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In this work we study the dynamical properties of a finite array of nanomagnets in artificial kagome spin
ice at room temperature. The dynamic response of the array of nanomagnets is studied by implementing
a “frustrated celular autómata” (FCA), based in the charge model and dipolar model. The FCA simulations
allow us to study in real-time and deterministic way, the dynamic of the system, with minimal
computational resource. The update function is defined according to the coordination number of vertices
in the system. Our results show that for a set geometric parameters of the array of nanomagnets, the
system exhibits high density of Dirac strings and high density emergent magnetic monopoles. A study of
the effect of disorder in the arrangement of nanomagnets is incorporated in this work.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Based on Dirac's prediction about the existence of magnetic
monopoles, considering the quantization of the electrical charge
[1], many research teams have attempted to find these monopoles
[2], but their results have been inconclusive. Attention is currently
directed at the study of elemental excitations in natural and
artificial spin ice systems [3–6]. Excitations appear in natural
systems that are equivalent to the magnetic monopoles connected
by Dirac strings, which can be observed indirectly [1,7–9].
In artificial systems a pattern of magnetic nanoislands is created
with lithographic techniques (with a square lattice or kagome
lattice) equivalent to natural spin ice systems [10]. In the case of
artificial spin ice systems, the nanoisland is arranged such that
there is frustration to minimize dipolar interaction. This allows for
designing geometries where emergent excitations are present,
equivalent to the magnetic monopoles of natural spin ice systems.
As well, with the artificial spin ice systems it is possible to
visualize the configuration of magnetic moments directly with
different microscopic techniques. This allows for their study at
ambient temperature and the simulation of the behavior of natural
spin ice systems [10–16]. Mól and colleagues [17] were the first to
report the existence of magnetic monopoles and Dirac strings in
systems of artificial spin ice. Since that date, many theoretical and
experimental studies have been made in artificial spin ice systems
[18–23]. Mengotti et al. [24] recently published the results of direct
observations of emergent monopoles and associated Dirac strings.
ll rights reserved.
These results are the first direct confirmation of the reduction in
the dimensionality of the system as a result of the frustration in
the artificial spin ice system. Mengotti's work provides experi-
mental evidence of reverse magnetization through the Dirac string
avalanches that join monopole–antimonopole pairs. The same
work provides results of Monte Carlo simulations that are in
agreement with experimental results. The excellent work of
Mengotti et al. [24] provides very valuable information about the
dynamic of these elemental excitations and about nucleation and
avalanches in reverse magnetization. Equally, many questions
were raised that have lead to studying some aspects of the studied
system by the authors of this work[24]. For example, it is expected
that the formation of monopole–antimonopole pairs begins at the
ends of the sample and that the strings advance toward the center.
In the aforementioned report [24], only the central region of the
array is shown, without the possibility of verifying the initial
formation of the strings. Equally, the Monte Carlo simulations of
these and other authors, considering infinite systems, are not very
efficient when studying at the beginning of the reversion of
magnetization. One of the central points of this paper is to
introduce the use of cellular automata to the field of frustrated
magnets. In this work, we study the effect of the aspect ratio and
size of the system on the formation of Dirac strings. A study of the
effect of disorder in the arrangement of nanomagnets is incorpo-
rated in this work. We considered the system as a finite array of
magnetic nanoislands and took into account the possible disorder
in the value of the nanoisland moments. The simulation is carried
out using a determinist type of cellular automaton [25], which
considers the coordination number of the elements of the grid.
The interaction among the nanoislands is studied under the
magnetic charge model and dipolar model.
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2. Magnetic nanoisland arrays and emergent monopoles

The system studied in this work is a magnetic nanoisland array
in a hexagonal lattice. Fig. 1 shows a scheme of the magnetic bars
arranged on the sides of a hexagon. Three nanomagnets converge
in the vertices of the hexagons, as can be appreciated in Fig. 1.
Geometrically, we can define two non-equivalent vertices in the
hexagonal lattice, vertices A and B, respectively. The two non-
equivalent vertices form the unit cell of the entire array. The cell is
shown in red in Fig. 1. In the magnetic charge model, the charges
are concentrated in these vertices. We define the magnetic charge
in a vertex as −1, when two poles south and a north pole of the
three nanomagnets that form the vertex converge. Equally, we
define the magnetic charge as +1, when two poles north and a
south pole converge in the considered vertex. Fig. 2 shows the
array with an applied magnetic field. The upper left of Fig. 2 shows
the array submitted to a field in the direction of the negative axis
x. In the lower left of the figure the field is shown directed to the
right. The nanomagnets with the x component of the magnetic
moment directed to the left are represented by gray squares, and
the nanomagnets with the x component from the magnetic
Fig. 1. Scheme of the nanomagnet array (black bars), vertices (yellow and green
circles) and unit cell (in red). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 2. Scheme of the nanomagnet array when the sample is totally saturated by
the influence of an external magnetic field. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
moment directed to the right are represented by dark blue
squares. When the sample is totally magnetized in directions
+x or −x, all the type A vertices have +1 (−1) charges, while all
the B vertices have −1 (+1) charges. This can be seen in Fig. 2.

We suppose that we are under the condition of total magnetiza-
tion, with the magnetic field directed to the left (upper left of
Fig. 2). Under this condition, we define a positive and mobile
monopole, if a nanomagnet converging in a class A vertex inverts
its magnetic moment. The charge of vertex A goes from
qA ¼ −1-qn

A ¼ þ 1⟹ΔqA ¼ þ 2. If this is produced in a B type
vertex, we define a negative monopole and would have
qB ¼ þ 1-qn

B ¼ −1⟹ΔqB ¼ −2, where qn

A and qn
B represent the

charge of the vertex after the inversion and qA and qB represent
the charges of the vertices A and B, respectively, in the their initial
states. In this manner, when a nanomagnet inverts its magnetic
moment, emerges a monopole–antimonopole pair. Fig. 3a–d shows
the generation of a pair of mobile monopoles and their separation,
giving rise to a Dirac string. If the three nanomagnets that converge
in a vertex invert their moments, the condition ΔqA ¼ þ 2 and
ΔqB ¼ −2, is also generated, but in this case the monopoles remain
trapped and do not move through the sample (Fig. 3e).
3. Cellular automaton, the magnetic charge model and dipolar
model

A cellular automaton (CA) is a mathematical structure used to
model the dynamics of complex systems. It is formed by many
simple entities that interact locally. A variety of models based on
CA have been used to efficiently study problems in biology,
physics, chemistry, engineering and material sciences [26,27].
They represent an excellent alternative to models based on
differential equations and to Monte Carlo algorithms because they
can simulate highly complex systems with a low computational
cost. The first attempt to use CA in the study of magnetismwas the
model proposed by Vichniac [28], which was subsequently devel-
oped by Pomeau [29] and Hermann [30] and is termed the VPH
model. This is being used to resolve an Ising type spin system. To
avoid a “feedback catastrophe”, the automaton is updated in more
than one step. The model functioned well at high temperatures
ðT4TCÞ, but failed at low temperatures. Subsequently, Ottavi et al.
[31] used a microcanonical algorithm in a CA to resolve the Ising
spin system. A determinist version of this model provided accep-
table results at a low temperature [31]. Owing to the popularity of
the different types of Monte Carlo algorithms used in problems
associated with spins, the development of CA models for these
systems did not continue. In this work we used a CA model,
different from previous models, developed specifically to resolve
the dynamic of frustrated spins in artificial spin ice systems. This
model allows the simulation of spin ice systems efficiently [25].

3.1. Frustrated cellular automaton (FCA)

This model was conceived for frustrated systems whose dynamic
develops at zero temperature or the equivalent. In the case of
artificial ice spin systems, each nanomagnet has a shape anisotropy
with energy on the order of 104 K. This means that the thermal
fluctuations in the configuration of moments are negligible at room
temperature and consequently the system behaves like a system at
zero Kelvin. To study this system in particular, we define the cells of
the automaton in the vertices of the hexagonal structure. The ends
of three nanomagnets converge in each vertex. Fig. 4a shows the
structure of the FCA. The automaton is updated as follows:
1.
 A class of diagonal nanomagnets (d1 or d2) is randomly
selected at each stage of the algorithm.



Fig. 4. (a) Scheme of the FCA cells. The horizontal nanomagnets will be labeled by
H, and diagonals nanomagnets are labeled d1 and d2 respectively. (b) Scheme of
replacing the magnetic moments by the magnetic charge model.

Fig. 5. Scheme of the configuration of charges in each vertex and of the length
parameters. l represents the length of the nanomagnets, d represents the distance
between the ends of two nanomagnets and a is the distance between two
consecutive vertices. Furthermore al also corresponds to the hexagonal lattice
parameter.

Fig. 3. Scheme of the creation of a monopole-antimonopole pair, the associated Dirac string and trapped monopole.

A. León / Journal of Magnetism and Magnetic Materials 340 (2013) 120–126122
2.
 It covers all the vertices of the automaton.

3.
 The moment of the nanomagnet of the chosen class is inverted

and if the total energy decreases (and this difference is greater
than the energy barrier for investment), the change is accepted.
The energy term is explained in the next paragraph. This new
configuration is maintained in an auxiliary array.
4.
 The same is then done with the horizontal nanomagnet (H), not
considering the nanomagnet of the non-selected class.
5.
 The auxiliary configuration is copied in the definite configura-
tion and we return to step 1.

In this way, we study the dynamic of emergent monopoles with
a deterministic model that allows studying finite systems, con-
sidering the effect of the edge and the size of the system on the
dynamic. As well, it allows us to incorporate impurities in the
sample and study the effect of these impurities in the monopoles
and associated Dirac strings.

3.2. Magnetic charge model

The moment m! of each nanoisland in this model is replaced by
two charges (one positive and the other negative), located at the
ends of the nanomagnet, as shown in Fig. 4b. The magnitude of
each charge is q¼m=l, where l is the length of the bar. The total
charge in each vertex is the sum of the three charges associated
with the vertex. Vertex j gives Qj ¼∑kϵjqk. The total energy of the
system is given by the expression:

U ¼
1
2
μ0
4π

∑
i;j

Q iQj

rij
; i≠j

f i; i¼ j

8><
>:

ð1Þ

The term for i≠j takes into account the interaction among the
vertices of the array. The term i¼ j considers the energy of the site.
This term considers the interaction among the ends of the three
nanomagnets that converge. Fig. 5 shows a scheme of the config-
uration of charges in each vertex and the parameters of associated
length.

The energy in each vertex is given by the expression

f i ¼
μ0
4π

q1q2
d

þ q1q3
d

þ q2q3
d

n o
ð2Þ

In accordance with the parameters of the hexagonal lattice
d¼ ð

ffiffiffi
3

p
=2Þða−lÞ. Defining q0 ¼m=l and writing the energy in units

of μ0q20=4πa, the total energy can be written as

U ¼

1
2
∑
i;j

Q iQj
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; i≠j

2ffiffiffi
3
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ε
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With ε¼ 1−ðl=aÞ. When the automaton is updated, the change
in total energy is registered (using Eq. (3)), that is, under the
magnetic charge model. The interaction of the charges with the
applied magnetic field is added to this term and the anisotropy
energy term.
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3.3. Dipolar interaction model

The dipolar interaction between sites on the kagome lattice is
given by

Udip ¼−
μ0
4π

∑
i;jði≠jÞ

1
r3ij

f3ðm!i � r̂ ijÞðm!j � r̂ ijÞ−m!i � m!jg ð4Þ

where m!i ¼ αimêi is the magnetic moment at site i. Here the
pseudospin αi ¼ 71 denotes the projection of the spin onto the
anisotropy (local ising) directions êi (directed along the links of the
honeycomb lattice) and m is the magnetic moment of a nanois-
land. The interaction of the charges with the applied magnetic
field is added to this term and the anisotropy energy term.
Fig. 7. Scheme of the simulation of the dynamic of monopoles and Dirac strings for
a system with 5800 nanoislands (dipolar model). This simulation corresponds to
the results showed in Fig. 6. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
4. Simulation and the results obtained

4.1. Monopoles and Dirac strings with the charge model and dipolar
model

The first system studied, is a sample of ð50 μm� 50 μmÞ and
5800 nanomagnets, with impurities. The lattice constant (the
distance between two adjacent vertices) has a value of a¼577 nm.
The random magnetic moment of individual islands is given by
m¼m0β, where β is a dimensionless Gaussian random variable
with 〈β〉¼ 1 and s≡ð〈ðβ−〈β〉2Þ〉Þ1=2. In this first simulation, s¼0.13
and the energy barrier for the magnetic reversal is 98�104 kT,
with T, the room temperature. This energy corresponds to a
magnetic field of μ0H ¼ 12;3 mT used in the simulation Monte
Carlo [24]. We define the number f ¼monopoles=sites, as the
number of monopoles, for each vertex present in the system. We
define the following physical observables: sM , as the number of
mobile monopoles in units of the quantity f. NT, as the total
amount of monopoles, including monopoles mobile and non-
mobile, in units of the quantity f. The magnetic field is shown as
normalized to the coercive field HC. Figs. 6 and 8 show the results
of a single simulation. The purpose of working in this manner is to
obtain the magnetic reversal in the nanomagnets (Figs. 7 and 9). In
the rest of the graphics, the simulation is repeated 100 times. In
these graphs (10, 11 and 12), we show the average value of the
corresponding observable and its standard error. First, we do the
simulation using the dipolar model. Fig. 6a shows the hysteresis
curve, experimental data of the hysteresis curve [24] and the total
density of monopoles. Fig. 6b shows the density of mobile
monopoles and experimental data in function of the magnetic
field. The agreement with experiment is very good. The discre-
pancy in the size of the hysteresis plateau between experiment
Fig. 6. Dipolar model ðμ0Hc ¼ 18:05 mTÞ. (a) Experimental hysteresis curve [24] (red poin
(b) Density of mobile monopoles (experiment [24] and simulation). (For interpretation
version of this article.)
and simulation is because in this region, this simulation is
extremely sensitive to the sample considered. This means that
our simulation of disorder in the sample, it is not very efficient in
this region. This sensitivity is also reflected in the Monte Carlo
simulation [24]. It is important to note that at the left end the
sample ends with type “A” vertices and in the right end with type
“B” vertices. The monopoles generated in the latter vertices, when
the moments of the nanoislands are inverted are not mobile, and
consequently cannot migrant through the sample. The latter
implies that the pair generated in the ends only contributes a
mobile monopole that is shifted toward the center of the sample
because of the applied magnetic field. Fig. 7 shows a scheme of the
complete sample (all the magnets) and the region that is con-
sidered for the statistical analysis (red rectangle), for values of the
magnetic field near the coercivity. This figure does not include the
color of each vertex to better appreciate the mobile monopoles.
The impurities present in the sample (which were deposited
randomly) produce mobile monopoles pairs in every region of
the surface and both the positive and negative pole can move. This
is clearly illustrated in Fig. 7, which simulates the dynamic of
ts), simulated hysteresis curve (red line) and total density of monopoles (blue line).
of the references to color in this figure legend, the reader is referred to the web



Fig. 8. Magnetic charge model ðμ0Hc ¼ 11:01 mTÞ. (a) Experimental hysteresis curve [24] (red points), simulated hysteresis curve (red line) and total density of monopoles
(blue line). (b) Density of mobile monopoles (experiment [24] and simulation). (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 9. Scheme of the simulation of the dynamic of monopoles and Dirac strings for
a systemwith 5800 nanoislands (charge model). This simulation corresponds to the
results showed in Fig. 8. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 10. Dependence of the density of the monopoles on the size of the system
(dipolar model). The simulation is repeated 100 times and we show the average
value of sMAX and its standard error. The blue curve shows the results for s¼0.25
(high disorder) and the red curve shows the results for s¼0.13 (low disorder). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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system. We can note that some pairs of emergent monopoles
appears in the center of the sample. These emergent monopoles,
which come from impurities and are generated in the central part
of the nanomagnet arrays, move toward the ends, thus extending
the Dirac string.

We now examine the behavior of the system using the
magnetic charge model. All parameters are identical to the dipolar
case, but now we add the size of the magnets (required in this
model). We use the value l¼430 nm, which allows us to obtain the
experimental energy of site. Fig. 8a shows the hysteresis curve,
experimental data of the hysteresis curve [24] and the total
density of monopoles. Fig. 8b shows the density of mobile
monopoles and experimental data in function of the magnetic
field. We can appreciate some important differences compared to
dipolar simulation. First, the maximum density of magnetic
monopoles reaches a value of 0.082f, compared to the value of
0.095f in dipolar simulation.

Moreover, the total density of monopoles presents a curve with a
slope greater than in the case dipolar. The hysteresis curve has
no plateau characteristic of experimental data and dipolar simula-
tion. These differences in results are due to the energy of the site
(charge model), which prevents the initial reversal of nanomagnets
H (Fig. 4). This behavior can be seen by comparing Figs. 7 and 9.

We can appreciate a good agreement between the statistical
results of the dipolar simulation with experimental statistical
results. However, the images XMCD (X-Ray Magnetic Circular
Dichroism) of the experimental paper in the first phase of
magnetic reversal are more similar to the images obtained with
the simulation of magnetic charges.

4.2. The effect of the size and aspect ratio of the system on the
dynamic of emergent magnetic monopoles

We summarize our study of the density of mobile monopoles in
function of the size of the system. For each size, the simulation was
repeated 100 times. The error bars in the graphs correspond to
standard error. Fig. 10 shows the maximum density of mobile
monopoles, in units of f, using the dipolar model, for two
concentrations of impurities s¼0.13 and s¼0.25. All systems,
shown in Fig. 10, have square geometry. Axis x in Fig. 10 shows
the side of the square in μm. From the figure, we can appreciate
that for all systems, the density of the mobile monopoles is higher



Fig. 11. Dependence of the density of the monopoles on the size of the system
(charge model). The simulation is repeated 100 times and we show the average
value of sMAX and its standard error. The blue curve shows the results for s¼0.25
(high disorder) and the red curve shows the results for s¼0.13 (low disorder). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 12. Dependence of the density of the monopoles on the aspect ratio of the
system. The simulation is repeated 100 times and we show the average value of
sMAX and its standard error. The blue curve shows the simulation performed using
the dipolar model. The red curve shows the results obtained with the charge
model. In both simulations the parameter that measures the disorder in the sample
has the value s¼0.13.
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for the case with S¼0.25. As the size of the system decreases,
the density with impurities approaches to the maximum value of
the f. Our study verifies that the maximum density of magnetic
monopoles decreases exponentially with system size. Fig. 11 shows
the same studied, using charge model. We can verify a qualitative
behavior similar to the dipole model, but with lower density
values. (discrepancy explained above).

Finally, we show the results of the study considering the aspect
ratio of the system. Fig. 12 shows the maximum value of the
density of mobile monopoles in function of the ratio LX=LY , where
LX is the length of the sample in the direction parallel to the
magnetic field and LY is the direction perpendicular to the
magnetic field. All systems studied have an impurity concentra-
tion, equivalent to s¼0.13. Our results show that the density of
mobile monopoles increases linearly with aspect ratio of the
sample. The simulation based on the dipolar model shows a
higher rate of change in the density of monopoles.
5. Conclusions

In this work we have studied the dynamic of magnetic mono-
poles emergent in an artificial spin ice system. An algorithm based
on a frustrated cellular automaton was used in the magnetic
charge model and dipolar model. The great advantage of the
model is that it can make efficient simulations of highly complex
phenomena in real time with a minimum of computational
requirements. The model represents a perfect complement to the
methods based on Monte Carlo algorithms to study the elemental
physics of problems with classical and quantum entities. Our
results show that the number of emerging magnetic monopoles
depends of the sample size, the aspect ratio and the concentration
of impurities. This allows us to consider a possible engineering in
the creation of these systems for applications, for example in
information technologies [32].

In a recent paper by Silva et al. [33], the authors studied the
case where the system, in a square lattice, has one spin smaller
(or greater) than the others. In their work, the authors show that
two extreme points of the defect behave like a pair of magnetic
monopoles. Their results are an important step towards under-
standing how lattice defects could change the thermodynamics of
artificial spin ices [34]. It seems appropriate to continue this study
on the dynamics of emerging monopoles in the presence of
disorder, considering this new scenario from the results obtained
by the study [33].
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