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Abstract The motion of massless particles on the back-
ground of a toroidal topological black hole is analyzed in
the context of conformal Weyl gravity. Null geodesics, in
terms of the Jacobi elliptic functions, are found analytically.
In addition, the Sagnac effect in this space-time is character-
ized, and we find a strong condition in the theory’s parameters
that is required for its existence.
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1 Introduction: conformal Weyl gravity and null
geodesics

Conformal Weyl gravity (CWG) was born of an attempt to
unify gravity and electromagnetism based on the principle
of local invariance of a manifold, described by the metric
gµν(x), under the change

gµν(x) → Ω2(x) gµν(x), (1)
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where Ω(x) is a smooth, strictly positive function [1–4]. The
CWG theory can be obtained from the conformally invariant
action

IW = 2 αw

∫
d4x

√−g
[
Rµν Rµν − 1

3

(
Rµ
µ

)2
]
, (2)

where αw is a dimensionless parameter chosen to be positive
if Eq. (2) is a positive definite Euclidean action. The vacuum
field equations associated with this action are solved by the
static, spherically symmetric line element given by [5–9]

ds̃2 = −B(r̃) dt̃2 + dr̃2

B(r̃)
+ r̃2(dθ̃2 + sin2 θ̃ dφ̃2), (3)

where the coordinates are defined in the range−∞ < t̃ < ∞,
r̃ ≥ 0, 0 ≤ θ̃ ≤ π , 0 ≤ φ̃ ≤ 2π , and the lapse function B(r̃)
is given by

B(r̃) = 1 − β̃ (2 − 3β̃ γ̃ )

r̃
− 3β̃ γ̃ + γ̃ r̃ − k̃r̃2. (4)

Here β̃, k̃ and γ̃ are positive constants associated with the
central mass, cosmological constant and the measurements of
the departure of the Weyl theory from the Einstein–de Sitter,
respectively. Clearly, taking the limit γ̃ = 0 = k̃ recovers
the Schwarzschild case, so that we can identify β̃ = M .

A study of the basis and properties, together with appli-
cations of the motion of massive and massless particles in
this geometry can be found, for example, in [10–19], and can
be obtained using the standard Lagrange procedure [20–27],
which allows a Lagrangian L to be associated with the met-
ric and then the equation of motion to be obtained from the
Lagrange’s equations,

Π̇q − ∂L

∂q
= 0, (5)
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where Πq = ∂L /∂q̇ are the conjugate momenta to the coor-
dinate q, and the dot denotes a derivative with respect to the
affine parameter τ along the geodesic. Thus, in Sect. 2, and
following the procedure performed by Klemm [28], we per-
form analytical continuations to obtain a non-trivial topology
associated with toroidal topological black holes coming from
CWG. In particular, we focus on the toroidal AdS black hole.
Other studies associated with topological black holes can be
found, for example, in Refs. [29–36]. Then we obtain the
conserved quantities together with the equations of motion
for massless particles on these manifolds. In Sect. 3 the radial
motion is analyzed for photons going to spatial infinity or to
the singularity, while Sect. 4 is devoted to obtaining ana-
lytically the trajectory for photons with non-zero angular
momentum, for which we employ an analysis in terms of
Jacobi elliptic functions. In Sect. 5 we apply the methods
outlined by Sakurai, Tartaglia, Rizzi and Ruggiero, among
others, to obtain an analogy to the Aharanov–Bohm effect
to describe the Sagnac effect for this space-time. Finally, in
Sect. 6 we conclude and summarize our results.

2 Toroidal topology

In order to obtain a toroidal topological black hole, we per-
form the following analytical continuation of the metric Eq.
(3):

t̃ → √
α t, r̃ → r√

α
, φ̃ → φ,

θ̃ → √
α θ, β̃ → β√

α
, γ̃ → γ√

α
, k̃ → k.

Then, by taking the limit α → 0, the line element becomes

ds2 = −B(r) dt2 + dr2

B(r)
+ r2(dθ2 + θ2 dφ2), (6)

with the lapse function

B(r) = 3 β2 γ

r
− 3 βγ + γ r − k r2. (7)

In this case, it is possible to prove that the metric induced
on the space-like surface of constant t and r corresponds to
a compact orientable surface with genus g = 1, i.e., a torus,
so the topology of this four-dimensional manifold becomes
R2 × S1 × S1 [28]. Therefore, performing γ = −2η/L ,
β = √

L/3, k = −1/ℓ2, and then evaluating at the limit
L → ∞, the lapse function becomes

B(r) = −2η

r
+ r2

ℓ2 , (8)

which for η > 0 describes the AdS uncharged static toroidal
black hole [37–43] with the event horizon placed at

r+ = (2 η ℓ2)1/3. (9)

The vanished Lagrangian associated with the photons that
move on this manifold can be expressed as

L = −1
2
B(r)ṫ2 + 1

2
ṙ2

B(r)
+ 1

2
r2(θ̇2 + θ2 φ̇2) = 0. (10)

Conversely, the toroidal metric given by Eqs. (6) and (8)
admits the following Killing vector field:

– The time-like Killing vector χ = ∂t is related to the
stationarity of the metric. The conserved quantity is given
by

gµν χµ uν = −B(r) ṫ = −
√
E (11)

where E is a constant of motion that cannot be associ-
ated with the total energy of the test particle because this
metric is not asymptotically flat.

– The most general space-like Killing vector is given by

χ = (A cos φ + B sin φ) ∂θ

+
[
C − A

sin φ

θ
+ B

cos φ

θ

]
∂φ, (12)

where A, B and C are arbitrary constants. Is easy to see
that it is a linear combination of the three Killing vectors

χ1 = ∂φ,

χ2 = cos φ ∂θ − sin φ

θ
∂φ,

χ3 = sin φ ∂θ +
cos φ

θ
∂φ

which are the angular momentum operators for this
space-time. The conserved quantities are given by

gαβ χα
1 uβ = r2 θ2 φ̇ = L1, (13)

gαβ χα
2 uβ = r2 (cos φ θ̇ − θ sin φ φ̇) = L2, (14)

gαβ χα
3 uβ = r2 (sin φ θ̇ + θ cos φ φ̇) = L3, (15)

where L1, L2 and L3 are constants associated with the
angular momentum of the particles.

It is interesting to point out that Eqs. (14) and (15) imply
that

J 2 ≡ L2
2 + L2

3 = r4(θ̇2 + θ2 φ̇2), (16)
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Fig. 1 Graphs of the topological toroidal effective potential as a func-
tion of the radial coordinate. The critical impact parameter bc corre-
sponds to the value of b at r → ∞

such that, if we focus our attention on the invariant plane
θ = θ0, so θ̇ = 0, we get L1 = θ0 J . Thus, using Eqs. (11)
and (16) in Eq. (10) we obtain the radial equation of motion
corresponding to the one-dimensional problem

ṙ2 = E − V (r), (17)

where V (r) is the effective potential defined as

V (r) = J 2 B(r)
r2 ≡ J 2 V (r). (18)

Here V (r) = B(r)/r2 is the effective potential per unit of
J 2.

On the other hand, without lack of generality we choose
θ0 = 1 and combining Eqs. (16) and (17), we obtain the
angular motion equation

(
1
r2

dr
dφ

)2

= 1
b2 − V (r) = 2 η

r3 −
(

1
ℓ2 − 1

b2

)
, (19)

where b = J/
√
E is the impact parameter.

In Fig. 1 we have plotted the effective potential (per unit of
J 2) as a function of the radial coordinate. In the next sections
the motion of massless particles will be analyzed analytically
by integration of the equations of motion.

3 Radial motion

Radial motion corresponds to a trajectory with null angular
momentum J = 0, so photons fall toward the singularity or
to the spatial infinity. From Eq. (18) we can see that photons
in radial motion have a null effective potential V (r) = 0, so
that Eqs. (11) and (17) become

dr
dτ

= ±
√
E, (20)

and

dr
dt

= ±B(r) = ± 1
ℓ2

(
r3 − r3

+
r

)

, (21)

where the sign − (+) corresponds to photons falling to the
event horizon (spatial infinity). Assuming that t = τ = 0 at
r = ri , then a straightforward integration of Eq. (20) leads
to

τ (r) = ±r − ri√
E

, (22)

while an integration of Eq. (21) becomes

t (r)=± ℓ2
√

3 r+

{
arctan

(
2r + r+√

3 r+

)
−arctan

(
2ri + r+√

3 r+

)

+ log

[
r3
i − r3

+
r3 − r3

+

(
r − r+
ri − r+

)3
]}

. (23)

Obviously, in the proper system photons cross the event
horizon in a finite time τ (r+) ≡ τ+ = (ri − r+)/

√
E

and, eventually, arrive at the singularity in a finite time
τ (0) ≡ τ0 = ri/

√
E . Also, they eternally approach the spa-

tial infinity i.e., τ (∞) → ∞. On the other hand, an observer
at ri sees that photons take an infinite coordinate time even
to arrive at r+, while it takes a finite coordinate time even to
arrive at the spatial infinity, given by

t∞ = ℓ2
√

3 r+

{
π

2
− arctan

(
2ri + r+√

3 r+

)
+ log

[
r3
i − r3

+
(ri − r+)3

]}

.

(24)

The existence of this time is due to the presence of the cos-
mological term on the toroidal topology and depends on the
position of the observer ri . A similar feature was reported
before by Villanueva and Vásquez, but in the context of Lif-
shitz black holes [44]. The behavior of both proper time and
coordinate time is shown in Fig. 2.

4 Angular motion

This section is devoted to studying the angular motion of
the test particles (J ̸= 0), which depends on the value of the
impact parameter b. From Fig. 1 we can see that there are two
distinct regions separated by the critical impact parameter

123
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Fig. 2 Temporal null geodesics for radial motion described by Eqs.
(22) and (23). This shows some equivalence with its spherical counter-
part previously studied by Cruz et al. [21] for photons moving to r+.
The novel result appears for photons moving to infinity in which, as
is measured by an observer in ri , it takes a finite coordinate time t∞
to reach infinity. This feature was reported before by Villanueva and
Vásquez but in the context of Lifshitz space-times [44]

bc = ℓ. Thus, if b > bc the motion will be confined with a
turning point, the apoastron distance rt , placed at

rt (b) =
r+

[
1 −

(
bc
b

)2
]1/3 , (25)

whereas if b < bc the turning point does not exist, and the
motion is unbound with a negative characteristic distance
(without physical meaning), the magnitude of which is

rD(b) =
r+

[(
bc
b

)2
− 1

]1/3 . (26)

Both distances, rt and rD , play an important role in the deter-
mination of trajectories because they depend strongly on the
impact parameter b (see Figs. 3 and 5).

4.1 Confined motion

Returning to the general equation (19), we first consider the
case when the impact parameter lies between bc < b < ∞,
so using the variable u = 1/r with ut = 1/rt , we can write

du
dφ

= ±
√

2 η

√
u3 − u3

t

= ±
√

2 η

√

(u − ut )
[(

u + ut
2

)2
+ 3 u2

t

4

]
. (27)

tr

+r

cb b
Fig. 3 Plot for the turning point or apoastron, rt as a function of the
impact parameter b. The validity of this function is in bc < b < ∞

Using the substitution

u = ut

(√
3 cot2 ξ

2
+ 1

)
, (28)

where the range of u is ut ≤ u < ∞, and the corresponding
range of ξ is ξt = π ≤ ξ < 2π , Eq. (27) can be reduced to
the elliptic form

± α1

φ∫

φt

dφ′ =
ξ∫

π

dϕ
√

1 − k2
1 sin2 ϕ

=
ξ∫

0

dϕ
√

1 − k2
1 sin2 ϕ

−
π∫

0

dϕ
√

1 − k2
1 sin2 ϕ

, (29)

where

α1 =
√

2
√

3 η ut , k1 =

√
2 −

√
3

4
. (30)

So, we may write the solution for φ as

±α1 φ = 2K (k1) − F(ξ, k1), (31)

where K (k) and F(ψ, k) are the complete and incomplete
elliptic integrals of the first kind, respectively, and we have
assumed that φt = 0. Therefore, by using some formulas and
identities of the Jacobian elliptic functions, we can write the
equation of the trajectory as

r(φ, b) = rt (b)

1 +
√

3 tn2
(

α1(b)φ
2 , k1

)
dn2

(
α1(b)φ

2 , k1

) , (32)

where tn(x, k) and dn(x, k) are Jacobi’s elliptic functions
(see Appendix 1 and Refs. [45–47]). Obviously, this trajec-
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Fig. 4 Polar plot for a confined trajectory of photons from a distance
rt

tory depends on the impact parameter and is shown in Fig. 4
for photons falling from rt .

4.2 Unbounded motion

We now consider the case when the impact parameter lies
between 0 < b < bc, which means that the real root is a
negative one rn ≡ −rD , where rD is given by Eq. (26), so
there is no turning point. Obviously, this negative root lacks
physical interpretation, but it is important for determining
the shape of the trajectory. Therefore, setting u = 1/r again
with uD = 1/rD , the equation of motion (19) can be written
as

du
dφ

= ±
√

2 η

√
u3 + u3

D

= ±
√

2 η

√√√√(u + uD)

[(
u − uD

2

)2
+ 3 u2

D

4

]

. (33)

In order to integrate Eq. (33), we now make the substitution

u = uD

(√
3 cot2 ξ

2
− 1

)
, (34)

where the range is

u → 0 (infinity), ξ∞ = arccos

(

−2 −
√

3
2

)

, (35)

u → ∞ (singularity), ξs = π, (36)

Fig. 5 Plot for the modulus of the real negative root rD as a function of
the impact parameter associated with the unbounded motion of photons,
i.e. 0 < b < bc

so the quadrature becomes

± α2

φ∫

φ∞

dφ′ =
ξ∫

ξ∞

dϕ
√

1 − k2
2 sin2 ϕ

=
ξ∫

0

dϕ
√

1 − k2
2 sin2 ϕ

−
ξ∞∫

0

dϕ
√

1 − k2
2 sin2 ϕ

,

(37)

with

α2 =
√

2
√

3 η uD, k2 =

√
2 +

√
3

4
. (38)

Note from Eqs. (30) and (38) that the module of one trajec-
tory corresponds to the complementary module of the other,

k1 =
√

1 − k2
2 = k′

2 and k2 =
√

1 − k2
1 = k′

1. Therefore,
assuming that φ∞ = 0 we may write

±α2 φ = F(ξ, k2) − F(ξ∞, k2), (39)

which implies that the trajectory now is described by the
polar equation

r(φ, b) = rD(b)√
3 cs2(Θ, k2) nd2(Θ, k2) − 1

, (40)

where cs(x, k) and nd(x, k) are Jacobi’s elliptic functions
(see Appendix 1), and the phase Θ is given by

Θ = F(ξ∞, k2) − α2(b)φ
2

. (41)

In Fig. 6 we have plotted the unbounded trajectory (40) for
photons coming from infinity.
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Fig. 6 Polar plot for the unbounded trajectory, Eq. (40), followed by
photons whose impact parameter lies between 0 < b < bc

5 The Sagnac effect

In this section we describe the Sagnac effect [48] by apply-
ing the formalism developed by Sakurai [49], Tartaglia
[50], Rizzi and Ruggiero [51–54], among others, to the
exterior space-time of the topological toroidal black hole.
This approach was used to calculate this effect in the exte-
rior space-time to an uncharged spherical symmetric black
hole in conformal Weyl gravity [55]. For the non-rotating
toroidal metric given by Eqs. (6) and (8) written in the usual
Schwarzschild-like coordinates (ct ′, r ′, θ ′,φ′):

ds2 = −
(

−2η

r ′ + r ′2

ℓ2

)
c2dt ′2 + dr ′2

(
− 2η

r ′ + r ′2
ℓ2

)

+r ′2(dθ ′2 + θ ′2 dφ′2), (42)

so the transformation to the azimuthal frame of the rotating
platform

ct = ct ′, r = r ′, θ = θ ′, φ = φ′ − Ωt ′, (43)

where Ω is the constant angular velocity of the physical
frame, yields the metric (after setting r = R and θ = 1)

ds2 = −
(

−2η

R
+ R2

ℓ2 − Ω2R2

c2

)
d(ct)2 + R2dφ2

+2
Ω

c
R2 dφ d(ct). (44)

Therefore, the non-zero components of the unit vector γ α

along the trajectory r = R are given by

γ t = 1√−gtt
= γJ , (45)

γt = −√−gtt = −γ −1
J , (46)

γφ = gφt γ
t = Ω

c
R2 γJ , (47)

where

γJ =
[
R2

(
1
ℓ2 − Ω2

c2

)
− 2η

R

]−1/2

. (48)

In terms of this component, the gravito-electric and gravito-
magnetic potentials are given by

φG = −c2 γ t = −c2 γJ , (49)

AG
φ = c2 γφ

γt
= −cΩ R2 γ 2

J . (50)

As was shown in [51], it is possible to express the phase
shift and time delay between light beams detected by a co-
moving observer on the interferometer in terms of the gravito-
magnetic induction field, BG = ∇ × AG , by means of the
expressions

∆Φ = 2 ϵ γt

h̄ c3

∫

S

BG · dS = 2 ϵ γt

h̄ c3

∫

ζ(S)

AG · dr (51)

and

∆τ = 2γt

c3

∫

S

BG · dS = 2γt

c3

∫

ζ(S)

AG · dr, (52)

where ϵ is the relative energy of the photon as measured in
the interferometer. Therefore, the phase shift turns out to be

∆Φ = 4πϵ

h̄c
Ω̃R

√
1 − Ω̃2 − r3

+
R3

, (53)

while the time delay turns out to be

∆τ = 4π

c
Ω̃R

√
1 − Ω̃2 − r3

+
R3

, (54)

where Ω̃ = Ω/Ωℓ is the dimensionless angular velocity, and
Ωℓ ≡ c/ℓ. Thus, from this last equation, we can see that if
Ω = 0, i.e., performing a measure of the propagation time
in a non-rotating frame, no Sagnac effect arises. Also, there
is an upper limit for the angular velocity ΩR related to the
radius of the orbit R (see Fig. 7) given by

Ω < ΩR ≡ Ωℓ

√
1 −

(r+
R

)3
. (55)
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Fig. 7 Plot for the maximum angular velocity ΩR as a function of the
radius of the orbit R for an interferometer in the Sagnac effect

6 Summary

In this paper we have studied the null structure of the
geodesics for a toroidal topological space-time which sur-
rounds a black hole in the conformal Weyl gravity. First,
we obtained an explicit behavior of radial photons to con-
clude that, while no changes in the motion to the singularity
with respect to the Schwarzschild anti-de Sitter counterpart
is found, there is a non-trivial coordinate time t∞ for the
description of the motion to the spatial infinity (see Eq. (24)).
A similar result was obtained by Villanueva and Vásquez but
in the context of the Lifshitz space-time [44]. Next, following
the standard Lagrangian procedure, we have obtained analyt-
ically the trajectories of the confined and unbounded angular
motion for photons in terms of Jacobi elliptic functions, Eqs.
(32) and (40), and we have shown our results in Figs. 4 and
6, respectively. Obviously, these trajectories depend on the
impact parameter b and, due to the topology, always fall to
the singularity, which is a characteristic of AdS space-times.
Finally, the Sagnac effect has been studied for this topolog-
ical space-time. Our result is consistent with those obtained
previously in other geometries in the sense that no Sagnac
effect arises for a non-rotating frame. In addition, we have
found a strong condition for its existence, which depends on
the theory’s parameters {η, ℓ} (in r+ and Ωℓ) as well as on
the radius of the circular orbit R. This condition is given in
Eq. (55); cf.

Ω < ΩR ≡ Ωℓ

√
1 −

(r+
R

)3
,

for which the upper limit for the angular velocity ΩR was
plotted in Fig. 7 as a function of the radius R.

Finally, our study provides a simple physical visualization
of the null trajectories and their main characteristics, and
complements other studies carried out in the standard and/or

trivial topology in conformal Weyl gravity [11–15], as well as
in physically similar situations such as time-like geodesics on
toroidal space-times [56] and motion of particles in toroidal
magnetic fields on a Schwarzschild background [57], among
others [58,59].

Acknowledgements The authors acknowledge useful conversations
with Prof. Dr. Ricardo Troncoso, Prof. Dr. Graeme Candlish and Dr.
Helen Lowry. In addition, we acknowledge to Vicerrectoría de Inves-
tigación e Innovación of the Universidad de Valparaíso for support of
this work.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

Appendix A: A brief review of Jacobian elliptic functions

As a starting point, let us consider the elliptic integral [45–
47]

u(y, k) ≡ u =
∫ y

0

dt
√
(1 − t2)(1 − k2 t2)

=
∫ ϕ

0

dθ
√

1 − k2 sin2 θ
= F(ϕ, k), (A.1)

where F(ϕ, k) is the normal elliptic integral of the first kind,
and k is the modulus. The problem of the inversion of this
integral was studied and solved by Abel and Jacobi, and one
defines the inverse function by y = sin ϕ = sn(u, k) with
ϕ = am u, called the Jacobi elliptic sine u, and the amplitude
u.

The function sn u is an odd elliptic function of order two.
It possesses a simple pole of residue 1/k at every point con-
gruent to i K ′ (mod 4K , 2i K ′) and a simple pole of residue
−1/k at points congruent to 2K + i K ′ (mod 4 K , 2i K ′),
where K ≡ K (k) = F(π/2, k) is the complete elliptic inte-
gral of the first kind, K ′ = F(π/2, k′), and k′ =

√
1 − k2 is

the complementary modulus.
Two other functions can then be defined by cn(u, k) =√

1 − y2 = cos ϕ, which is called the Jacobi elliptic cosine
u, and which is an even function of order two, and dn(u, k) =√

1 − k2 y2 = ∆ϕ =
√

1 − k2 sin ϕ, called the Jacobi ellip-
tic delta u, which is an even function. The set of functions
{sn u, cn u, dn u} are called Jacobian elliptic functions, and
they take the following special values:

sn(u, 0) = sin u, sn(u, 1) = tanh u, (A.2)

cn(u, 0) = cos u, cn(u, 1) = sech u, (A.3)

dn(u, 0) = 1, dn(u, 1) = sech u, (A.4)

tn(u, 0) = tan u, tn(u, 1) = sinh u. (A.5)
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The quotients and reciprocal of {sn u, cn u, dn u} are desig-
nated in Glaisher’s notation by

ns u = 1
sn u

, cs u = cn u
sn u

, ds u = dn u
sn u

, (A.6)

nc u = 1
cn u

, tn u ≡ sc u = sn u
cn u

, dc u = dn u
cn u

, (A.7)

nd u = 1
dn u

, sd u = sn u
dn u

, cd u = cn u
dn u

. (A.8)

Therefore, in all, we have 12 Jacobian elliptic functions.
Finally, some useful fundamental relations between Jacobian
elliptic functions used throughout this work are

sn2u + cn2u = 1, (A.9)

dn2u + k2 sn2u = 1, (A.10)

dn2u − k2 cn2u = k′2, (A.11)

cn2u + k′2 sn2u = dn2u, (A.12)
1 − cn 2u
1 + cn 2u

= tn2u dn2u, (A.13)

cn (u ± 2K ) = −cn u. (A.14)
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