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Abstract The intermediate, logamediate and exponential
inflationary models in the context of Galileon inflation or
G-inflation are studied. By assuming a coupling of the form
G(φ, X) ∝ φν Xn in the action, we obtain different analyt-
ical solutions from the background cosmological perturba-
tions assuming the slow-roll approximation. General condi-
tions required for these models of G-inflation to be realizable
are determined and discussed. In general, we analyze the con-
dition of inflation and also we use recent astronomical and
cosmological observations for constraining the parameters
appearing in these G-inflationary models.

1 Introduction

It is well known that the inflationary epoch [1–7] provides
more than the mechanism for solving the problems of the
hot big bang model (flatness, horizon etc). In this sense, one
of the achievements of the inflationary universe is to pro-
vide the primordial curvature perturbations, which seed the
observed cosmic microwave background (CMB) tempera-
ture anisotropies [8–15] and the structure formation of the
universe, that are generated from vacuum fluctuations of the
scalar field which drives the accelerated expansion [16–21].
One can test the inflationary paradigm by comparing the theo-
retical predictions for various models of inflation with current
astrophysical and cosmological observations, in particular
those that come from the CMB temperature anisotropies. In
doing so, the predictions of representative inflationary mod-
els, given on the ns −r plane, are compared with the allowed
contour plots from the observational data. In this context, the
BICEP2/Keck-Array collaboration [22] published new more
precise data regarding the CMB temperature anisotropies,
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improving the upper bound on the tensor-to-scalar ratio to be
r0.05 < 0.07 (95% CL) in comparison to latest data of Planck
[15], for which r0.002 < 0.11 (95% CL).

On the other hand, in the context of exact inflationary
solutions, one of the more interesting are found by using an
exponential potential for the inflaton, yielding a power-law
evolution of the scale factor in cosmic time, i.e., a(t) ∝ t p,
where p > 1 [23]. Another exact solution corresponds to de
Sitter inflation in which the effective potential is a constant
[2]. We also have an exact solution for an inverse power-law
potential. Here, the inflationary stage can be described by
the intermediate inflation model, in which the scale factor
has the following dependence on cosmic time [24–26].

a(t) = exp
[
A t f

]
, (1)

where A and f are constant parameters, satisfying the con-
ditions A > 0 and 0 < f < 1. This intermediate expansion
law becomes slower than de Sitter inflation, but faster than
power-law inflation instead. In addition, a generalized infla-
tion model is provided by the model of logamediate inflation,
in which the scale factor evolves as [27]

a(t) = exp
[
B ln(t)λ

]
, (2)

here, B and λ are dimensionless constant parameters such
that B > 0 andλ > 1. Note that for the special caseλ = 1 and
B = p, the logamediate inflation model reduces to power-
law inflation with an exponential potential [23].

Originally, these inflationary models were studied as exact
solutions of background evolution. However, the slow-roll
formalism provides a better analysis regarding the dynam-
ics of primordial perturbations. In practice, these models are
completely ruled out by current observational data [15] in
the standard canonical inflationary scenario. In particular,
for the intermediate inflation model, it was found that for
the special case f = 2/3, the scalar spectral index becomes
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ns = 1, corresponding to the Harrison-Zel’dovich spectrum,
being not supported by current data. Also, an observational
consequence is that for both inflationary models, the tensor-
to-scalar ratio r , becomes significantly r ̸= 0, but this ratio
is always r > 0.1, as it was shown in Refs. [26,27]. If we go
further the standard cold scenario, e.g., in the warm inflation
scenario, both intermediate and logamediate models may be
reconciled with current observations available at that time
[28–36].

Instead of considering the parametrization of the scale
factor as function the cosmic time, alternatively the authors
in Ref. [37] introduced an explicit expression for the Hub-
ble rate. Here, they studied a Hubble parameter having an
exponential dependence on cosmic time of the form

H(t) = α exp[−βt], (3)

where α denotes the value of the Hubble rate when cosmic
time tends to zero and β is a constant parameter, such that
β > 0. On the contrary of the intermediate and logamediate
inflation models, this exponential Hubble rate has the novelty
of addressing the end of inflation [37]. Nevertheless, regard-
ing the predictions for this model on the ns − r plane, the
trajectory lie outside the 95% CL region, being completely
ruled out by current observations.

On the other hand, going beyond the standard canonical
inflation scenario, a non-canonical inflation model, whose
Lagrangian contains higher derivative terms, has become of a
special interest from the theoretical and observational points
of view, yielding a large or small amount of non-Gaussianities
and a non-trivial speed of sound. A special class of such
a models, dubbed Galileon inflation models or G-inflation,
were inspired by theories exhibiting “Galilean” symmetry,
∂µφ → ∂µφ + bµ [38]. Interestingly, the field equations
derived from such a theories still contain derivatives up to
second order, avoiding ghosts [38]. Nevertheless, this feature
holds only when the space-time is Minkowsi [39]. Although
the “covariantization” of the Galileon achieved the equations
of motion to keep of second order, the Galilean invariance is
broken [39,40]. This theory, as it was shown in Refs. [41,42],
is equivalent to Horndeski’s theory [43], which is stated as
the most general scalar-tensor theory with second-order field
equations. For a representative list of works on G-inflation,
see Refs. [44–54].

In the framework of modified gravity theories having extra
degrees of freedom, the action for linearized gravitational
waves (GWs) reads Sh = 1

2

∫
d3xdtM2

∗
[
ḣ2
A − c2

T (∇hA)
2] ,

where M∗ is an effective Planck mass which would depend
on the particular theory under consideration, and hA are the
amplitudes of the polarization states of the perturbations hµν

around the Minkowski space. The quantity cT corresponds
to the speed of the GW, which can be parameterized more
convenient as c2

T = 1 + αT . By combing the gravitational

wave event GW170817 [55], observed by the LIGO/Virgo
collaboration, and the gamma-ray burst GRB 170817A [56],
it has been possible to strongly constrain the speed of GWs,
determining that GWs propagate at the speed of light with
|αT | ! 10−15 [57]. However, we mentioned that this con-
straint on the speed of GWs occurs for a redshift z ∼ 0.1,
wherewith this constraint does not necessarily apply to the
early universe. As a direct consequence for Horndeski’s the-
ory, is that a large model space of this theory has been elimi-
nated to the present time. Specifically, all the terms that lead
to non-minimal kinetic couplings are ruled out, leaving this
theory constructed only with k-essence, cubic Galileon and
non-minimally coupling sectors, in which the Lagrangian
density can be written as [57–63]

L = K (φ, X) − G(φ, X)"φ + f (φ)R. (4)

In Ref. [64], the authors explored the viability of con-
sidering the intermediate inflation model in the framework
of G-inflation, with a cubic Galileon term of the form
G(φ, X)"φ ∝ Xn"φ. Interestingly, it was found the com-
patibility of this model with Planck 2015 data. Here the
authors find that the power n plays a fundamental role on
the cosmological parameters in order to obtain the observa-
tional data.

The main goal of the present article is to explore the obser-
vational consequences of studying the intermediate, logame-
diate and exponential Hubble inflation models in the frame-
work of the cubic Galileon and how these models are mod-
ified with the coupling G(φ, X). In doing so, we consider
a coupling of the form G(φ, X) ∝ φνXn , which general-
izes the cases G(φ, X) ∝ φX and G(φ, X) ∝ Xn already
studied in Refs. [49,64], respectively. We will show that,
for each inflation model studied, there exist a region in the
space of parameters for which its predictions lie inside the
allowed region from BICEP2/Keck-Array data, resurrecting
these inflationary models. In addition, we will show that the
allowed region in the space of parameters becomes different
than the obtained in the case of intermediate model [64].
Here, following Ref. [65] the authors of [64], introduce an
extra time that corresponds to a time of an unspecified reheat-
ing mechanism in order to induce to stop inflation and so
evaluate the cosmological parameters.

We have organized this article as follows. In the next sec-
tion, we present a brief review of G-inflation. In Sects. 3, 4,
and 5 we study the background and perturbative dynamics of
our concrete inflationary models under the slow-roll approx-
imation. Contact between the predictions of the model and
observations will be done by computing the power spectrum,
the scalar spectral index as well as the tensor-to-scalar ratio.
We summarize our findings and present our conclusions in
Sect. 6. We chose units so that c = h̄ = 8πG = 1.
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2 G-inflation

In this section we give a brief review on the background
dynamics and the cosmological perturbations in the model
of G-inflation. Our starting point, is the 4-dimensional action
in the framework of the Galilean model given by

S =
∫ √−g4

(
R
2
+ K (φ, X) − G(φ, X)"φ

)
d4x . (5)

Here, the quantity g4 corresponds to the determinant of the
space-time metric gµν , R denotes the Ricci scalar and X =
−gµν∂µφ∂νφ/2. The scalar field is denoted by φ and the
quantities K and G are arbitrary functions of X and φ.

By assuming a spatially flat Friedmann Robertson Walker
(FRW) metric and a homogeneous scalar field φ = φ(t),
then the modified Friedmann equations can be written as

3H2 + K + φ̇2(Gφ − KX ) − 3HGX φ̇3 = 0, (6)

and

2Ḣ + 3H2 + K − φ̇2(Gφ + GX φ̈) = 0, (7)

where H = ȧ
a corresponds to Hubble rate and a denotes

the scale factor. In the following, we will consider that the
dots denote differentiation with respect to cosmic time and
the notation KX denotes KX = ∂K/∂X , while KXX corre-
sponds to KXX = ∂2K/∂X2, and Gφ means Gφ = ∂G/∂φ,
etc.

From variation of the action (5) with respect to the scalar
field we have

3ḢGX φ̇2 + φ̈

[
3HGXX φ̇3 − φ̇2(GφX − KXX )

+6HGX φ̇ − 2Gφ + KX

]

+3HGφX φ̇3 + φ̇2(9H2GX − Gφφ + KφX )

−Kφ − 3H φ̇(2Gφ − KX ) = 0. (8)

In the specific cases in which the functions K = X − V (φ)

(with V (φ) being the effective potential for the scalar field)
and G = 0, general relativity (GR) is recovered.

In order to study the model of G-inflation from different
inflationary expansions, we will analyze the specific case in
which the functions K (φ, X) and G(φ, X) are given by

K (φ, X) = X − V (φ), and G(φ, X) = g(φ) Xn, (9)

respectively. Here, the coupling g(φ) is a function that
depends exclusively on the scalar field φ and the power n

is such that n > 0. Also, in the following we will assume a
power-law dependence on the scalar field for the coupling

g(φ) = γ φν , (10)

where the parameter γ and the power ν are both real,
with γ > 0. Thus, the function G(φ, X) is defined as
G(φ, X) = γ φν Xn and then the Galilean term in the action
is G(φ, X)"φ ∝ φν Xn "φ. We mention that for the partic-
ular case in which ν = 0 i.e., g(φ) =const., and therefore the
function G(φ, X) ∝ Xn was already analyzed in Ref. [64]
for the specific model of intermediate inflation.

Following Ref. [47], we will consider the model of G-
inflation under the slow-roll approximation. In this sense, the
effective potential dominates over the functions X , |GX H φ̇3|
and |GφX |. Thus, under this approach, the Friedmann equa-
tion given by Eq. (6) can be approximated to

3H2 ≈ V (φ). (11)

By assuming the slow-roll approximation, we can introduce
the set of slow-roll parameters for G-inflation, defined as [47]

δX = KX X
H2 , δGX = GX φ̇X

H
, δGφ = GφX

H2 ,

ε1 = − Ḣ
H2 , ϵ2 = − φ̈

H φ̇
= −δφ, ϵ3 = gφφ̇

gH
,

and ϵ4 = gφφXn+1

Vφ
. (12)

From the parameters defined above and combining with the
Friedmann equations (6) and (7), the slow-roll parameter ε1
can be rewritten as

ε1 = δX + 3δGX − 2δGφ − δφδGX . (13)

Now, from the functions K (φ, X) and G(φ, X) given by
Eq. (9) and considering the slow-roll parameters from
Eqs. (12) and (13), the equation of motion for the scalar field
read as

3H φ̇(1 − ϵ2/3)+ 3ngXn−1H2φ̇2(3 − ε1 − 2nϵ2)

+3gXn−1H2φ̇2[(n−1)ϵ3+(n+1)ϵ2ϵ3/3] = −Vφ(1−2ϵ4).

(14)

In the context of the slow-roll analysis, we are going to con-
sider that the slow-roll parameters |ε1|, |ϵ2|, |ϵ3|, |ϵ4| ≪ 1,
see Ref. [47]. In addition, we can define other three slow-
roll parameters that are of second order in ε1 and these are
given by δGφX = G,φX X2/H2, δGφφ = G,φφφ̇X/H3, and
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δGφXX = G,φXX X3/H2, respectively. Then, the slow-roll
equation of motion for the scalar field, given by Eq. (14), can
be approximated to

3H φ̇(1 +A) ≃ −Vφ , (15)

where A is a function defined as

A ≡ 3H φ̇GX = 3n g(φ)Xn−1H φ̇ = 3n γ φνXn−1H φ̇.

(16)

From the slow-roll equation (15), we may distinguish two
opposite limits. First, we have the limit |A| ≪ 1, which corre-
sponds to the standard slow-roll equation in GR for the scalar
field. However, when |A| ≫ 1, the Galileon term modifies
the equation for the scalar field, and hence its dynamics. In
this context, we are interested in the latter limit in which the
Galileon effect changes the field dynamics. Then, by com-
bining Eqs. (11) and (15), we find that the scalar field can be
written as

φν φ̇2n+1 = 2n(−Ḣ)

3nγ H
, ⇒ 2n + 1

2n + 1 + ν
φ

2n+1+ν
2n+1

=
(

2n

3nγ

) 1
2n+1

∫ (−Ḣ
H

) 1
2n+1

dt. (17)

Note that this expression for φ(t) could be expressed explic-
itly in terms of the cosmic time t for any model and, in par-
ticular, for any scale factor a(t) or Hubble rate H(t).

From Eq. (17) we obtain that the function A can be rewrit-
ten as

A = 3 n γ

2 n−1 H
[

2 n(−Ḣ)

3 n γ H

] 2n−1
2n+1

φ
2ν

2n+1 ≫ 1. (18)

Here, we have used the Friedmann equation given by (11).
On the other hand, the analysis of the cosmological pertur-

bations in G-inflation was developed in Refs. [44,47]. In the
following, we briefly review the basic relations governing the
dynamics of cosmological perturbations in the framework of
G-inflation. In this context, the power spectrum of the pri-
mordial scalar perturbation PS in the slow-roll approxima-
tion can be written as [44,47]

PS = H2q1/2
s

8π2ε
3/2
s

, (19)

where the quantities qs and εs are defined as

qs = δX + 2δXX + 6δGX + 6δGXX − 2δGφ , (20)

and

εs = δX + 4δGX − 2δGφ , where δXX = KXX X2

H2 ,

and δGXX = GXX φ̇X2

H
. (21)

Here, we mention that the scalar propagation speed squared
is given by c2

s = εs
qs

. In this form, assuming the functions
given by Eq. (9) and using the slow-roll parameter ϵ3, we
find that the parameters qs and εs are rewritten as

qs =
X
H2

[
1 + 2nA

(
1 − ϵ3

6n2

)]
,

and εs =
X
H2

[
1 + 4

3
A

(
1 − ϵ3

4n

)]
. (22)

From Eq. (19) and considering the above parameters, the
scalar power spectrum in the slow-roll approximation results
[44,47]

PS ≃ H4(1 + 2nA)1/2

8π2X (1 + 4A/3)3/2 ≃ V 3(1 +A)2(1 + 2nA)1/2

12π2V 2
φ (1 + 4A/3)3/2

,

(23)

and the scalar propagation speed squared becomes c2
s =

1+4A/3
1+2nA ≤ 1, where the power n is such that n ≥ 2/3. In the

limit A ≫ 1, the scalar power spectrum, given by Eq. (23),
becomes approximately

PS ≃ 3H4
√

6n
64π2XA

≃
√

6n V 3A
32π2V 2

φ

. (24)

Also, the scalar spectral index nS associated with the tilt
of the power spectrum, is defined as ns −1 = d lnPS/d ln k.
Thus, from Eq. (23), the scalar spectral index under the slow-
roll approximation can be written as [44,47]

ns ≃ 1 − 6ϵ

1 +A
+ 2η

1 +A
+ Ȧ

H

×
[

2
1 +A

+ n
1 + 2nA

− 2
1 + 4A/3

]
, (25)

where ϵ and η are the standard slow-roll parameters, defined
as

ϵ = 1
2

(
Vφ

V

)2

, and η = Vφφ

V
, (26)

respectively. Here, we observe that in the limit A → 0
(or equivalently g → 0), the scalar spectral index given
by Eq. (25) coincides with the expression obtained in GR,
where ns − 1 ≃ −6ϵ + 2η. In the limit |A| ≫ 1, where the
Galileon term dominates the inflaton dynamics, the scalar
index nS results
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ns ≃ 1 − 6ϵ

A
+ 2η

A
+ Ȧ

HA
. (27)

On the other hand, the tensor power spectrum in the frame-
work of G-inflation is similar to standard inflation in GR,
where the amplitude of GWs have a tensor spectrum PG

given by [44,47] PG = 2H2

π2 . In this sense, the tensor-to-
scalar ratio, defined as r = PG/PS , in the framework of
G-inflation under slow-roll approximation can be written as

r = PG

PS
≃ 16ϵ

[
(1 + 4A/3)3/2

(1 +A)2(1 + 2nA)1/2

]
. (28)

Again, we note that in the limit A → 0, the tensor-to-scalar
ratio coincides with the expression obtained in standard infla-
tion, where r ≃ 16ϵ. Now, by assuming the limit |A| ≫ 1,
the tensor-to-scalar ratio r is approximated to

r ≃ 4
√

2
33/2

16ϵ√
n A

. (29)

Thus, at least in principle, Galileon inflation becomes phe-
nomenologically distinguishable from standard inflation,
where c2

s = 1. On the other hand, an eventual detection of
non-Gaussianities (NG), roughly measured by the non-linear
parameter fN L , could break the degeneracy among the sev-
eral inflation models and also enables to us to discriminate
between single-field inflation and other alternative scenarios
(for a comprehensive review see, Refs. [66,67]). In particular,
for the simplest model of inflation, consisting in a single-field
with a canonical kinetic term and a smooth inflaton potential,
the predicted amount of NG is such that fN L ≪ 1 [68–70].
Going further the previous properties may result in a large
amount of NG, | fN L | ≫ 1, and current observational results
fN L ! O(10) [71].

Regarding the shapes of NG, it can be determined sev-
eral types which depend on the magnitudes of the wave vec-
tors k1, k2, and k3, in the Fourier space with the constraint
k1 + k2 + k3 = 0 [72]. For example, multi-field inflation
[73] and curvaton scenarios [74] give rise a bispectrum that
has a maximum in squeezed configuration or local shape
(i.e. for k3 ≪ k1 ≃ k2) [75,76]. In particular for non-
canonical kinetic terms, the NG are well described by the
equilateral (i.e. k1 = k2 = k3) and ortogonal shapes (i.e.
k1 = 2k2 = 2k3) [77,78]. An important linear combination
of the equilateral and ortogonal shapes give rise to the so-
called enfolded shape and this combination was determined
from Planck data in Ref. [71].

Following Ref. [79], the several expressions for non-linear
parameter fN L have been calculated for the local, equilateral,
orthogonal, and enfolded configurations in the Horndeski’s
most general scalar tensor theories become

f local
NL = 5

12
(1 − ns), (30)

f equil
NL = 85

324

(
1 − 1

c2
s

)
− 10

81
µ

-
+ 20

81 εs
(δGX + δGXX )

+ 65

162 c2
s εs

δGX , (31)

f ortho
NL = 259

1296

(
1 − 1

c2
s

)
+ 1

648
µ

-
− 1

324 εs
(δGX + δGXX )

+ 65

162 c2
s εs

δGX , (32)

f enfold
NL = 1

32

(
1 − 1

c2
s

)
− 1

16
µ

-
+ 1

8 εs
(δGX + δGXX ), (33)

respectively. Here, the expressions for µ and - are given by
Eqs. (3.11) and (3.12) in reference [79] by setting P(φ, X) =
K (φ, X), G3(φ, X) = G(φ, X), and G4 = G5 = 0. From
Eqs. (31) and (32), the enfold shape (33) is obtained as fol-
lows

f enfold
NL = 1

2
( f equil

NL − f ortho
NL ). (34)

Regarding the current observational constraints on primor-
dial NG, by combining temperature and polarization data,
Planck collaboration has found that [71]

f local
NL = 0.8 ± 5.0 (68% CL), (35)

f equil
NL = −4 ± 43 (68% CL), (36)

f ortho
NL = −26 ± 21 (68% CL), (37)

and by using Eq. (34), the current observational constraint
on f enfold

NL becomes

f enfold
NL = 11 ± 32 (68% CL). (38)

For our model, in which the functions K (φ, X) and
G(φ, X) are specified by Eq. (9), we have that K,XX =
K,XXX = 0, G,φX ̸= 0 and G,φXX ̸= 0. Then, by con-
sidering that δGφX and δGφXX are of second order in ϵ1, the
expression for µ (Eq. (3.12) in Ref. [79]) reduces to

µ = H2(δGX + 5δGXX + 2δGXXX ), (39)

where

δGXXX ≡ G,XXX φ̇X3

H
. (40)

Note that our expression obtained for µ coincides with those
obtained in Ref. [64]. Now, by considering that δXX = 0 and
δGφ ̸= 0, the expression for - (Eq. (3.11) in [79]) becomes

- = H2(δx + 6δGX + 6δGXX − 2δGφ). (41)

Considering thatG(φ, X) = g(φ)Xn , from the third slow-
roll parameter in Eqs. (21) and (40), we obtain the relations
δGXX = (n − 1)δGX and δGXXX = (n − 1)(n − 2)δGX . In
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addition, by using Eqs. (9), (12), (16), (22) and the expres-
sions (39) and (41), the non-linear parameters for the equi-
lateral, orthogonal, and enfolded configuration for our par-
ticular Galileon model reduce to

f equil
NL = 85

162
(2 − 3n)A

3 + 4A

+ A
243

[
10n(1 − 2n)

1 + 2nA
(

1 − ϵ3
6n2

) + 60n

3 + 4A
(

1 − ϵ3
6n2

)

+ 585(1 + 2nA)

2(3 + 4A)
(

3 + 4A
(

1 − ϵ3
6n2

))
]
, (42)

f ortho
NL = 259

648
(2 − 3n)A

3 + 4A

− A
486

[
n(1 − 2n)

4
(

1 + 2nA
(

1 − ϵ3
6n2

))

+ 3n

2
(

3 + 4A
(

1 − ϵ3
6n2

))

− 585(1 + 2nA)

(3 + 4A)
(

3 + 4A
(

1 − ϵ3
6n2

))
]
, (43)

f enfold
NL = 1

16
(2 − 3n)A

3 + 4A

+A
24

[
n(1 − 2n)

2
(

1 + 2nA
(

1 − ϵ3
6n2

))

+ 3n

3 + 4A
(

1 − ϵ3
6n2

)
]
, (44)

where the slow-roll parameter ϵ3 is given by ϵ3 = ν
φ

(
2ε1
A

)1/2
,

since that g(φ) = γφν (see Eq. (10)). Note that for the par-
ticular case in which ϵ3 = 0, i.e., G(φ, X) does not depend
on φ, and Eqs. (42)–(44) reduce to those obtained in [64].

Assuming that the parameter n > 1 and the slow-roll
parameter ϵ3 during inflation becomes ϵ3 ≪ 1, then the ratio
ϵ3

6n2 ≪ 1. Thus, during the Galileon dominated regime in
which A ≫ 1, the NG parameters (42)–(44) reduce to

f equil
NL =

(
275
972

)
−

(
865
3888

)
n, (45)

f ortho
NL =

(
97

486

)
−

(
1163
7776

)
n, (46)

f enfold
NL =

(
1

24

)
−

(
7

192

)
n. (47)

Here we observe that these expressions take the same form
as those obtained in Ref. [64].

Also, we find that the square of the speed of sound in this
regime becomes c2

s = 2
3n . Note that this speed only depends

on the power n in the Galileon dominated regime. In this way,
for values of n > 1 the speed of sound is reduced to c2

s < 1,

yielding values for NG such that | fN L | # 1, as it can be seen
from Eqs. (45)–(47).

In the following, we will study three different inflationary
expansions; the intermediate, logamediate and exponential in
the framework of G-inflation. In order to study these expan-
sions we will assume the Galilean effect predominates over
the standard inflation, i.e., in the limit |A| ≫ 1.

3 Intermediate G-inflation

Let us consider a scale factor that evolves according to Eq. (1)
or commonly called intermediate expansion. Here, the Hub-
ble rate is given by H(t) = A f

t1− f , and from Eq. (17), we find
that the scalar field as a function of cosmic time becomes

φ(t) =
(

2n + 1 + ν

2n

) 2n+1
2n+1+ν

(
2n (1 − f )

3nγ

) 1
2n+1+ν

t
2n

2n+1+ν +C0 ,

(48)

whereC0 corresponds to an integration constant, that without
loss of generality we can take C0 = 0. Thus, the Hubble rate
as function of the scalar field φ becomes

H(φ) = A f

k1− f
1

φ −(1− f )µ1 ,

where the constants k1 and µ1 are defined as

k1 =
(

2n
2n + 1 + ν

) 2n+1
2n

(
3nγ

2n (1 − f )

) 1
2n

,

and µ1 = 2n + 1 + ν

2n
,

respectively. From the Friedmann equation (11), the effective
potential in terms of the scalar field can be written as

V (φ) = 3

[
A2 f 2

k2(1− f )
1

]

φ −2(1− f )µ1 , (49)

which has an inverse power-law dependence on the scalar
field, hence does not have a minimum.

In the cosmological context, the effective potential char-
acterizing the canonical variables of the cosmological pertur-
bations promote that the comoving scale leaves the horizon
during inflation. For models that have a standard reheating,
this will correspond to around 60 e-folds before the end of
inflation. However, during intermediate inflation the infla-
tionary expansion never ends and the model presents the
graceful exit problem. Equivalently, from the point of view
of the potential V (φ), we observe that this effective potential
does not present a minimum, wherewith the usual mecha-
nism introduced to achieve inflation to an end becomes use-
less. As it is well known, the standard reheating is described
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by the regime of oscillations of the scalar field. Since we
do not know how the inflationary epoch ends in interme-
diate law for the cold stages, one cannot draw any further
conclusions for this purpose, because the number of e-folds
to address the end of inflation is unknown. A methodology
used in Refs. [64,65] in order to solve this problem con-
sists in introducing a determined time which corresponds to
unspecified reheating mechanism that triggered to stop infla-
tion. Here the number of e-folding at the moment of horizon
crossing is approximately 60 e-folds and the number of e-
folds to unspecified reheating mechanism becomes zero.

In the following we will consider the approximation made
in Refs. [24–26] in order to calculate the number of e-folds
and the other cosmological parameters. Following Refs. [24–
26] the number of e-folds N between two different cosmic
times t1 and t2 or, equivalently between two values of the
inflaton field φ1 and φ2, is given by

N =
∫ t2

t1
H dt = A

(
t f2 − t f1

)
= A k f

1

(
φ

f µ1
2 − φ

f µ1
1

)
.

(50)

Here, we have used Eq. (48).
In order to determine the beginning of inflationary phase,

we find that dimensionless slow-roll parameter ε1 = ε1(φ),
is given by

ε1 =
(

1 − f
A f

)
k − f

1 φ − f µ1 . (51)

In this sense, the condition for inflation takes place is given
by ε1 <1 (or equivalently ä > 0), then from Eq. (51) the

scalar field is such that φ >
(

1− f
A f

) 1
f µ1 k

−1
µ1
1 during inflation.

Since inflation begins at the earliest possible scenario (see
Fig. 1), that is, when the slow-roll parameter ε1(φ = φ1) =
ε1(φ1) = 1 (or equivalently ä = 0), then the scalar field at
the beginning inflation φ1 results

φ1 =
(

1 − f
A f

) 1
f µ1

k
−1
µ1
1 . (52)

We note that during the intermediate expansion the slow
roll parameter ε1 in terms of the number of e-folds N can be
written as

ε1 = − Ḣ
H2 = 1 − f

1 + f (N − 1)
. (53)

This suggests that the inflationary epoch begins at the earli-
est possible stage when the number of e-folding is equal to
N = 0 (unlike Ref. [64]), in which the slow roll parame-
ter ε1 ≡ 1 [24,25]. In this context, in the following we will

evaluate the cosmological observables in terms of the num-
ber of e-folds N which have took place since the beginning
of inflationary epoch, where the number of e-folding at the
moment of horizon crossing is approximately 50-70 e-folds.
Also, note that for large N such that N ≫ 1, the slow-roll
parameter ε1 → 0 and inflation never ends in the cold mod-
els of intermediate expansion for the case of a single field
(inflaton).

In relation to the initial value of the Hubble parameter,
we have that H(t) = A f/t1− f and the slow-roll parameter
ε1(t) = 1− f

A f t− f . Thus, we find that at the earliest possible
stage in which ε1(t = t1) = 1, the Hubble parameter at
beginning of inflation becomes

H(t = t1) = H1 = (A f )1/ f

(1 − f )(1− f )/ f , (54)

where the initial value of H1 ! 1 (in units of Planck mass)
from the classical description of the universe. Here we note
that the initial value of the Hubble rate H1 depends on the
values of the parameters f and A.

In order to satisfy the condition A ≫ 1, we write the
parameter A in terms of the number of e-folds N as

A(N ) = A0 A f (1 − f )
2n−1
2n+1

[
A f

1 + f (N − 1)

] 2n−1
f (2n+1)+

1− f
f

[φ(N )] 2ν
2n+1 ≫ 1, (55)

where A0 = 3 n γ

2 n−1

[
2 n

3 n γ

] 2n−1
2n+1 and the scalar field φ(N ) is

defined as

φ(N ) =
(

2n + 1 + ν

2n

) 2n+1
2n+1+ν

(
2n (1 − f )

3nγ

) 1
2n+1+ν

[
1 + f (N − 1)

A f

] 2n
2n+1+ν

. (56)

Here, we have used Eqs. (48), (50) and (52).
On the other hand, the scalar power spectrum PS in terms

of the scalar field reads as

PS(φ) =
3
√

3n

32π2
√

2

A3 f 3

(1 − f )
k −(2−3 f )

1 φ −(2−3 f )µ1 , (57)

where we have used Eqs. (24) and (48), respectively. Now,
from Eqs. (50), (52) and (57), we can write the scalar power
spectrum as function of the number of e-folds N in the form

PS(N ) = 3
√

3n

32π2
√

2

A3 f 3

(1 − f )

[
A f

1 + f (N − 1)

] 2−3 f
f

. (58)
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Similarly, the scalar spectral index ns can also be expressed
in terms of the number N as

ns(N ) = 1 − 2 − 3 f
1 + f (N − 1)

. (59)

Here, we noted that the scalar spectral index given by Eq. (59)
coincides with the obtained in the standard intermediate infla-
tion [26]. Thus, for the special case in which f = 2/3, the
scalar spectral indexns = 1 (Harrison-Zel’dovich spectrum).
In particular, assuming that the number of e-folds N = 60
and the spectral index ns = 0.967, we obtain that the value
of the parameter f results f = 0.398 ≃ 0.4.

From Eq. (29), we find that the relationship between the
tensor-to-scalar ratio r and the scalar spectral index ns results

r(ns) =
64

√
2

3
√

3n

(1 − f )(1 − ns)
(2 − 3 f )

, with f ̸= 2
3
. (60)

Here, we note that the consistency relation r(ns) given by
(60) depends on the parameter n through slope 1/

√
n, when

compared to the results of r(ns) in the standard intermediate
model (recalled that n ≥ 2/3). Thus, this dependence in the
consistency relation (∝ n−1/2) is fundamental in order to
the theoretical predictions enter inside the allowed region of
contour plot in the r − ns plane imposed by BICEP2/Keck-
Array data, resurrecting the intermediate inflation model.

From BICEP2/Keck-Array results data that the ratio r <

0.07, we find a lower bound for the power n given by
n > 61912(1 − f )2(1 − ns)2/(2 − 3 f )2. In particular, for
the values f = 0.4 and ns = 0.967, the lower limit for n
yields n > 38. Also, we note that from Eq. (58), we can find

a constraint for the parameter A of the intermediate model
for given values of f and the power n, when the number
of e-folds N and the amplitude of the scalar power spec-
trum PS are also given. Thus, in particular for the values
PS = 2.2 × 10−9, N = 60 and f = 0.4, we found that for
n = 38, A becomes A = 0.26, while for the case n = 55,
we found that A = 0.25. In relation to the initial value of
the Hubble parameter H1, we find by considering Eq. (54)
that for the value n = 38, (where A = 0.26 and f = 0.4)
corresponds to H1 = 7.5 × 10−3 (in units of Planck mass)
and for the case in which n = 55 (in which A = 0.25 and
f = 0.4) we have H1 = 6.8 × 10−3. In addition, from the
conditionA ≫ 1 given by Eq. (55), we are able to find a lower
bound for the parameter γ , for different values of the param-
eter ν, when the number of e-folding N , f and n are given.
Here, we mention that the parameterA satisfies the condition
A = 3ng(φ)Xn−1H φ̇ ≫ 1 as g(φ) ≫ (3nXn−1H φ̇)−1. In
order to give an estimation for the coupling parameter g, we
have that typically after of started the inflationary epoch, the
Hubble rate H ∼ 10−5 and φ̇ ∼ 10−5, thus we find that
the coupling g has a lower bound given by g(φ) ≫ 10400 for
n ∼ 40. This suggests that the coupling g(φ)must have a very
large value as lower bound (googol4). In particular for the
N = 60, f = 0.4 and n = 38, and since that g(φ) = γφν ,
we find that for the case ν = 1, the lower limit is found to
be γ ≫ 8 × 10403, while for ν = 0 (or equivalently g(φ) =
const.) we have that γ ≫ 10404. Finally, for the case ν = −1
(or g(φ) ∝ φ−1), we found that γ ≫ 10405.

In Fig. 1, the left panel shows the evolution of the slow-
roll parameter ε1 in terms of the scalar field φ, while the
right panel shows the contour plot for the consistency rela-

Fig. 1 The dependence of the slow-roll parameter ε1 on the scalar field
φ (left panel) and the contour plot for the tensor-to-scalar ratio r versus
the scalar spectral index ns (right panel). In left panel, we show that
the inflationary epoch never ends, since ε1 → 0 for large φ. In right
panel we show from BICEP2/Keck Array Collaborations data, the two-
dimensional marginalized constraints (68% and 95% confidence levels)

on the consistency relation r(ns) [22]. In both panels and from left to
right, dotted and dashed and lines correspond to the cases where the
power n takes the values n = 55 and n = 38, respectively. Finally, the
solid line corresponds to the standard intermediate model. In these plots
we have used f = 0.4
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tion r(ns). In both panels, we consider the cases where the
power n has two different values in addition to the standard
intermediate model. Here we have used the value f = 0.4. In
order to write down values for the slow-roll parameter ε1(N )

and the ratio r = r(ns), we have used Eqs. (50), (51) and
(60), respectively. From left panel we show that the infla-
tionary epoch never ends in the G-intermediate model (in the
same form as it occurs in standard intermediate model), since
during inflation the slow-roll parameter ε1 always is ε1 < 1
and tends to ε1 → 0 for large φ, see Fig. 1 (left panel). In
this sense, we consider that inflationary stage begins at the
earliest possible scenario when ε1(φ = φ1) = 1, where φ1
is given by Eq. (51). Here, we have shown that the authors
of Ref. [64] committed a mistake when they computed the
time at which inflation ends in the intermediate G-model,
since inflation never ends. As it can visualized from right
panel of Fig. 1, for values of the power n satisfying n > 38,
the model is well supported by the data. Also, we noted that
when n ≫ 1, then the tensor-to-scalar ratio r ∼ 0.

On the other hand, the predictions for the intermediate
model regarding primordial NG, for the particular case n =
38, we find that the values of fN L in the cases; equilateral,
orthogonal, and enfolded configurations become f equil

NL =
−8.17, f ortho

NL = −5.48, and f enfold
NL = −1.34, respectively.

Finally, for n = 55, we have that f equil
NL = −11.95, f ortho

NL =
−8.03, and f enfold

NL = −1.96, respectively. Here, we check
that the primordial NG | fN L |# 1. In this sense,

these values are within the current observational bounds
set by Planck.

4 Logamediate G-inflation

Now, we consider the situation in which the scale factor
evolves according to logamediate inflation, given by Eq. (2).
Here, the Hubble rate H(t) becomes H(t) = Bλ (ln t)λ

t , and
from Eq. (17), we find that the scalar field φ(t) results

φ(t) =
(

2n + 1 + ν

2n

) 2n+1
2n+1+ν

(
2n

3nγ

) 1
2n+1+ν (

t
2n

2n+1 − 1
) 2n+1

2n+1+ν
.

(61)

By assuming the slow-roll equation (11), we have that the
effective potential in terms of the scalar field is given by

V (φ) = V0 (1 + k2 φµ2)−
2n+1
n [ln(1 + k2 φ µ2)]2λ, (62)

where the constants V0, k2 and µ2 are defined as

V0 = 3(Bλ)2, k2 =
(

2n
2n + 1 + ν

) (
3nγ

2n

) 1
2n+1

,

and µ2 = 2n + 1 + ν

2n + 1
,

respectively. For the logamediate expansion in the context of
G-inflation, the number of e-folds N between two different
values of the scalar field φ1 and φ2 is written as

N = B
[
(ln t2)λ − (ln t1)λ

]
= B

(
2n

2n + 1

)λ

(
[ln(1 + k2 φ

µ2
2 )]λ − [ln(1 + k2 φ

µ2
1 )]λ]

)
. (63)

Here, we have used Eq. (61).
As before, we write A(N ) in order to satisfy the condition

A ≫ 1. Thus, we have that A(N ) becomes

A(N ) = A0 Bλ[.(N )]λ−1e− 4n
2n+1 .(N )[φ(N )] 2ν

2n+1 ≫ 1,

(64)

where the field φ(N ) and the function .(N ) are defined as

φ(N ) =
(

2n + 1 + ν

2n

) 2n+1
2n+1+ν

(
2n

3nγ

) 1
2n+1+ν

(
e

2n
2n+1 .(N ) − 1

) 2n+1
2n+1+ν

,

and

.(N ) =
[
N
B

+
(

1
Bλ

) λ
λ−1

] 1
λ

,

respectively.
For the dimensionless slow-roll parameter ε1 in the loga-

mediate G-inflation, we have that

ε1 =
(

1
Bλ

) (
2n

2n + 1

)λ−1

[ln(1 + k2 φ µ2)]1−λ,

and in order to get an inflationary scenario (ε1 <1), we have

that the scalar field φ > k
−1
µ2
2

(
exp

[
2n

2n+1 (Bλ)
−1
λ−1

]
− 1

) 1
f µ2 .

As before, if the inflationary stage begins at the earliest pos-
sible epoch, where the slow-roll parameter ε1(φ = φ1) = 1,
then we obtain that the field φ1 is given by

φ1 = k
−1
µ2
2

(
exp

[
2n

2n + 1
(Bλ)

−1
λ−1

]
− 1

) 1
f µ2

. (65)

For this expansion, the Hubble rate H(t) is given by
H = Bλ(ln t)λ−1/t and the slow roll parameter ε1(t) =
(Bλ)−1 ln t1−λ, thus we find that at the earliest possible
stage in which ε1(t = t1) = 1, the Hubble parameter
at beginning of inflation becomes H(t = t1) = H1 =
exp[−(1/Bλ)1/(λ−1)], and this initial rate depends exclu-
sively on the associated parameters B and λ of the scale
factor.
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On the other hand, as before we find that the scalar power
spectrum PS as function of the number of e-folds reads as

PS(N ) = 3
√

3n

32π2
√

2
B3λ3e

−2

[
N
B +

(
1
Bλ

) λ
λ−1

] 1
λ

×
[
N
B

+
(

1
Bλ

) λ
λ−1

] 3(λ−1)
λ

. (66)

Here, we have considered Eqs. (24), (65) and (63).
Now, from Eqs.(27), (63) and (65), we find that the scalar

spectral indexns is related to the number of e-folds N through
the following expression

ns(N ) = 1 − 2
Bλ

[
N
B

+
(

1
Bλ

) λ
λ−1

]−(λ−1)
λ

. (67)

Note that this expression for the scalar spectral index coin-
cides with the obtained from logamediate inflation in GR
[27].

In a similar fashion as we did before, we find that the
consistency relation r = r(ns) is given by

r(ns) =
32

√
2

3
√

3n
(1 − ns). (68)

As in the previous case of intermediate G-inflation, we noted
that the relation r = r(ns) given by (68) strongly depends
on the power n, when we make the comparison with the
results of r(ns) in the standard logamediate model in the
framework of GR. In this sense, the dependence on the power
n is crucial in order for the theoretical predictions of the
model to enter in the allowed regions of the contour plot
in the r − ns plane. We also note that, for large values of
the power n such that n ≫ 1, the tensor-to-scalar ratio r
tends to zero. From BICEP2/Keck-Array data, we have that
r < 0.07, then we find a lower bound for the power n, given
by n > 15480(1 − ns)2. In particular, considering that the
scalar spectral index takes the value ns = 0.967, the lower
limit for the power n yields n > 17.

Also, from Eqs. (66) and (67), we may find a constraint
for the parameters B and λ, appearing in the logamediate
model, when the power n, the number of e-folds N , the power
spectrumPS as well as ns are given. Particularly, for N = 60
and considering the observational values PS = 2.2 × 10−9

and ns = 0.967, we found the values B = 6.2 × 10−16 and
λ = 14.6 when the power n is fixed to be n = 17. On the
other hand, for the case when n = 30, we obtain the values
B = 3.9 × 10−16 and λ = 14.7. In order to determine the
initial value of the Hubble rate H1, we have that for the case
n = 17, where B = 6.2 × 10−6 and λ = 14.6 , we find that

Fig. 2 The contour plot for the tensor-to-scalar ratio r versus the scalar
spectral index ns , for the logamediate expansion in the context of G-
inflation. In this plot and from left to right, dotted and dashed lines
correspond to the cases when the power n has the values n = 30 and
n = 17, respectively. Solid line corresponds to the standard logamedi-
ate inflation model. Here, from BICEP2/Keck Array Collaboration, the
two- dimensional marginalized constraints (68% and 95% confidence
levels) on the consistency relation r(ns) [22] are shown.

H1 = 2.1 × 10−5 (in units of Planck mass) and for the case
in which n = 30 corresponds to H1 = 1.8 × 10−5.

Besides, considering the condition A ≫ 1, given by
Eq. (64), we find a lower bound for the parameter γ as in
the case of intermediate inflation, by assuming different val-
ues of the parameter ν, when the number of e-folding N , λ

and the power n are given. In particular, by fixing N = 60,
λ = 14.6, n = 17, for ν = 1 the lower limit on γ is found to
be γ ≫ 5 × 10181, while for ν = 0 (or equivalently g(φ) =
constant) we have that γ ≫ 6 × 10182. Finally, for ν = −1
(or g(φ) ∝ φ−1), the lower limits yields γ ≫ 6 × 10183.

In Fig. 2, we show the contour plot together with the con-
sistency relation r(ns). In this panel we consider two differ-
ent values of the parameter n in the G-logamediate model
and also we show the standard logamediate model. Here
we have used the corresponding pair of values (B,λ) for
a given value of the power n. Note that for values of the
power n satisfying n > 17, the model is well supported
by current data, as it can be seen from Fig. 2. Moreover,
as in the intermediate model, for large values of the power
n ≫ 1, the tensor-to-scalar ratio r ∼ 0. Also, by consid-
ering the lower bound on n for this model, the predicted
values for fN L in the equilateral, orthogonal, and enfolded
configurations become f equil

NL |n=17 = −3.50, f ortho
NL |n=17 =

−2.34, and f enfold
NL |n=17 = −0.58, respectively. We also

mention that for values of n > 29, the primordial NG
| fN L | # 1. Thus, for values of n $ 17, we find that param-
eter | fN L | is in well agreement with current observational
data.
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5 Exponential G-inflation

Now, we study the case in which the Hubble rate is given by
H(t) = α e−β t , where the parameters α and β are positive
constants. From Eq. (17) we obtain that the scalar field φ as
function of the cosmic time becomes

φ(t) =
(

2n + 1 + ν

2n + 1

) 2n+1
2n+1+ν

(
2nβ
3nγ

) 1
2n+1+ν

t
2n+1

2n+1+ν . (69)

From the Friedmann equation (11), we find that the effective
potential in terms of the scalar field can be written as

V (φ) = V1 e−2β k3 φµ3
, with V1 = 3α3,

where the constants k3 and µ3 are defined as

k3 =
(

2n + 1
2n + 1 + ν

) (
3nγ

2nβ

) 1
2n+1

, and µ3 = 2n + 1 + ν

2n + 1
= µ2,

respectively.
For this Hubble rate, the number of e-folds N between

two different values of the scalar field φ1 and φ2 results

N =
∫ t2

t1
H dt = α

β

[
e−β t1 − e−β t2

]

= α

β

[
e−β k3 φ

µ3
1 − e−β k3 φ

µ3
2

]
. (70)

A as function of the number of e-folding N can be written
as

A(N ) = A0 β
4n

2n+1 (N + 1)[φ(N )] 2ν
2n+1 ≫ 1, (71)

where the scalar field φ(N ) reads as

φ(N ) =
(

2n + 1 + ν

2n + 1

) 2n+1
2n+1+ν

(
2nβ
3nγ

) 1
2n+1+ν

β− 2n+1
2n+1+ν

(
ln

[
α

β(N + 1)

]) 2n+1
2n+1+ν

.

Unlike the intermediate and logamediate inflation mod-
els, this Hubble rate addresses the end of the accelerated
expansion. In this sense, considering that inflation ends when
ε1 = 1, where the slow-roll parameter ε1 is given by

ε1 = β

α
exp(βk3 φ µ3),

we have that the scalar field at the end of inflation, given by
ε1(φ = φ2) = 1, becomes

φ2 = (βk3)
−1
µ3 [ln(α/β)]

1
µ3 .

Since during the exponential expansion, the inflationary
scenario ends, then the Hubble rate H(t) is given by
H = α exp[−βt] and the slow-roll parameter ε1(t) =
β exp[βt]/α. Thus, we find that at the end of inflation in

which ε1(t = t2) = 1, the Hubble parameter at this time
becomes H(t = t2) = H2 = β.

Also, from the condition for inflation to occur in which

ε1 <1, then the scalar field becomesφ < (βk3)
−1
µ3 [ln(α/β)]

1
µ3 .

As before, we can express the the amplitude of the scalar
power spectrum PS in terms of the number of e-folding N
as

PS(N ) = 3
√

3n

32π2
√

2
β(N + 1)3 , (72)

and the scalar spectral index ns(N ) results ns(N ) = 1− 3
N+1 .

Also, we find that the consistency relation r = r(ns) in this
scenario can be written as

r(ns) =
64

√
2

9
√

3n
(1 − ns). (73)

As in the previous models of intermediate and logamediate,
we observed that the consistency relation r = r(ns) given
by (73) also strongly depends on the power n. As before,
the introduction of the power n in the model is fundamental
in order to the theoretical predictions of this model enter
in the allowed region of the contour plot in the r − ns plane
from [22]. Assuming the BICEP2/Keck-Array, for which r <

0.07, we obtain a lower bound for the power n, given by
n > 6880(1 − ns)2. In particular assuming that the scalar
spectral index ns is given by ns = 0.967, we find that the
lower bound for the power n corresponds to n > 7.

In addition, from the the amplitude of the scalar power
spectrum given by Eq. (72), we can find a constraint for the
parameter β, appearing in the Hubble rate, for several val-
ues of n when the number of e-folds N and the observational
value of the power spectrumPS are given. Thus, particularly
for the values PS = 2.2 × 10−9 and N = 60, for the case
when the power n takes the value n = 8, we found the value
β = 2.9 × 10−13. As in the previous models, we can find a
lower bound for the parameter γ from the condition A ≫ 1
given by Eq. (71). In particular, for the values N = 60,
β = 2.9 × 10−13, α = 10−3 and n = 8, we obtain that
for the case in which ν = 1 (g(φ) ∝ φ), the lower bound is
γ ≫ 3×10181, while for ν = 0 (or g(φ) = constant) we have
that γ ≫ 6 × 10183. Finally, for the specific case in which
ν = −1 (or g(φ) ∝ φ−1), we obtain that γ ≫ 10186. As
in the previous models, from the two-dimensional marginal-
ized constraints on the r − ns plane, this model becomes
well supported by the Planck data when the power n satis-
fies n > 7 (figure not shown) and then the model works.
We also mentioned that as the Hubble parameter at the end
of inflation, is given by H2 = β, then this rate at that time
becomes H2 < 0.1π2PS

(N+1)3(1−ns )2 . Here we have used Eq. (72)

and the fact that n > 6880(1 − ns)2. In particular, for the
values PS = 2.2 × 10−9, N = 60 and ns = 0.967, we have
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that the lower bound for the Hubble parameter at the end of
the inflationary epoch results H2 < 3 × 10−13 (in units of
Planck mass). In relation to the primordial NG, we obtain that
for the lower bound of n, we have that f equil

NL |n=7 = −1.27,
f ortho
NL |n=7 = −0.85, and f enfold

NL |n=7 = −0.21, respectively.
Thus, for values of the power n > 7, the non-lineal parameter
fN L is well corroborated by Planck data.

6 Conclusions

In this paper we have investigated the intermediate, logame-
diate and exponential inflation in the framework of a Galilean
action with a coupling of the form G(φ, X) ∝ φν Xn . For
a flat FRW universe, we have found solutions to the back-
ground and perturbative dynamics for each of these expan-
sion laws under the slow-roll approximation. In particular,
we have obtained explicit expressions for the correspond-
ing scalar field, effective potential, number of e-folding as
well as for the scalar power spectrum, scalar spectral index
and tensor-to-scalar ratio. In order to bring about some ana-
lytical solutions, we have considered that the Galileon effect
dominates over the standard inflation, in which the parameter
A = 3H φ̇GX satisfies the condition A ≫ 1. In this context,
we have found analytic expressions for the constraints on the
r − ns plane, and for all these G-inflation models we have
obtained that the consistency relation r = r(ns) depends on
the power n which is crucial in order to the corresponding the-
oretical predictions enter on the two-dimensional marginal-
ized constraints imposed by current BICEP2/Keck-Array
data. In this sense, we have established that the inflationary
models of intermediate, logamediate and exponential in the
framework of G-inflation are well supported by the data, as
could be seen from Figs. 1 and 2. In particular for the interme-
diate G-inflation, from the r−ns plane, we have found a lower
bound for the power n, given by n > 38. For the logamediate
model we have obtained that n > 17 and finally, for the expo-
nential model we have got n > 7 as lower limit. Also, we
have found that for values of n ≫ 1, the tensor-to-scalar ratio
r → 0. Also, from the amplitude of the scalar power spec-
trum PS(N ) and the scalar spectral index ns(N ) as function
of the number of e-folds, we have found constraints on the
several parameters appearing in our models. Besides, consid-
ering that the Galileon effect dominates over GR given by the
conditionA ≫ 1, we have found a very large value as a lower
limit for the parameter γ . The reason for this is due that typ-
ically H ∼ φ̇ ∼ 10−5 ≪ 1, then from the condition A ≫ 1
suggesting g(φ) ≫ (3nXn−1H φ̇)−1, thus we have found
that g(φ) ≫ (3nXn−1H φ̇)−1 ∼ O(10400), e.g. for n = 40,
and for n ∼ 10 we have got g(φ) ≫ (3nXn−1H φ̇)−1 ∼
O(10100) (googol). In relation to the primordial NG, we have
found that for limit in which the Galilean dominated regime

i.e., A ≫ 1, the non-linear parameter | fN L |∝ n and it is
within the current observational bounds imposed by Planck
data.

In this work, we have determined that the intermediate,
logamediate and exponential models in the context of G-
inflation, are less restricted than those in the framework of
standard GR, due to the modification in the action by the
Galilean term G(φ, X)"φ ∝ φν Xn"φ.

Finally, in this paper we have not addressed a mechanism
to bring intermediate and logamediate G-inflation to an end
and therefore to a study the mechanism of reheating, see
Refs. [28,80–82]. Also, we have not guided our investigation
on the non-canonical K-inflation terms in order to discern its
importance in relation to the cubic Galileon term for these
expansions. We hope to return to address these points for
these models of G-inflation in the near future.

Acknowledgements R.H. was supported by Proyecto VRIEA-PUCV
N0 039.309/2018. N.V. acknowledges support from the Fondecyt de
Iniciación project no. 11170162.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

References

1. A.A. Starobinsky, Phys. Lett. B 91, 99 (1980)
2. A. Guth, Phys. Rev. D 23, 347 (1981)
3. K. Sato, Mon. Not. R. Astron. Soc. 195, 467 (1981)
4. A.D. Linde, Phys. Lett. B 108, 389 (1982)
5. A.D. Linde, Phys. Lett. B 129, 177 (1983)
6. A. Albrecht, P.J. Steinhardt, Phys. Rev. Lett. 48, 1220 (1982)
7. A.D. Linde, Phys. Lett. B 129, 177 (1983)
8. D. Larson et al., Astrophys. J. Suppl. 192, 16 (2011)
9. C.L. Bennett et al., Astrophys. J. Suppl. 192, 17 (2011)

10. N. Jarosik et al., Astrophys. J. Suppl. 192, 14 (2011)
11. G. Hinshaw et al., WMAP Collaboration. Astrophys. J. Suppl. 208,

19 (2013)
12. P.A.R. Ade et al., Planck Collaboration. Astron. Astrophys. 571,

A16 (2014)
13. P.A.R. Ade et al., Planck Collaboration. Astron. Astrophys. 571,

A22 (2014)
14. P.A.R. Ade et al., Planck Collaboration. Astron. Astrophys. 594,

A13 (2016)
15. P.A.R. Ade et al., Planck Collaboration. Astron. Astrophys. 594,

A20 (2016)
16. A.A. Starobinsky, JETP Lett. 30, 682 (1979)
17. V.F. Mukhanov, G.V. Chibisov, JETP Lett. 33, 532 (1981)
18. S.W. Hawking, Phys. Lett. B 115, 295 (1982)
19. A. Guth, S.-Y. Pi, Phys. Rev. Lett. 49, 1110 (1982)
20. A.A. Starobinsky, Phys. Lett. B 117, 175 (1982)
21. J.M. Bardeen, P.J. Steinhardt, M.S. Turner, Phys. Rev. D 28, 679

(1983)
22. P.A.R. Ade et al., BICEP2 and Keck Array Collaborations. Phys.

Rev. Lett. 116, 031302 (2016)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Eur. Phys. J. C           (2018) 78:934 Page 13 of 13   934 

23. F. Lucchin, S. Matarrese, Phys. Rev. D 32, 1316 (1985)
24. J.D. Barrow, Phys. Lett. B 235, 40 (1990)
25. J.D. Barrow, A.R. Liddle, Phys. Rev. D 47(12), R5219 (1993)
26. J.D. Barrow, A.R. Liddle, C. Pahud, Phys. Rev. D 74, 127305

(2006)
27. J.D. Barrow, N.J. Nunes, Phys. Rev. D 76, 043501 (2007)
28. R. Herrera, N. Videla, M. Olivares, Eur. Phys. J. C 76(1), 35 (2016)
29. S. del Campo, R. Herrera, JCAP 0904, 005 (2009)
30. S. del Campo, R. Herrera, Phys. Lett. B 670, 266 (2009)
31. R. Herrera, N. Videla, M. Olivares, Eur. Phys. J. C75(5), 205 (2015)
32. C. Gonzalez, R. Herrera, Eur. Phys. J. C 77(9), 648 (2017)
33. R. Herrera, E. San Martin, Eur. Phys. J. C 71, 1701 (2011)
34. R. Herrera, E. San Martin, Int. J. Mod. Phys. D 22, 1350008 (2013)
35. R. Herrera, M. Olivares, N. Videla, Int. J. Mod. Phys. D 23(10),

1450080 (2014)
36. R. Herrera, M. Olivares, N. Videla, Phys. Rev. D 88, 063535 (2013)
37. R. Myrzakulov, L. Sebastiani, Astrophys. Space Sci. 357(1), 5

(2015)
38. A. Nicolis, R. Rattazzi, E. Trincherini, Phys. Rev. D 79, 064036

(2009)
39. C. Deffayet, G. Esposito-Farese, A. Vikman, Phys. Rev. D 79,

084003 (2009)
40. C. Deffayet, X. Gao, D.A. Steer, G. Zahariade, Phys. Rev. D 84,

064039 (2011)
41. C. Charmousis, E.J. Copeland, A. Padilla, P.M. Saffin, Phys. Rev.

Lett. 108, 051101 (2012)
42. T. Kobayashi, M. Yamaguchi, J. Yokoyama, Prog. Theor. Phys.

126, 511 (2011)
43. G.W. Horndeski, Int. J. Theor. Phys. 10, 363 (1974)
44. T. Kobayashi, M. Yamaguchi, J. Yokoyama, Phys. Rev. Lett. 105,

231302 (2010)
45. C. Burrage, C. de Rham, D. Seery, A.J. Tolley, JCAP 1101, 014

(2011)
46. X. Gao, D.A. Steer, JCAP 1112, 019 (2011)
47. T. Kobayashi, M. Yamaguchi, J. Yokoyama, Phys. Rev. D 83,

103524 (2011)
48. K. Kamada, T. Kobayashi, M. Yamaguchi, J. Yokoyama, Phys. Rev.

D 83, 083515 (2011)
49. J. Ohashi, S. Tsujikawa, JCAP 1210, 035 (2012)
50. S. Unnikrishnan, S. Shankaranarayanan, JCAP 1407, 003 (2014)
51. S. Hirano, T. Kobayashi, S. Yokoyama, Phys. Rev. D 94(10),

103515 (2016)
52. H. Bazrafshan Moghaddam, R. Brandenberger, J. Yokoyama, Phys.

Rev. D 95(6), 063529 (2017)

53. R. Herrera, JCAP 1705(05), 029 (2017)
54. R. Herrera, arXiv:1805.01007 [gr-qc]
55. B.P. Abbott et al. [LIGO Scientific and Virgo Collaborations], Phys.

Rev. Lett. 119(16), 161101 (2017)
56. B.P. Abbott et al. [LIGO Scientific and Virgo and Fermi-GBM and

INTEGRAL Collaborations], Astrophys. J. 848(2), L13 (2017)
57. T. Baker, E. Bellini, P.G. Ferreira, M. Lagos, J. Noller, I. Sawicki,

Phys. Rev. Lett. 119(25), 251301 (2017)
58. C. Deffayet, O. Pujolas, I. Sawicki, A. Vikman, JCAP 1010, 026

(2010)
59. O. Pujolas, I. Sawicki, A. Vikman, JHEP 156, 1111 (2011)
60. L. Lombriser, A. Taylor, JCAP 1603(03), 031 (2016)
61. L. Lombriser, N.A. Lima, Phys. Lett. B 765, 382 (2017)
62. J. Sakstein, B. Jain, Phys. Rev. Lett. 119(25), 251303 (2017)
63. D. Langlois, R. Saito, D. Yamauchi, K. Noui, Phys. Rev. D 97(6),

061501 (2018)
64. Z. Teimoori, K. Karami, Astrophys. J. 864(1), 41 (2018)
65. J. Martin, C. Ringeval, V. Vennin, PDU 5, 75 (2014)
66. N. Bartolo, E. Komatsu, S. Matarrese, A. Riotto, Phys. Rep. 402,

103 (2004)
67. S. Renaux-Petel, Comptes Rendus Physique 16, 969 (2015)
68. A. Gangui, F. Lucchin, S. Matarrese, S. Mollerach, Astrophys. J.

430, 447 (1994)
69. V. Acquaviva, N. Bartolo, S. Matarrese, A. Riotto, Nucl. Phys. B

667, 119 (2003)
70. J.M. Maldacena, JHEP 0305, 013 (2003)
71. P.A.R. Ade et al., Planck Collaboration. Astron. Astrophys. 594,

A17 (2016)
72. D. Babich, P. Creminelli, M. Zaldarriaga, JCAP 0408, 009 (2004)
73. D. Seery, J.E. Lidsey, JCAP 0509, 011 (2005)
74. M. Sasaki, J. Valiviita, D. Wands, Phys. Rev. D 74, 103003 (2006)
75. L.M. Wang, M. Kamionkowski, Phys. Rev. D 61, 063504 (2000)
76. L. Verde, L.M. Wang, A. Heavens, M. Kamionkowski, Mon. Not.

R. Astron. Soc. 313, L141 (2000)
77. X. Chen, M x Huang, S. Kachru, G. Shiu, JCAP 0701, 002 (2007)
78. L. Senatore, K.M. Smith, M. Zaldarriaga, JCAP 1001, 028 (2010)
79. A. De Felice, S. Tsujikawa, JCAP 1303, 030 (2013)
80. C. Campuzano, S. del Campo, R. Herrera, Phys. Rev. D 72, 083515

(2005) (Erratum: [Phys. Rev. D 72, 109902 (2005)])
81. C. Campuzano, S. del Campo, R. Herrera, Phys. Lett. B 633, 149

(2006)
82. S. del Campo, R. Herrera, Phys. Rev. D 76, 103503 (2007)

123

http://arxiv.org/abs/1805.01007

	G-inflation: from the intermediate, logamediate and exponential models
	Abstract 
	1 Introduction
	2 G-inflation
	3 Intermediate G-inflation
	4 Logamediate G-inflation
	5 Exponential G-inflation 
	6 Conclusions
	Acknowledgements
	References


