θk+1(x) < ∞

and as γk ≥ β,
∑∞

k=0 θk+1(x)γ −1
k < ∞. On the other hand, by boundedness of {xk+1}

(see Proposition 3.5), there exists τ > 0 such that ‖Aj(xk+1 − x)‖ ≤ σmax(A
j)(τ + ‖x‖),

for all j = 1, . . . , J and therefore
∑∞

k=0

∑J
j=1 ϑ

j

k+1(x) < ∞. Then, dividing (20) by σn

and invoking Lemma 3.4(ii), we get from (20) that lim inf f (xn) ≤ f (x) for each x ∈ C̄

so that lim inf f (xn) ≤ f∗, which together with the fact that f (xn) ≥ f∗ implies that
lim inf f (xn) = f∗. Hence, using Proposition 3.5, it follows that the sequence {f (xk)}
converges to f∗.

(ii) From Proposition 3.5, we have that {xk} is bounded. Since f is lsc, passing to the limit and
reminding ourselves that {xk} ⊂ C, it follows that each limit point is an optimal solution.

(iii) For all u ∈ X∗, from inequality (21), we obtain

‖xk+1 − u‖2
Mk+1

≤ ‖u − xk‖2
Mk

+ 2

γk

〈εk+1, xk+1 − u〉 +
J∑

j=1

ν
j

k ‖Aj(xk+1 − u)‖2.

By part (i), we get

‖xk+1 − u‖2
Mk+1

≤ ‖u − xk‖2
Mk

+ 2

β
�k+1 +

J∑
j=1

σmax(A
j)2(τ + ‖u‖)2ν

j

k .

Then, from the nonnegativity of ‖xk − u‖2
Mk

, we can apply Lemma 3.4 for establishing the
convergence of ‖xk − u‖2

Mk
for all u ∈ X∗.

(iv) From part (iii), we obtain that the sequences {‖xk − u‖
M

j

k
} converge to some c(u) ∈ R

+,

∀u ∈ X∗ and for each j = 1, . . . , J . Let x∞ be a limit point of {xk}. Take a subsequence
{xki } of {xk} such that xki → x∞ ∈ X∗ (by (ii)). From hypothesis (H-ii), {Mj

k } is bounded,
for each j = 1, . . . , J . Passing onto a subsequence, if necessary, we can suppose that

M
j

ki
→ M

j
, for each j = 1, . . . , J . Then ‖xki − x∞‖2

M
j

ki

→ 0. So that c(x∞) = 0. More-

over, since ‖xk − x∞‖2
M

j

k

≥ λmin(M
j

k)σmin(A
j)2‖xk − x∞‖2 and (H-i) holds true, we get

that xk → x∞. �

The following result yields a global rate of convergence estimate, which is similar to the one
obtained for proximal-type algorithms in convex minimization problems.

D
ow

nl
oa

de
d

by
 [

20
1.

17
.1

09
.1

96
]

at
 1

5:
21

 1
8

Ju
ly

 2
01

1

Optimization Methods & Software 869

Proposition 4.5 Let {xk} be the sequence generated by PAVM. Assume hypotheses (H) hold and
that X∗ �= ∅. Then, there exists τ > 0 such that for all u ∈ X∗, we have

f (xn) − f (u) ≤ ‖u − x0‖2
M0

− ‖u − xn‖2
Mn

2σn

− 1

2σn

n−1∑
k=0

γk(σk + σk+1)‖xk+1 − xk‖2
Mk

+ 1

2σn

n−1∑
k=0

⎛⎝2ηk + ‖u‖δk

γk

+ 4σkηk+1 +
J∑

j=1

ν
j

k σ 2
max(A

j)(τ + ‖u‖)2

⎞⎠. (22)

Proof Let u ∈ X∗. Setting xk for x in (18), multiplying the resulting inequality by σk and using
the fact that σk+1 = 1/γk + σk (with σ0 = 0), we get

σk+1f (xk+1) − σkf (xk) − 1

γk

f (xk+1) ≤ σk〈εk+1, xk+1 − xk〉 − σkγk‖xk+1 − xk‖2
Mk

.

Summing the last inequality over k = 0, . . . , n − 1, noting σ0 = 0 and using (17), one has

σnf (xn) −
n−1∑
k=0

1

γk

f (xk+1) ≤ 2
n−1∑
k=0

σkηk −
n−1∑
k=1

σkγk‖xk+1 − xk‖2
Mk

. (23)

Adding twice (23) to (20), we have

2σn(f (xn) − f (u)) ≤ ‖u − x0‖2
M0

− ‖u − xn‖2
Mn

−
n−1∑
k=0

‖xk+1 − xk‖2
Mk

− 2
n−1∑
k=0

σkγk‖xk+1 − xk‖2
Mk

+
n−1∑
k=0

⎛⎝ 2

γk

〈εk+1, xk+1 − u〉 + 4σkηk+1 +
J∑

j=1

ν
j

k ‖Aj(xk+1 − u)‖2

⎞⎠.

Because 〈εk+1, xk+1 − u〉 ≤ ηk + ‖u‖δk , ‖Aj(xk+1 − u)‖ ≤ σmax(A
j)(τ + ‖u‖), for some τ >

0, the above inequality can be written as

2σn(f (xn) − f (u)) ≤ ‖u − x0‖2
M0

− ‖u − xn‖2
Mn

−
n−1∑
k=0

γk(σk + σk+1)‖xk+1 − xk‖2
Mk

+
n−1∑
k=0

⎛⎝2(ηk + ‖u‖δk)

γk

+ 4σkηk+1 +
J∑

j=1

ν
j

k σ 2
max(A

j)(τ + ‖u‖)2

⎞⎠.

Dividing by 2σn, we get the desired inequality. �

Remark 4.6 Ignoring the negative terms in the estimate of proposition above we obtain

f (xn) − f (u) ≤ ‖u − x0‖2
M0

2σn

+ 1

σn

n−1∑
k=0

⎛⎝ηk + ‖u‖δk

γk

+ 2σkηk+1 +
J∑

j=1

ν
j

k σ 2
max(A

j)

2
(τ + ‖u‖)2

⎞⎠.

D
ow

nl
oa

de
d

by
 [

20
1.

17
.1

09
.1

96
]

at
 1

5:
21

 1
8

Ju
ly

 2
01

1

870 F. Alvarez et al.

The following result is a direct extension of [18, Theorem 3.1] to our algorithm. For simplicity,
we suppose that ηk = ‖εk‖ = 0, ∀k ≥ 1.

Theorem 4.7 Let {xk} be the sequence generated by PAVM algorithm under (19) for some
βk ≥ β > 0. Assume that hypotheses (H) hold, that X∗ is nonempty and bounded, and that ηk =
‖εk‖ = 0, ∀k ≥ 1. If limn→∞ σn = +∞, then σn(f (xn) − f ∗) → 0.

Proof By Theorem 4.4(iv), xk converges to some x∗ ∈ X∗. We denote by ζk = f (xk) − f (x∗).
From (17), we have

ζk − ζk+1 = f (xk) − f (xk+1) ≥ γk‖xk+1 − xk‖2
Mk

. (24)

Setting x∗ for x in (18), we obtain

ζk+1 = f (xk+1) − f (x∗) ≤ −γk〈A�MkA(xk+1 − xk), xk+1 − x∗〉
= −γk〈A�MkA(xk+1 − xk), xk − x∗〉 − γk‖xk+1 − xk‖2

Mk

≤ −γk〈A�MkA(xk+1 − xk), xk − x∗〉.

But |〈A�MkA(xk+1 − xk), xk − x∗〉| ≤ ‖xk+1 − xk‖Mk
‖x∗ − xk‖Mk

, so from the inequal-
ity above one has ζk+1 ≤ γk‖xk+1 − xk‖Mk

‖x∗ − xk‖Mk
or equivalently ‖xk+1 − xk‖Mk

≥
ζk+1/γk‖x∗ − xk‖Mk

. Using this inequality in (24), we have ζk ≥ ζk+1 + (ζ 2
k+1/γk)(‖x∗ −

xk‖2
Mk

)−1 = ζk+1(1 + ζk+1/γk‖x∗ − xk‖2
Mk

), whence

ζ−1
k ≤ ζ−1

k+1

(
1 + ζk+1

γk‖x∗ − xk‖2
Mk

)−1

. (25)

On the other hand, setting x∗ for x in the estimate of Lemma 3.7, we obtain

f (xk+1) ≤ f (xk+1) + γk

2
‖xk+1 − xk‖2

Mk
≤ f (x∗) + γk

2
‖x∗ − xk‖2

Mk
,

which yields to

0 ≤ ζk+1

γk‖x∗ − xk‖2
Mk

≤ 1

2
.

Moreover, the function (1 + t)−1 is convex for t > −1, hence (1 + t)−1 ≤ 1 − (2/3)t , for t ∈
[0, 1/2]. This last inequality together with (25) implies that

ζ−1
k ≤ ζ−1

k+1

(
1 − 2

3

ζk+1

γk‖x∗ − xk‖2
Mk

)
= ζ−1

k+1 − 2

3

1

γk‖x∗ − xk‖2
Mk

.

Summing this for k = 0, . . . , n − 1, we get

ζ−1
n ≥ ζ−1

n − ζ−1
0 ≥ 2

3

n−1∑
k=0

1

γk‖x∗ − xk‖2
Mk

,

obtaining

ζn = f (xn) − f (x∗) ≤ 3

2

1∑n−1
k=0(γk‖x∗ − xk‖2

Mk
)−1

.

D
ow

nl
oa

de
d

by
 [

20
1.

17
.1

09
.1

96
]

at
 1

5:
21

 1
8

Ju
ly

 2
01

1

Optimization Methods & Software 871

Multiplying this inequality by σn gives

σn(f (xn) − f (x∗)) ≤ 3

2

1

σ−1
n

∑n−1
k=0(γk‖x∗ − xk‖2

Mk
)−1

.

By Theorem 4.4(iv), we have that ‖x∗ − xk‖−1
Mk

→ ∞. Therefore, using the Silverman–Toeplitz

theorem [22, p. 76], the series σ−1
n

∑n−1
k=0(γk‖x∗ − xk‖2

Mk
)−1 → ∞ also. In consequence, the

result follows. �

5. PAVM-Log algorithm

5.1 Metric induced by the Hessian of the spectral log

In this section, we consider the following choice for the variable metric matrix:

Mk = 2Q−1
w(xk)

. (26)

This a block diagonal matrix, where each block is given by the inverse of the mj × mj matrix
Qwj (x) defined in (5). This choice is a natural extension to SOC of the algorithm proposed by
Oliveira et al. [28]. Notice that (19) reduces to

γk ≥
√

2

2
(σmin(A))−1λmax(Qw(xk))

1/2(‖gk‖ + δk) + βk. (27)

The algorithm PAVM-Log for solving the problem (SOCP) is as follows.
For each k = 1, 2, . . ., let βk > 0, δk > 0 and ηk > 0 with βk ∈ (β, 1) where β > 0,

∑
δk < ∞

and
∑

ηk < ∞.

Step 0. Start with some initial point x0 ∈ C. Set k = 0
Step 1. Given xk ∈ C, gk ∈ ∂f (xk) and γk satisfying (27), solve

gk+1 ∈ ∂f (xk+1), (28)

gk+1 + 2γkA�Q−1
w(xk)

A(xk+1 − xk) + B�ωk+1 = εk+1, (29)

Bxk+1 = d, (30)

for some ωk+1 ∈ R
r , where

‖εk+1‖ ≤ δk, ‖εk+1‖ max(‖xk+1‖, ‖xk‖) ≤ ηk. (31)

Step 2. If xk+1 satisfies a prescribed stopping rule, then stop.
Step 3. Replace k by k + 1 and go to step 1.

Remark 5.1 By virtue of Proposition 3.5, when X∗ is nonempty and bounded, then {γk} can be
chosen to be bounded: it suffices to take the equality in (27).

5.2 On the convergence of PAVM-Log

First, notice that Lemma 4.3 and Theorem 4.4 do not apply to PAVM-Log because (H-ii) fails
for (26). A similar situation occurs for the interior proximal algorithm proposed by Oliveira

D
ow

nl
oa

de
d

by
 [

20
1.

17
.1

09
.1

96
]

at
 1

5:
21

 1
8

Ju
ly

 2
01

1

872 F. Alvarez et al.

et al. [28], based on the logarithm barrier on the positive orthant. Following the ideas in [21], the
authors of [28] deal with the convergence of their algorithm by showing that any cluster point of
the iterates satisfies the KKT stationary conditions of the optimization problem. In our case, the
corresponding KKT conditions for (SOCP) are given by [2]:

(KKT) g + B�ω = A�s, Bx = d, w(x) ∈ K, s ∈ K, w(x) ◦ s = 0,

where K = Lm1+ × · · · × LmJ+ , ω ∈ R
r , g ∈ ∂f (x) and (x, s) ∈ R

n × �J
j=1R

mj a pair of primal-
dual solutions. Unfortunately, the analysis of [21,23] relies on some componentwise comparison
arguments which are not valid for spectral values. This technical problem also arises for several
algorithms for SOC and SDP optimization problems. Nevertheless, in our case, we have been able
to establish some partial results in the general case and a convergence result when the objective
function is linear. To do so, we will need the following technical lemma.

Lemma 5.2 For any s ∈ R
m, we have that s ∈ Lm++ iff 〈s, y〉 > 0, ∀y ∈ Lm+, y �= 0.

Proof For any s = (s1, s̄) ∈ Lm++ and y = (y1, ȳ) ∈ Lm+ with y �= 0, we know that ‖s̄‖ < s1

and ‖ȳ‖ ≤ y1. Then 〈s, y〉 = s1y1 + s̄�ȳ ≥ s1y1 − ‖s̄‖ ‖ȳ‖ ≥ s1y1 − ‖s̄‖ y1 = y1(s1 − ‖s̄‖) >

0, where the first inequality follows from the Cauchy–Schwartz inequality. Now, we suppose that
〈s, y〉 > 0, ∀y ∈ Lm+ with y �= 0. Taking y = e we deduce that s1 > 0. If s̄ = 0, the result follows.
On the other hand, if s̄ �= 0, we set y = (1, −s̄/‖s̄‖). It is clear that y ∈ Lm+ and y �= 0. Hence,
0 < 〈s, y〉 = s1 − ‖s̄‖ = λmin(s). This means that s ∈ Lm++. �

Proposition 5.3 Suppose that f is defined in all R
n and assume that X∗ is nonempty and

bounded. Let {xk} be sequence generated by PAVM-Log, then:
(i) If a cluster point x̃ of the sequence {xk} belongs to C (i.e. x̃ is strictly feasible), then x̃ is

optimal for (SOCP).
(ii) The dual sequence {sk+1} defined by

sk+1 := 2γkQ−1
w(xk)

(w(xk) − w(xk+1)) (32)

satisfies

lim
k→+∞ Q1/2

w(xk)
sk+1 = 0. (33)

(iii) Any cluster point (x̃, s̃, g̃, ω̃) of {(xk, sk, gk, ωk)} satisfies

g̃ + B�ω̃ = A�s̃, Bx̃ = d, w(x̃) ∈ K,

λmax(s̃
j) ≥ 0 and wj(x̃)�s̃j = 0, j = 1, . . . , J.

(34)

Proof

(i) Since X∗ is nonempty and bounded and f is defined everywhere, the sequences
{(xk+1, gk+1, γk)} are bounded. Thus, there exist a subsequence {(xkj +1, gkj +1, γkj

)}
and a point (x̃, g̃, γ̃) such that (xkj +1, gkj +1, γkj

) → (x̃, g̃, γ̃) as j → +∞. Moreover,
since B is onto, the subsequence ωkj of {ωk} defined in (29) can be written as
ωkj +1 = (BB�)−1B(εkj +1 − gkj +1 + A�skj +1). As x̃ ∈ C, we get that limj→+∞ ωkj +1 =
−(BB�)−1Bg̃, where we have used Lemma 4.2. Therefore, from (28) it follows that
0 ∈ ∂f (x̃)+Im(B�). This condition implies that x̃ is an optimal solution of (SOCP).

(ii) From the definition of sk+1, one has γk‖xk+1 − xk‖2
Mk

= 2γk〈Q−1
w(xk)

(w(xk) − w(xk+1)),

w(xk) − w(xk+1)〉 = 1/2γk〈sk+1, Qw(xk)sk+1〉. By Remark 5.1, the sequence {γk} can be
chosen to be bounded and the conclusion follows from Proposition 3.5.

D
ow

nl
oa

de
d

by
 [

20
1.

17
.1

09
.1

96
]

at
 1

5:
21

 1
8

Ju
ly

 2
01

1

Optimization Methods & Software 873

(iii) By construction of sequence {xk}, any cluster point x̃ ∈ R
n satisfy Bx̃ = d and w(x̃) ∈ K.

From (29) and (32) it follows that A�s̃ = g̃ + B�ω̃, with s̃ a limit point of the dual sequence
sk+1. Moreover, from (33) we get limk→+∞ Q1/2

w(xk)
sk+1 = 0, that is, Q1/2

w(x̃)
s̃ = 0. Now, if s̃ =

(s̃1, . . . , s̃J) with s̃j ∈ R
mj for j = 1, . . . , J , it follows that Q1/2

wj (x̃)
s̃j = 0, for j = 1, . . . , J

(recall that Q1/2
w(x̃)

= diag(Q1/2
w1(x̃)

, . . . ,Q1/2
wJ (x̃)

)). From (7), we obtain that

0 = wj(x̃) ◦ s̃j −

⎛⎜⎜⎝
0

(w
j

1(x̃) − det(wj (x̃))1/2)

(
¯̃sj − w̄j (x̃)� ¯̃sj

‖w̄j (x̃)‖2
w̄j (x̃)

)⎞⎟⎟⎠; j = 1, . . . , J,

where we used that s̃j = (s̃
j

1 , ¯̃sj) ∈ R × R
mj −1. By the definition of product ‘◦’, the first

component in the equation above implies that wj(x̃)�s̃j = 0, for j = 1, . . . , J .

It only remains to prove that λmax(s̃
j) ≥ 0 for all j = 1, . . . , J . If wj(x̃) ∈ Lmj

++ for some j ∈
{1, . . . , J }, then Q1/2

wj (x̃)
is nonsingular by [2, Corollary 4] and hence the limit (33) implies that s̃j =

0 and in particular λmin(s̃
j) = λmax(s̃

j) = 0. Consider now the case when wj(x̃) ∈ ∂Lmj

+ \ {0} for
some j ∈ {1, . . . , J }. We argue by contradiction, that is, we suppose that λmin(s̃

j) ≤ λmax(s̃
j) <

0. In that case, by virtue of Proposition 2.1(e), we get −s̃j ∈ Lmj

++ and, as ∀wj(x̃) ∈ Lmj

+ by
Lemma 5.2, it follows that wj(x̃)�s̃j < 0, which is a contradiction. �

Remark 5.4 Notice that, as w(x̃) ∈ K and w(x̃)�s̃ = 0, if s̃ = (s̃1, . . . , s̃J) ∈ K, then we get
that w(x̃) ◦ s̃ = 0 by virtue of [2, Lemma 15]. Hence, in order to verify that the cluster point
(x̃, s̃, g̃, ω̃) satisfies KKT, it only remains to prove that λmin(s̃

j) ≥ 0, which amounts to s̃j ∈ Lmj

+ ,
for all j = 1, . . . , J . We conjecture that this is true for a general (SOCP).

The following result gives a very special case where we have been able to establish that any
cluster point (x̃, s̃, g̃, ω̃) of {(xk, sk, gk, ωk)} satisfies KKT by showing that s̃ ∈ K.

Proposition 5.5 Under the assumptions and notations of Proposition 5.3, if in addition f is
supposed to be linear, i.e. f (x) = c�x, and the following inclusion holds for each j = 1, . . . , J

Aj (Ker B) ⊇ Lmj

+ , (35)

then s̃ ∈ K. In consequence, any limit point of {xk} satisfies the KKT conditions.

Proof Let s̃ = (s̃1, . . . , s̃J) be a limit point of {sk}. Recall that for j = 1, . . . , J , Cj = {x ∈
R

n: Ajx + bj ∈ Lmj

+ }, F = ∏J
j=1 Cj , B = {x ∈ R

n: Bx = d} and C = B ∩ F . It is well known
that X∗ be nonempty and bounded iff [5,32]

f∞(d) > 0, ∀ d ∈ C∞, d �= 0. (36)

Now, note that the recession function of f is given by f∞(d) = c�d, for all d ∈ R
n, and the

recession set of feasible set is given by C∞ = {d ∈ R
n : Ajd ∈ Lmj

+ , j = 1, . . . , J, Bd = 0}.
Then condition (36) can be rewritten as c�d > 0, ∀d �= 0; Ajd ∈ Lmj

+ , j = 1, . . . , J, Bd = 0. On
the other hand, from (34), we get that c�d = (A�s̃ − B�ω̃)�d, with ω̃ limit point of {ωk+1}. Thus
s̃�Ad > 0, ∀ d �= 0 ; Ajd ∈ Lmj

+ , j = 1, . . . , J, Bd = 0. Then (35) implies that
∑J

j=1 v�
j s̃j =

ṽ�s > 0, for all v ∈ K with v �= 0. Fix j ∈ {1, . . . , J } such that vj �= 0, then Lemma 5.2 implies
that s̃j ∈ Lmj

++. As this holds for any j = 1, . . . , J , it follows from Proposition 5.3 that any limit
point of {xk} satisfies the KKT conditions of (SOCP), that is, x̃ ∈ X∗. �

D
ow

nl
oa

de
d

by
 [

20
1.

17
.1

09
.1

96
]

at
 1

5:
21

 1
8

Ju
ly

 2
01

1

874 F. Alvarez et al.

6. Computational experiments on some specific applications

6.1 Preliminaries

We will discuss some computational results on some specific instances of two classes of SOCP:
multiload models in truss structural optimization and robust classification by hyperplanes under
data uncertainty. Our goal is to show how our algorithm PAVM-Log works in practice and verify
empirically that it produces correct results. On purpose we have chosen two well-known applica-
tions that can be formulated as a LSOCP. This allows us to compare our results with those obtained
by SeDuMi 1.1R2 toolbox for MATLAB, which implements a primal–dual interior point method
for solving LSOCPs [36]. Since by construction our algorithm forces xk to be strictly feasible, we
use SeDuMi’s result as a benchmark for the optimal value so that a small difference between f (xk)

and that benchmark will ensure the correctness of our solution, up to some relative error tolerance
of course. The computer codes were all written in MATLAB 7.3, Release 2006b. The experiments
were performed on a Toshiba Tecra laptop with an Intel Pentium M 740 CPU 1.73 GHz processor
and 512 MB of RAM, running Microsoft Windows XP.

6.2 Truss structural optimization

A truss is a mechanical structure composed of thin elastic bars, connecting some pairs of nodal
points in R

d (d = 2, 3). Given a load (distribution of external forces), the truss deformates until
the reaction forces compensate the external load, storing a certain amount of potential energy,
named the compliance. This measures the stiffness of the truss, that is, its ability to withstand the
load; the less the compliance, the more rigid is the truss with respect to the load [1,7].

Let n = d · N − s be the number of degrees of freedom of a ground structure consisting of
N nodes, where s is the number of fixed directions. Let m ≥ n be the number of potential bars.
We denote by xi = ai�i ≥ 0 the volume of the ith bar, where ai is its cross-sectional area and
�i its length. We assume that external loads f ∈ R

n apply only at nodal points and bars are
subject to axial tension or compression. The mechanical response of the truss is described by
the elastic equilibrium system K(x)u = f , where u ∈ R

n is the nodal displacements vector and
K(x) = ∑m

i=1 xiKi. Here, x ≥ 0 is the volume vector and Ki ∈ R
n×n is the specific stiffness

matrix of the ith bar, and is given by Ki = (Ei/�
2
i)ζiζ

�
i , where Ei is the Young modulus for the

material of the ith bar and ζi ∈ R
n is a vector that contains the cosines and sines describing the

orientation of ith bar.
Optimal solutions with respect to compliance using a single load model may be unstable, even

under small perturbations in the principal load. An alternative is to consider a multiload model
instead of the single load one, by minimizing a weighted average of the compliances associated
with r different loading scenarios f1, . . . , fr ∈ R

n [1,3], namely

min
x∈Rm,uj ∈Rn

1

2

r∑
j=1

λjf
�
j uj ; K(x)uj = fj , j = 1, . . . , r,

m∑
i=1

xi = V, xi ≥ 0, i = 1, . . . , m,

(37)

where λj > 0, j = 1, . . . , r , denote suitable weights on the individual compliance values, for a
given volume V > 0 of material.As is shown in [25] (see also [7, §3.4.3]), (37) can be equivalently

D
ow

nl
oa

de
d

by
 [

20
1.

17
.1

09
.1

96
]

at
 1

5:
21

 1
8

Ju
ly

 2
01

1

Optimization Methods & Software 875

written as the following LSOCP:

min
x∈Rm,tij∈R,yij∈R

1

2

m∑
i=1

r∑
j=1

λj tij;
m∑

i=1

xi = V, fj =
m∑

i=1

yij

√
Ei

�i

ζi, j = 1, . . . , r,

(xi + tij, 2yij, xi − tij) ∈ L3
+, i = 1, . . . , m, j = 1, . . . , r.

(38)

Since the objective function in (38) is linear, the proximal step in PAVM-Log corresponds to
the unconstrained stationary condition for a quadratic function, which amounts to solving exactly
(δk = ηk = 0) a linear system of the form:

2γkA�Q−1
w(zk)

Azk+1 + B�ωk+1 = 2γkA�Q−1
w(zk)

Azk − 1

2
(0m, 1, 0m); Bzk+1 = f̄ (39)

for some ωk+1 ∈ R
rn+1, where z = (x, t, y) ∈ R

(2r+1)m stands for the decision variable with
x = (x1, . . . , xm), t = (t11, t21, . . . , tm1, . . . , t1r , t2r , . . . , tmr) and y = (y11, y21 . . . , ym1, . . . , y1r ,
y2r , . . . , ymr), and

wij(z) = (zi + zjm+i , 2z(r+j)m+i , zi − zjm+i) = (xi + tij, 2yij, xi − tij).

Condition (27) reduces to γk ≥ (
√

m/2) maxi=1,...,m,j=1,...,k{λmax(w
ij(zk))} + βk. To speed up

convergence, we implemented the following relaxed version: we take the regularization parameter
as the smaller of the form

γk(�) = 1

2�

[√
m

2
max

i=1,...,m,j=1,...,r
{λmax(w

ij(zk))} + βk

]
, 0 ≤ � ≤ �max, (40)

in such a way that the updated proximal point be strictly feasible. More precisely, denote by z(�)

the proximal point corresponding to the regularization parameter γk(�), that is, z(�) is the solution
of (39)

2A�Q−1
w(zk)

A�zk + B�ω̃
k+1 = −1

2
(0m, 1, 0m); B�zk = 0

for some ω̃
k+1 ∈ R

rn+1. Then we set zk+1 = z(�∗
k) = zk + γk(�

∗
k)

−1�zk , where �∗
k =

max{0, . . . , �max : z(�) ∈ C}.
Finally, as the stopping rule, we take

‖zk+1 − zk‖
‖zk+1‖ ≤ Tol, (41)

where Tol is a prescribed relative tolerance.
In our experiments, we consider three instances of classic examples of multiload truss opti-

mization: the Michel 2 × 1, the 2D Cantilever and the Dome [1,3]. In Table 1, we summarize
some information on the sizes of these problems.

Table 1. Truss design test problems.

Type of No. of bars No. of nodes No. of degrees
problem (m) (N) of freedom (n)

Michell 2 × 1 12 6 8
Dome 104 33 75
2D Cantilever 200 82 160

D
ow

nl
oa

de
d

by
 [

20
1.

17
.1

09
.1

96
]

at
 1

5:
21

 1
8

Ju
ly

 2
01

1

876 F. Alvarez et al.

Table 2. Total number of iterations, CPU time, and objective value comparisons for tolerances Tol = 10−2, 10−3.

Tol = 10−2 Tol = 10−3

No. of main CPU time No. of main CPU time CPU time

Problem iterations PAVM
cPAVM − cSDM

cSDM
iterations PAVM

cPAVM − cSDM

cSDM
SeDuMi

Michell 2 × 1 09 00′00′′.11 0.005230 22 00′00′′.16 0.002425 00′00′′.62
Dome 10 00′41′′.36 0.051599 64 04′29′′.48 0.019733 00′01′′.27
2D Cantilever 18 03′07′′.28 0.014832 56 09′57′′.51 0.005664 00′01′′.40

The loads applied on the structures Michell 2 × 1 and 2D Cantilever are modelled as two
scenarios, one with only horizontal loads and the other one with only vertical loads, with values
between 1 and 10 and weights λ = (1/2, 1/2). In the case of the Dome, we consider one vertical
load and two orthogonal loads which are applied just on the top, with values between 10 and 20, and
λ = (1/3, 1/3, 1/3). In all cases, V = 1. The starting point z0 is given by y0

·j = ��(�
�
� ��)

−1fj ,

x0
i = 1/m and t0

ij = y0
ij

2
/x0

i + 2.5, for i = 1, . . . , m and j = 1, . . . , r . We take βk = 0.1 and δk =
ηk = 0. In (40) we take �max = 10. In the stopping rule (41), we use Tol = 10−2 and Tol = 10−3.

Table 2 reports the results of our experiments and provide some comparisons with SeDuMi
1.1R2 toolbox for MATLAB. The second and fifth columns show the number of proximal iter-
ations to fulfil (41), the third and sixth columns report the CPU time by using our MATLAB
implementation of PAVM-Log, the fourth and seventh columns provides the relative difference
between the value of the objective function (compliance) at the output solution obtained by
PAVM-Log algorithm, and the optimal compliance given by SeDuMi, denoted by cPAVM and
cSDM, respectively. The last column shows the CPU time required by SeDuMi.

For the 2D Cantilever, the largest problem, PAVM-Log provides output solutions with an
optimality gap of 0.6% or 1.5% when compared with the benchmark given by SeDuMi. In the
case of the Dome, the same difference varies between 2.0% and 5.2%. With the exception of
the Michell 2 × 1, SeDuMi is faster than PAVM-Log. In fact, PAVM-Log’s CPU time increases
considerably for medium-size problems.

6.3 Support vector machines under uncertainty

Let us consider the following general binary classification problem: from some training data
points in R

n, each of which belongs to one of two classes, the goal is to determine some way of
deciding which class new data points will be in. Suppose that the training data consist of two sets of
points whose elements are labelled by either 1 or −1 to indicate the class they belong to. If there
exists a strictly separating (n − 1)-dimensional hyperplane between the two data sets, namely
H(w, b) = {x ∈ R

n: w�x − b = 0}, then the standard support vector machine (SVM) approach
is based on constructing a linear classifier according to the function f (x) = sgn(w�x − b). As
there might be many hyperplanes that classify the data, in order to minimize misclassification,
one picks the hyperplane which maximizes the separation (margin) between the two classes, so
that the distance from the hyperplane to the nearest data point is maximized. In fact, if we have a
set T = {(x1, y1), . . . , (xm, ym)} of m training data points in R

n × {−1, 1}, the maximum-margin
hyperplane problem can be formulated as the following quadratic programming (QP) optimization
problem [13]:

min
w,b

1

2
‖w‖2; yi(w�xi − b) ≥ 1, i = 1, . . . , m. (42)

D
ow

nl
oa

de
d

by
 [

20
1.

17
.1

09
.1

96
]

at
 1

5:
21

 1
8

Ju
ly

 2
01

1

Optimization Methods & Software 877

If this problem is feasible then we say that the training data set T is linearly separable. The
linear equations w�x − b = 1 and w�x − b = −1 describe the so-called supporting hyperplanes.

Following [34,35], suppose that X1 and X2 are random vector variables that generate samples
of the positive and negative classes, respectively. In order to construct a maximum-margin linear
classifier such that the false-negative and false-positive error rates do not exceed η1 ∈ (0, 1] and
η2 ∈ (0, 1], respectively, let us consider the following quadratic chance-constrained programming
problem:

min
w,b

1

2
‖w‖2; Prob{w�X1 − b < 0} ≤ η1, Prob{w�X2 − b > 0} ≤ η2. (43)

In other words, we require that the random variable Xi lies on the correct side of the hyperplane
with probability greater than 1 − ηi for i = 1, 2. Assume that for i = 1, 2 we only know the mean
μi ∈ R

n and covariance matrix �i ∈ R
n×n of the random vector Xi . In this case, for each i = 1, 2,

we want to be able to classify correctly, up to the rate ηi , even for the worst distribution in the
class of distributions which have common mean and covariance Xi ∼ (μi, �i), replacing the
probability constraints in (43) with their robust counterparts

sup
X1∼(μ1,�1)

Prob{w�X1 − b < 0} ≤ η1, sup
X2∼(μ2,�2)

Prob{w�X2 − b > 0} ≤ η2.

By virtue of an appropriate application of the multivariate Chebyshev inequality, this worst
distribution approach leads to the following QSOCP, which is a deterministic formulation of (43)
(see [34] for all details):

min
w,b

1

2
‖w‖2; w�μ1 − b ≥ 1 + κ1‖S�

1 w‖, b − w�μ2 ≥ 1 + κ2‖S�
2 w‖, (44)

where �i = SiS
�
i (for instance, Cholesky factorization) for i = 1, 2, and ηi and κi are related via

the formula κi = √
(1 − ηi)/ηi . Notice that similar to the standard hard-margin SVM formulation

(42), problem (44) can be written as an LSOCP:

min
t,w,b

t; t ≥ ‖w‖, w�μ1 − b ≥ 1 + κ1‖S�
1 w‖, b − w�μ2 ≥ 1 + κ2‖S�

2 w‖. (45)

Note that any feasible hyperplane must separate the means; hence, the natural condition μ1 �= μ2

is necessary for (44) to be feasible. Since κi → 0 when ηi → 1, problem (44) can be made
feasible whenever μ1 �= μ2 by choosing appropriate values for η1 and η2. By choosing η1 �= η2,
this formulation can be used for classification with preferential bias towards a particular class;
for instance, in the case of medical diagnosis, one can allow a low η1 and a relatively high
η2 [34, Section 4]. Finally, we can mention that these problems can be unfeasible for some values
of η1 or η2, for instance, when we take ηi → 0, we get κi → ∞.

So far we have assumed that the mean–covariance pairs (μi, �i) are known. However, in many
practical situations, we only have the training data set T = {(x1, y1), . . . , (xm, ym)}. Assuming
that T consists of two samples of independent observations of the random vectors X1 for y = 1
and X2 for y = −1, the idea is to replace (μi, �i) with a statistical estimator (μ̂i, �̂i); this can be
done by computing the sample mean and covariance for each class from the available observations.

Finding an initial condition of problem (44) may be difficult. Therefore, we consider the
following soft-margin SVM formulation:

min
w,b,ξ

1

2
‖w‖2 + ν(ξ1 + ξ2); w�μ1 − b ≥ 1 − ξ1 + κ1‖S�

1 w‖,

b − w�μ2 ≥ 1 − ξ2 + κ2‖S�
2 w‖, ξ1 ≥ 0, ξ2 ≥ 0,

(46)

where ν > 0 is a sufficiently large penalty parameter. This is based on the Cortes and Vapnik
approach [13] for training data that are not linearly separable. If (44) is feasible, then at the

D
ow

nl
oa

de
d

by
 [

20
1.

17
.1

09
.1

96
]

at
 1

5:
21

 1
8

Ju
ly

 2
01

1

878 F. Alvarez et al.

optimum for (46), we obtain ξ1 = ξ2 = 0; otherwise, we detect unfeasibility. Let us denote the
decision variable by z = (w, b, ξ1, ξ2) ∈ R

n+3. Set

wi(z) = (ξi + (−1)(i+1)(μ�
i w − b) − 1, κiS

�
i w) ∈ Ln+1

+ ,

for i = 1, 2. As we have also the positivity constraints ξi ≥ 0, we adapt the idea of Oliveira
et al. [28] to this situation, that is, for those constraints, we consider the Hessian of the logarithm
barrier function ψ(ξ1, ξ2) = − log(ξ1) − log(ξ2).

Notice that the objective function is quadratic. Then, the proximal step in PAVM-
Log corresponds to the unconstrained stationary condition for a quadratic function, which
amounts to solving exactly (δk = ηk = 0) a linear system. Condition (27) reduces to γk ≥
(σmin(A))−1/

√
2 maxi=1,2{λmax(w

i(zk)), ξ k
i }(2ν2 + ‖wk‖)1/2 + βk. As in the previous applica-

tion, we implement the following relaxed version:

γk(�) = 1

2�

[√
2

2σmin(A)
max
i=1,2

{λmax(w
i(zk)), ξ k

i }(2ν2 + ‖wk‖)1/2 + βk

]
, (47)

and denote by z(�) the solution of the corresponding linear system with γk(�) instead of γk . Then
we set zk+1 = z(�∗

k), where �∗
k = max{0, . . . , �max : z(�) ∈ C}.

Let us consider the well-known example called Fisher’s Iris data set, which is classical in the
pattern recognition literature, see for instance http://archive.ics.uci.edu/ml/datasets/Iris. These
data contain two measures taken from a sample of 100 ornamental flowers. The data set contains
four attributes of an iris, and the goal is to classify the class of iris based on these four attributes.
We restrict ourselves to the two features that contain the most information about the class, namely
the petal length and the petal width, sepal length and sepal width. There are three species, setosa,
virginica, and versicolor, of which, two are considered in each set. We look to classify the flowers
of each set in two species of the existent ones. In all the examples, n = 2.

In our implementation of the PAVM-Log algorithm, we use the following notations and values.
We use the MATLAB commands mean and cov on the training data, to compute the estimated
means μ̂ and covariance matrices �̂, respectively. The matrices Si are computed by Cholesky
factorization. The starting point (w0, b0) by means of: w0 = 1.1(w̃/α), b0 = 1.1(b̃/α), where
α = μ�

1 w̃0 + b̃, w̃0 = (μ11 − μ21, μ12 − μ22), b̃0 = 1/2(μ2
21 − μ2

11 + μ2
22 − μ2

12). The vector w̃
is taken as the orthogonal vector to the normal of the segment joining μ2 and μ1, b̃ as the value
in the hyperplane evaluated in the medium point of μ2 and μ1. And, ξ 0

i = κ(i)‖S�
i w0‖ + 0.9.

We take ν = 10, 000, βk = 0.12, δk = ηk = 0. In the relaxed version (47) for the regularization
parameter, we take �max = 10.

Tables 3 and 4 report the results of our experiments and provide some comparisons with SeDuMi
1.1R2 toolbox for MATLAB. In these tables, the first and second columns show the error rates, the
third and sixth columns show the number of iterations to fulfil the stopping rule (41), the fourth and
seventh columns report the CPU time by using our implementation in MATLAB of this specialized
version of PAVM-Log, the fifth and eighth columns provide the relative difference between the
value of the objective function at the output solution obtained by PAVM-Log algorithm, and the
optimal given by SeDuMi, denoted by valPAVM and valSDM, respectively. Finally, the last column
shows the CPU time required by SeDuMi toolbox using its default configuration. The value ×
in the table represents infeasibility of the problem. If such a case occurs, CPU times correspond
to the time required by the PAVM-Log algorithm to reach the prescribed tolerance, obtaining an
infeasible solution (i.e. when ξ1 �= 0 or ξ2 �= 0).

In these experiments, we can observe that output solutions are optimal up to a gap whose range
varies from 0.1% to 3.0% when compared with the benchmark given by SeDuMi, for different

D
ow

nl
oa

de
d

by
 [

20
1.

17
.1

09
.1

96
]

at
 1

5:
21

 1
8

Ju
ly

 2
01

1

Optimization Methods & Software 879

Table 3. Numerical comparisons with SeDuMi applied to data set: Setosa vs Versicolor.

Tol = 10−4 Tol = 10−5

No. of main CPU No. of main CPU CPU time

η1 η2 iterations time
valPAVM − valSDM

valSDM
iterations time

valPAVM − valSDM

valSDM
SeDuMi

0.7 0.1 27 0′′.027 0.006623 82 0′′.050 0.006441 0′′.210
0.5 0.1 11 0′′.031 0.013009 31 0′′.031 0.002217 0′′.180
0.3 0.1 13 0′′.010 × 35 0′′.032 × 0′′.050
0.1 0.1 7 0′′.014 × 20 0′′.022 × 0′′.070
0.1 0.3 12 0′′.022 0.019774 23 0′′.029 0.014521 0′′.130
0.3 0.3 11 0′′.022 0.043908 34 0′′.032 0.030113 0′′.160
0.3 0.5 18 0′′.027 0.021844 51 0′′.045 0.017778 0′′.200

Table 4. Numerical comparisons with SeDuMi applied to data set: Versicolor vs Virginica.

Tol = 10−4 Tol = 10−5

No. of main CPU No. of main CPU CPU time

η1 η2 iterations time
valPAVM − valSDM

valSDM
iterations time

valPAVM − valSDM

valSDM
SeDuMi

0.9 0.3 7 0′′.022 0.015485 10 0′′.030 0.010218 0′′.170
0.7 0.3 8 0′′.022 0.005198 11 0′′.023 0.005053 0′′.180
0.5 0.3 8 0′′.017 0.003034 28 0′′.033 0.001307 0′′.220
0.3 0.3 7 0′′.007 0.004301 19 0′′.024 0.004157 0′′.210
0.3 0.7 14 0′′.018 0.012250 42 0′′.029 0.009152 0′′.140
0.1 0.3 12 0′′.015 × 24 0′′.031 × 0′′.020
0.7 0.5 7 0′′.014 0.019001 12 0′′.022 0.015555 0′′.150

values of ηi . In all cases, PAVM-Log CPU time is much less than SeDuMi’s. Due to the small size
of the problems to be solved, we can decrease the error tolerance without much computational cost.

Tables 5 and 6 provide the computational results with smaller tolerances for some values of ηi

applied to the first data set, obtaining with PAVM-Log an optimality gap whose range varies from
0.3% to 0.7% with reasonable CPU time.

Table 5. Numerical comparisons with SeDuMi applied to data set: Setosa vs Versicolor.

Tol = 10−6 Tol = 10−7

No. of Main CPU No. of main CPU CPU time

η1 η2 iterations time
valPAVM − valSDM

valSDM
iterations time

valPAVM − valSDM

valSDM
SeDuMi

0.7 0.1 259 0′′.173 0.005144 944 0′′.608 0.004195 0′′.210
0.1 0.3 60 0′′.044 0.009389 259 0′′.179 0.004317 0′′.130
0.3 0.5 143 0′′.092 0.008224 492 0′′.319 0.004422 0′′.200

Table 6. Numerical comparisons with SeDuMi applied to data set: Versicolor vs Virginica.

Tol = 10−6 Tol = 10−7

No. of main CPU No. of main CPU CPU time

η1 η2 iterations time
valPAVM − valSDM

valSDM
iterations time

valPAVM − valSDM

valSDM
SeDuMi

0.7 0.3 14 0′′.039 0.004017 19 0′′.045 0.003424 0′′.180
0.3 0.7 136 0′′.092 0.006096 412 0′′.301 0.002556 0′′.140
0.7 0.5 19 0′′.029 0.011935 31 0′′.051 0.006506 0′′.150

D
ow

nl
oa

de
d

by
 [

20
1.

17
.1

09
.1

96
]

at
 1

5:
21

 1
8

Ju
ly

 2
01

1

880 F. Alvarez et al.

6.4 Concluding remarks on the numerical tests

The previous numerical results show that the PAVM-Log algorithm can be applied to solve approx-
imately LSCOP problems. As one should have expected, we see that SeDuMi is much faster in
terms of CPU time than PAVM-Log for medium-size LSOCP test problems. For very small size
problems, both algorithms are comparable with an optimality gap less than 1%. The comparison
with SeDuMi in terms of CPU time is not completely fair because of our rather straightfor-
ward implementation of PAVM-Log. Even so, it is natural that in the linear case an interior
point method, which is based on self-dual embedding and uses a primal–dual predictor–corrector
scheme, performs better than our purely primal proximal-point strategy.

It is worth pointing out that the PAVM-Log algorithm is not intended to compete with numerical
methods for LSOCP such as SeDuMi, which is an efficient method in particular for large-scale
problems. But PAVM-Log might be considered as an alternative for small-size problems and, more
importantly, for nonsmooth convex SOCP for which it is not clear how to extend SeDuMi-like
approach. Indeed, convex problems can be addressed by conventional local algorithms since all
critical points are global minimizers. The regularized proximal subproblem being strongly convex,
we expect local algorithms to perform efficiently enough to find good approximate solutions at
reasonable execution time. When the objective function is nonsmooth, we can work with the
so-called bundle methods [19,23].

In this direction, the computational results presented here should be considered just as an
intermediate step towards more general and possibly nonsmooth convex problems, which are not
addressed in this paper from the numerical point of view. In fact, the PAVM-Log algorithm as
presented here is only schematic. There are a lot of theory aspects and implementation issues
which should be addressed before performing and evaluating carefully designed computational
experiments in the nonsmooth convex case, and this goes beyond the scope of this paper.

Acknowledgements

The authors are grateful to the anonymous referees for their comments on the original manuscript. Their suggestions were
very useful to improve this work. The authors also wish to thank Professor Paulo J.S. Silva for stimulating conversations
and helpful comments. This work was partially supported by FONDECYT under grants 1050706 and 1070297, FONDAP
inApplied Mathematics, BASAL project, and the Millennium Scientific Institute on Complex Engineering Systems funded
by MIDEPLAN-Chile. The second author was also supported by CONICYT.

References

[1] W. Achtziger, Topology optimization of discrete structures: An introduction in view of computational and nosmooth
aspects, in Topology Optimization in Structural Mechanics, Vol. 374, CISM Courses and Lectures, Springer, Vienna,
1997, pp. 57–100.

[2] F. Alizadeh and D. Goldfarb, Second-order cone programming, Math. Program. Ser. B 95(1) (2003), pp. 3–51.
[3] F. Alvarez and M. Carrasco, Minimization of the expected compliance as an alternative approach to multiload truss

optimization, Struct. Multidiscip. Optim. 29(6) (2005), pp. 470–476.
[4] A. Auslender, Variational inequalities over the cone of semidefinite positive matrices and over the Lorentz cone,

Optim. Methods Softw. 18(4) (2003), pp. 359–376.
[5] A. Auslender and M. Teboulle, Asymptotic Cones and Functions in Optimization and Variational Inequalities,

Springer Monographs in Mathematics, Springer-Verlag, New York, 2003.
[6] A. Auslender and M. Teboulle, Interior gradient and proximal methods for convex and conic optimization, SIAM

J. Optim. 16(3) (2006), pp. 697–725.
[7] A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization, MPS-SIAM Series on Optimization,

Society for Industrial Mathematics, Philadelphia, 2001.
[8] J.F. Bonnans, J.Ch. Gilbert, C. Lemachéral, and C.A Sagastizábal, A family of variable metric proximal methods,

Math. Program. Ser. A 68(1) (1995), pp. 15–47.
[9] J.V. Burke and M. Qian, A variable metric proximal point algorithm for monotone operators, SIAM J. Control

Optim. 37(2) (1999), pp. 353–375.

D
ow

nl
oa

de
d

by
 [

20
1.

17
.1

09
.1

96
]

at
 1

5:
21

 1
8

Ju
ly

 2
01

1

Optimization Methods & Software 881

[10] J.V. Burke and M. Qian, On the superlinear convergence of the variable metric proximal point algorithm using
Broyden and BFGS matrix secant updating, Math. Program. Ser. A 88(1) (2000), 157–181.

[11] Y. Censor and S. A. Zenios, The proximal minimization algorithm with D-function, J. Optim. Theory Appl. 73(3)
(1992), pp. 451–464.

[12] G. Chen and M. Teboulle, Convergence analysis of proximal-like minimization algorithm using Bregman functions,
SIAM J. Optim. 3(3) (1993), pp. 538–543.

[13] C. Cortes and V. Vapnik. Support-vector networks, Mach. Learn. 20 (1995), pp. 273–297.
[14] J. Eckstein, Nonlinear proximal point algorithms using Bregman functions, with applications to convex programming,

Math. Oper. Res. 18(1) (1993), pp. 202–216.
[15] J. Faraut and A. Koranyi, Analysis on Symmetric Cones, Oxford Mathematical Monographs, Oxford University

Press, New York, 1994.
[16] M. Fukushima, Z.-Q. Luo, and P. Teng, Smoothing functions for second-order cone complementary problems, SIAM

J. Optim. 12(2) (2001/2002), pp. 436–460.
[17] J.Ch. Gilbert, Optimisation Différentiable – Théorie et Algorithmes. Syllabus de cours à I’ENSTA, 2002. Avaliable

at http://www-rocq.inria.fr/ ∼gilbert/ensta/optim.html.
[18] O. Güler, On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control Optim.

29(2) (1991), pp. 403–419.
[19] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms II: Advanced Theory and Bun-

dle Methods. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences],
Vol. 306. Springer-Verlag, Berlin, 1993.

[20] R. Horn and C. Johnson, Matrix Analysis, Cambridge University Press, 1990.
[21] A.N. Iusem, An interior multiplicative method for optimization under positivity constraints, Acta Appl. Math. 38

(1995), pp. 163–184.
[22] K. Knopp, Theory and Application of Infinite Series, Blackie & Son, Glasgow, 1951.
[23] C. Lemarèchal and C. Sagastizábal, Variable metric bundle methods: From conceptual to implementable forms,

Math. Program. 76 (1997), pp. 393–410.
[24] A.S. Lewis, Convex Analysis on the Hermitian Matrices, SIAM J. Optim. 6(1) (1996), pp. 164–177.
[25] M.S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, Applications of second-order cone programming, Linear

Algebra Appl. 284(1–3) (1998), pp. 193–228.
[26] B. Martinet, Perturbation des methodes d’optimisation, aplication, RAIRO anal. Numer. 12 (1978), pp. 153–171.
[27] J.J. Moreau, Proximité et dualité dans um espace Hilbertien, Bull. Soc. Math. France 93 (1965), pp. 273–299.
[28] G.L. Oliveira, S.S. Souza, J.X. da Cruz Neto, and P.R. Oliveira, Interior proximal methods for optimization over the

positive orthant, preprint, 2009.
[29] J. Peng, C. Roos, and T. Terlaky, Primal-dual interior-point methods for second-order conic optimization based on

self-regular proximities, SIAM J. Optim. 13(1) (2002), pp. 179–203.
[30] R.A. Polyak, Introduction to Optimization, Optimization Software, New York, 1987.
[31] M. Qian, The Variable Metric Proximal Point Algorithm: Theory and Application, Ph.D. thesis, University of

Washington, Seattle, WA, 1992.
[32] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
[33] R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim. 14(5) (1976),

pp. 877–898.
[34] J. Saketha Nath and C. Bhattacharyya, Maximum margin classifiers with specified false positive and false nega-

tive error rates, Proceedings of the Seventh SIAM International Conference on Data Mining, 26–28 April 2007,
Minneapolis, Minnesota. http://www.siam.org/meetings/proceedings/2007/datamining/papers/004Jagarlapudi.
pdf.

[35] P.K. Shivaswamy, C. Bhattacharyya, and A.J. Smola, Second order cone programming approaches for handling
missing and uncertain data, J. Mach. Learn. Res. 7 (2006), pp. 1283–1314.

[36] J.F. Sturm, Using SeDuMi 1.02, A Matlab toolbox for optimization over symmetric cones, Optim. Methods Softw.
11(1–4) (1999), pp. 625–653. Available at http://sedumi.ie.lehigh.edu/

[37] T. Tsuchiya, A convergence analysis of the scaling-invariant primal-dual path-following algorithms for second-
order cone programming, Optim. Methods Softw. 11(1–4) (1999), pp. 141–182.

D
ow

nl
oa

de
d

by
 [

20
1.

17
.1

09
.1

96
]

at
 1

5:
21

 1
8

Ju
ly

 2
01

1

