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We study the motion of massive particles with electric and magnetic charges in the background of a
magnetically charged Garfinkle-Horowitz-Strominger stringy black hole. We solve analytically the
equations of motion of the test particles and we describe the orbital motion in terms of the Weierstrass
elliptic functions. We find that there are critical values of the magnetic charge of the black hole and the
magnetic charge of the test particle which characterize the bound and unbound orbits and we study two
observables, the perihelion shift and the Lense-Thirring effect. The trajectories depend on the electric and
magnetic charges of the test particle. While the angular motion depends on the electric charge of the test
particle, the r and t motion depends on the mass and the magnetic charge of the test particle.
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I. INTRODUCTION

The effective four-dimensional field theory of a heterotic
string theory has local black hole solutions that can have
properties very different from those that appear in the black
hole solutions of general relativity (GR). A static stringy
charged black hole solution of this theory was found
in [1], and independently in [2], known as the Garfinkle-
Horowitz-Strominger (GHS) black hole. Thereafter, much
research has been performed in the context of the heterotic
string theory. In [3] a black hole solution in four dimensions
carrying mass, charge and angular momentum was found
and also the extremal limit of this black hole solution was
discussed. Additionally, this work was further extended in
[4] and a general electrically charged, rotating black hole
solution in the heterotic string theory compactified on a six-
dimensional torus was found. Then it was shown in [5] that
given a classical solution of the heterotic string theory other
classical solutions can be generated by transforming the
original solution. Using this method black string solutions
in six dimensions were constructed carrying electric charge,
and both electric- and magnetic-type antisymmetric tensor
gauge field charge. On the other hand, the introduction of
the basic aspects of solitons and black holes and duality in
string theory [6] stimulated the search of static solutions of
electrically and magnetically charged dilaton black holes

with various topologies and with the introduction of a
cosmological constant [7].
The properties of charged black holes in string theory

can be revealed studying the geodesics around these
solutions. This is because apart from the information we
get solving the classical equations of motion in the form of
Einstein equations we also get information about stringy
corrections due to the string coupling which is of the order
of Planck scale. The study of null geodesics in the
electrically charged GHS black hole was carried out in
Refs. [8,9], and the timelike geodesics were analyzed in
[9–13]. Additionally, in [14] the gravitational Rutherford
scattering and Keplerian orbits were studied in the GHS
black hole background.
Magnetically charged black holes have also been studied

and their stability was analyzed in connection to strong
coupling. In the Maxwell-Einstein theory generalized
magnetically charged Reissner-Nordström black hole sol-
utions can be found and also in string theory as a
generalization of electrically charged GHS black hole
solutions [1,2]. An interesting feature of magnetically
charged black holes is their connection to magnetic
monopoles. In [15] it was shown that a magnetically
charged Reissner-Nordström solution develops a classical
instability that may lead to a nonsingular magnetic monop-
ole. The magnetic monopoles are hypothetical particles that
have not been observed in nature; however, grand unified
theories and string theory predict their existence [16]. Also,
Dirac showed that the existence of a magnetic monopole in
the Universe implies the quantization of the electric charge
[17]. Additionally, magnetic monopoles appear as regular
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solutions of the SUð2Þ Yang-Mills-Higgs theory [18,19].
A magnetic monopole generated by a gravitational field
was discussed in [20].
An important issue in gravitational physics is to know if

test particles outside the event horizon of a black hole
follow stable circular orbits or not. This information can be
provided by studying the geodesics around these black
holes. The geodesics of the magnetically charged GHS
stringy black hole were analyzed in [9,21], and it was found
that there exists no stable circular orbits outside the event
horizon of this stringy black hole for massless test particles.
Additionally, the behavior of null geodesics has been used
to calculate the absorption cross section for massless scalar
waves at the high frequency limit or geometric optic limit,
because at high frequency limit the absorption cross section
can be approximated by the geometrical cross section of the
black hole photon sphere σ ≈ σgeo ¼ πb2c, where bc is the
impact parameter of the unstable circular orbit of photons.
Moreover, in [22,23] this approximation was improved at
the high frequency limit by σ ≈ σgeo þ σosc, where σosc is a
correction involving the geometric characteristics of the
null unstable geodesics lying on the photon sphere, such as
the orbital period and Lyapunov exponent. This approxi-
mation was used recently in [24] to evaluate the absorption
cross section of electromagnetic waves at the high fre-
quency limit.
In this work we investigate the timelike geodesics

around the magnetically charged GHS black hole. We
show that the geodesic structure for this spacetime
reveals that the motion of charged particles in this
magnetically charged spacetime is very different com-
pared to the motion of photons, giving us important
information about the structure and properties of this
spacetime. For the photons the motion can be studied
only in the equatorial plane due to the fact that photons
do not carry electric and magnetic charge; therefore they
do not feel the Lorentz force. However, in the case of
massive particles with electric and magnetic charges
because the Lorentz force is perpendicular to the particle
four-velocity the motion of the charged particles cannot
be restricted only on a plane. We also show in this study
that stringy effects play a crucial role in the behavior of
the orbit, because of the relation of magnetic charge to
the string coupling.
We organize the work as follows. In Sec. II after

reviewing in brief the magnetically charged GHS spacetime
we present the procedure to obtain the equations of motion
of massive particles in the magnetically charged GHS black
hole background. In Sec. III we analyze and solve the
equations of motion in terms of the Weierstrass elliptic
functions. In Sec. IV we analyze the orbital motion for a
choice of the parameters. In Sec. V we present in brief the
observables of the perihelion shift and the Lense-Thirring
effect. Finally, in Sec. VI we summarize our results and
discuss possible extensions.

II. EQUATIONS OF MOTION FOR
MAGNETICALLY CHARGED PARTICLES

IN A MAGNETICALLY CHARGED
STRINGY BLACK HOLE

In this section we briefly review the magnetically
charged black hole in the GHS spacetime (for a review
see [25]) and then we present the procedure for obtaining
the equations of motion in this spacetime.
The most general action of low energy heterotic string

theory is given by

S ¼
Z

dDx
ffiffiffiffiffiffi−gp

e−2φ
"
Λþ Rþ 4ð∇φÞ2

− FμνFμν −
1

12
HμνρHμνρ

#
; ð2:1Þ

where the scalar field φ is the dilaton field, Fμν is a
Maxwell field, and the three form Hμνρ is related to a
two-form potential Bμν and the gauge field Aμ by H ¼
dB − A ∧ F so that dH ¼ −F ∧ F. Note that in this action
the term eφ plays the role of a coupling constant giving the
strength of the stringy effects.
If we set H to 0 and make the conformal transformation

of the metric to rescale gμν by e−2φ to get a metric with the
standard Einstein action

gEμν ¼ e−2φgμν: ð2:2Þ

The action now becomes (with Λ ¼ 0)

S ¼
Z

d4x
ffiffiffiffiffiffiffiffi−gE

p ðRE − 2ð∇φÞ2 − e−2φF2Þ: ð2:3Þ

The magnetically charged black hole can be obtained
from the electrically charged solution [2] by an electro-
magnetic duality transformation. From (2.3), the equation
of motion for Fμν is

∇μðe−2φFμνÞ ¼ 0: ð2:4Þ

This implies ~Fμν ≡ e−2φ 1
2 ϵμν

ρσFρσ is curl free. The equa-
tions of motion resulting from the action (2.3) are invariant
under F → ~F, φ → −φ, and gE → gE and the metric of the
magnetically charged black hole is given by

ds2¼−
fðrÞ
aðrÞ

dt2þ dr2

fðrÞaðrÞ
þ r2dθ2þ r2sin2θdϕ2; ð2:5Þ

where

fðrÞ≡ 1 − 2M
r

; aðrÞ≡ 1 − Q2

Mr
;

and the coordinates are defined in the ranges 0 < r < ∞,
−∞ < t < ∞, 0 ≤ θ < π, and 0 ≤ ϕ < 2π. M is related to
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the mass of the spherical object and Q is its magnetic
charge. Note that since φ changes sign compared to the
electrically charged solution, the string coupling becomes
strong near the singularity for these black holes.
With the aim of studying the motion of charged particles

around the magnetically charged black hole, first we derive
the equations of motion following the standard approach
[26]. Then, we consider the motion of test particles with
mass m, electric charge q and magnetic charge g using the
Hamilton-Jacobi formalism. In the appendix we give a
detailed account of how the Hamilton-Jacobi formalism is
connected with the Euler-Lagrange formalism. The
Hamilton-Jacobi equation for the geometry described by
metric gμν for a magnetically and electrically charged test
particle is given by

2
∂S
∂τ ¼ gμν

$ ∂S
∂xμ − qAμ þ igǍμ

%$ ∂S
∂xν − qAν þ igǍν

%
:

ð2:6Þ

The field strength Fμν ¼ Aν;μ − Aμ;ν and the dual field
strength F̌μν ¼ Ǎν;μ − Ǎμ;ν of the electromagnetic field are
induced by the nonvanishing components of the vector
potentials Aμ and Ǎμ,

Aϕ ¼ −Q cos θ; Ǎt ¼ −
iQ
r
: ð2:7Þ

The dual field strength is defined by the antisymmetric
Levi-Civita symbol εμνστ as F̌μν ¼ e−2φ i

2
ffiffiffiffi
gd

p εμνστFστ with

gd ¼ − det kgμνk. Taking into account the symmetries of
the metric under consideration we solve the Hamilton-
Jacobi equation using the following ansatz,

S ¼ −
1

2
m2τ − Etþ SrðrÞ þ SθðθÞ þ Lϕ; ð2:8Þ

where E and L are identified as the energy and angular
momentum of the test particle. Then, using this ansatz,
Eq. (2.6) reads as follows:

−m2 ¼ −
aðrÞ
fðrÞ

"
−Eþ gQ

r

#
2

þ fðrÞaðrÞ
$∂Sr
∂r

%
2

þ 1

r2

$∂Sθ
∂θ

%
2

þ csc2θðLþ qQ cos θÞ2

r2
: ð2:9Þ

We can obtain the following radial equation,

−m2 ¼ −
aðrÞ
fðrÞ

"
E −

gQ
r

#
2

þ fðrÞaðrÞ
$∂Sr
∂r

%
2

þ k
r2
;

ð2:10Þ

and recognizing the Carter separability constant k we
obtain the polar equation

k ¼
$∂Sθ
∂θ

%
2

þ csc2θðLþ qQ cos θÞ2: ð2:11Þ

Finally, we find formal solutions for the radial and polar
components of the action

Srðr; kÞ ¼ ϵ
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi$

E −
gQ
r

%
2

−
fðrÞ
aðrÞ

$
m2 þ k

r2

%s
dr
fðrÞ

;

ð2:12Þ

Sθðθ; k;LÞ ¼ ϵ
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k− csc2θðLþqQcosθÞ2
q

dθ; ð2:13Þ

where ϵ ¼ %1.
Now, considering δS

δk ¼ 0, δS
δm2 ¼ 0, δS

δE ¼ 0 and δS
δL ¼ 0,

and from the Hamilton-Jacobi method, we simplify our
study to the following quadrature problem:

Z
dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k − csc2θðLþ qQ cos θÞ2
p

¼
Z

dr

r2aðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE − gQ

r Þ
2 − fðrÞ

aðrÞ ðm
2 þ k

r2Þ
q ; ð2:14Þ

τðrÞ ¼ ϵ
Z

dr

aðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE − gQ

r Þ
2 − fðrÞ

aðrÞ ðm
2 þ k

r2Þ
q ; ð2:15Þ

tðrÞ ¼ ϵ
Z ½E − gQ

r 'dr

fðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE − gQ

r Þ
2 − fðrÞ

aðrÞ ðm
2 þ k

r2Þ
q ; ð2:16Þ

ϕðrÞ ¼ ϵ
Z

csc2θðLþ qQ cos θÞdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k − csc2θðLþ qQ cos θÞ2

p : ð2:17Þ

Defining the Mino time γ as r2dγ ¼ dτ, we can express the
equations of motion in terms of the new time parameter

$
dθ
dγ

%
2

¼ k − csc2θðLþ qQ cos θÞ2; ð2:18Þ

$
dr
dγ

%
2

¼ ðr −Q2=MÞ½ðr −Q2=MÞðEr − gQÞ2

− ðr − 2MÞðm2r2 þ kÞ'; ð2:19Þ

dϕ
dγ

¼ csc2θðLþ qQ cos θÞ; ð2:20Þ

dt
dγ

¼ r2
$
r −Q2=M
r − 2M

%"
E −

gQ
r

#
: ð2:21Þ
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In this way we have the equations of motion for our
magnetically charged particle moving in the background of
the stringy magnetic black hole. In the next section we
perform a general analysis of the equations of motion.

III. GENERAL ANALYSIS OF THE
EQUATIONS OF MOTION

Considering the Hamilton-Jacobi equations (2.18)–
(2.21), the constants of motion (energy, angular momentum
and separation constant), the parameters of the metric and
the charges of the test particle we analyze and solve the
equations of motion that characterize the various types of
orbits.

A. Analysis of the angular motion (θ-motion)

In order to study the θ-motion, we consider the equation
of motion (2.18), which can be rewritten using the Mino
time as dθ=dγ ¼

ffiffiffiffi
Θ

p
, where the coordinate θ is a polar

angle that can take only positive values. Then,

Θ ¼ k − csc2θðLþ qQ cos θÞ2 ≥ 0; ð3:1Þ

where the separability constant is definite positive. Now,
through the change of variables ξ ¼ cos θ, Eq. (2.18) yields

dξ
dγ

¼
ffiffiffiffiffiffi
Θξ

p
; with Θξ ¼ k−L2 − 2LqQξ− ðkþq2Q2Þξ2:

ð3:2Þ

The roots of the function Θξ are given by

θ1 ¼ cos−1
"

LqQ
kþ q2Q2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðk− L2Þðkþ q2Q2Þ
L2q2Q2

s

− 1

!#

;

ð3:3Þ

θ2 ¼ cos−1
"

LqQ
kþq2Q2

 

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þðk−L2Þðkþq2Q2Þ
L2q2Q2

s

−1

!#

;

ð3:4Þ

which define the cone’s angles that confine the movement
of the particle. Then, γðθÞ yields

γðθÞ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþq2Q2

p arccos
"

ðkþq2Q2ÞcosθþLqQffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk−L2Þðkþq2Q2ÞþL2q2Q2

p
#
;

ð3:5Þ

where we have used that γ0 ¼ 0 for θ0 ¼ θ1. Also, the
above equation can be inverted, which yields

θðγÞ ¼ arccos
" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk − L2Þðkþ q2Q2Þ þ L2q2Q2
p

cosð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ q2Q2

p
γÞ − LqQ

kþ q2Q2

#
; ð3:6Þ

for k > L2.

B. Analysis of the radial motion (r-motion)

Now, we consider the motion of the particle with respect
to the r-coordinate. We focus on Eq. (2.16) in order to
obtain the velocity of the particle dr=dt. The condition of
turning point ðdrdtÞr¼rt ¼ 0 allows us to define

$
E −

gQ
r

%
2

−
fðrÞ
aðrÞ

$
m2 þ k

r2

%
¼ ðE − V−ÞðE − VþÞ;

ð3:7Þ

where we can recognize the effective potential for the
particle with mass m and magnetic charge g as

V%ðrÞ ¼
gQ
r

%

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞ
aðrÞ

$
m2 þ k

r2

%s

: ð3:8Þ

Since the negative branches have no classical interpreta-
tion, they are associated with antiparticles in the framework
of quantum field theory [27]. We choose the positive
branch of the effective potential Veff ¼ Vþ ≡ V.
Now, for simplicity we consider the case where Qg ≤ 0.

Note that Veffðr → ∞Þ ¼ m. So, we plot in Fig. 1 the
effective potential for different values of the magnetic
charge Q with g ¼ −0.05, M ¼ 1, m ¼ 0.1. We define
the bound and unbound orbits if along the orbits r remains
bounded or not. We can observe that there is a critical
magnetic charge Qc, where the energy of the unstable
circular orbit takes the valuem. For aQ < Qc, the effective
potential shows that all the unbound trajectories (E ≥ m)
can fall to the horizon or escape to infinity. If Q > Qc, the
maximum value of the effective potential is greater than m,
and the particles with energy m < E < Ec have return
points, the magnetic particles located in the right side of the
potential that arrive from infinity have a point of minimum
approximation and it is scattered to infinity, which we can
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call “magnetic Rutherford scattering.” However, particles
located in the left side of the potential have a return point
that plunges to the horizon.
Then, in Fig. 2 we plot the effective potential for

different values of the magnetic charge of the test particle
g with M ¼ 1, m ¼ 0.1, Q ¼ 0.75. Here, we can observe
that there is a critical value of the magnetic charge of the
test particle gc where the energy of the unstable circular
orbit takes the value m. For a g > gc, the effective potential
shows that the test particle appears in the scattering zone,
while for g < gc it does not appear in the scattering zone.
Finally in Fig. 3 we plot the effective potential for

different values of the Carter separability constant k with
g ¼ −0.05, M ¼ 1, m ¼ 0.1. We can observe that the
behavior is similar to the first case, that is, there is a
critical value of the Carter separability constant kc, where
the energy of the unstable circular orbit takes the value m.

For a k < kc, the effective potential shows that all the
unbound trajectories (E ≥ m) can fall to the horizon or can
escape to infinity. If k > kc, the maximum value of the
effective potential is greater than m and the particles with
energy m < E < Ec have return points; the magnetic
particles located in the right side of the potential that arrive
from infinity have a point of minimum approximation and
it is scattered to infinity that we called magnetic Rutherford
scattering. However, particles located in the left side of the
potential have a return point from which they plunge to the
horizon.
Let us rewrite the radial Eq. (2.19) as

$
dr
dγ

%
2

¼
$
r −

Q2

M

%
RðrÞ; ð3:9Þ

where we define

RðrÞ≡ ðr −Q2=MÞðEr − gQÞ2 − ðr − 2MÞðm2r2 þ kÞ;

now this function can be written as the characteristic
polynomial

RðrÞ ¼ a3r3 þ a2r2 þ a1rþ a0; ð3:10Þ

where

a0¼ 2kM−
g2Q4

M
; a1¼−kþg2Q2þ2gQ3E2

M
; ð3:11Þ

a2¼ 2m2M−2gQE−
Q2E2

M
; a3 ¼E2−m2: ð3:12Þ

Now, by performing a change of variables

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0 5 10 15 20
r

V r

FIG. 2. Effective potential for M ¼ 1, m ¼ 0.1, Q ¼ 0.75 and
different values of the magnetic charge of the test particle g ¼ 0
(dashed line), g ¼ gc ≈ −0.025 (dot-dashed line), g ¼ −0.05
(thick line) and E ¼ m (thin horizontal line).

0.08

0.10

0.12

0.14

0 5 10 15 20

V r

r

FIG. 3. Effective potential for g ¼ −0.05, M ¼ 1, m ¼ 0.1 and
different values of the Carter separability constant k ¼ 0 (dashed
line), k ¼ kc ≈ 0.168 (dot-dashed line), k ¼ 0.3 (thick line), and
E ¼ m (thin horizontal line).
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r

V r

0.07

0.08

0.09

0.10

0.11

0.12

FIG. 1. Effective potential for g ¼ −0.05,M ¼ 1,m ¼ 0.1, and
different values of the magnetic chargeQ ¼ 0 (dashed line),Q ¼
Qc ≈ 1.02 (dot-dashed line), Q ¼ 1.3 (thick line) and E ¼ m
(thin horizontal line).
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UðrÞ ¼ 1

4ðr − αÞ
þ β1
12

; ð3:13Þ

we obtain

rðγÞ ¼
$
Q2

M

%
þ 1

4℘ðω0 ∓
ffiffiffiffiffi
b0

p
γ; g2; g3Þ − β1=3

; ð3:14Þ

where ℘ðx; g2; g3Þ is the ℘-Weierstrass elliptic function,
with the Weierstrass invariant given by

g2 ¼
β21
12

−
β2
4
; g3 ¼

β1β2
48

−
β31
216

− β3; and

ω0 ¼ ℘−1
"

1

4ðr0 −Q2=MÞ
þ β1
12

#
; ð3:15Þ

where

β1 ¼
b1
b0

; β2 ¼
b2
b0

; β3 ¼
a3
b0

; ð3:16Þ

and r0 corresponds to an initial arbitrary distance and

b0 ¼ a0 þ a1

$
Q2

M

%
þ a2

$
Q2

M

%
2

þ a3

$
Q2

M

%
3

;

b1 ¼ a1 þ 2a2

$
Q2

M

%
þ 3a3

$
Q2

M

%
2

;

b2 ¼ a2 þ 3a3

$
Q2

M

%
: ð3:17Þ

C. Analysis of the angular motion (ϕ-motion)

In order to obtain the ϕ-motion, we consider Eqs. (2.18)
and (2.20), which allow us to write

ϕðθÞ ¼
Z

θ

θ1

ðLþ qQ cos θÞdθ
sin2θ

ffiffiffiffi
Θ

p ; ð3:18Þ

which yields

ϕðθÞ ¼ 1

2
arccos

$
ðk − LqQþ q2Q2Þð1þ cos θÞ − ðL − qQÞ2

ð1þ cos θÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðk − L2 þ q2Q2Þ

p
%

þ 1

2

$
arcsin

$
ðkþ LqQþ q2Q2Þð1 − cos θÞ − ðLþ qQÞ2

ð1 − cos θÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðk − L2 þ q2Q2Þ

p
%
þ π

2

%
; ð3:19Þ

where L > qQ, and we have used as the initial condition
ϕðθ1Þ ¼ 0 for simplicity. Then, it is possible to obtain ϕðγÞ
by replacing θðγÞ in the above expression.

D. Analysis of the time motion (t-motion)

Now, in order to describe the time motion we rewrite
Eq. (2.16) as

tðrÞ¼
Z

r

r0
r2
$

r−α
r−2M

%$
E−

gQ
r

%
drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr−αÞRðrÞ
p ; ð3:20Þ

and using the same change of variables that we used in the
radial motion (3.13), we obtain the following solution,

tðrÞ ¼ A1½F1ðrÞ−F1ðr0Þ'þA2½F2ðrÞ−F2ðr0Þ'þA½FðrÞ';
ð3:21Þ

where

A1 ¼
−gQþ Eð2αþ βÞ

4
ffiffiffiffiffi
b0

p ;

A2 ¼
gQðαþ βÞ − Eðαþ βÞ2

4β
ffiffiffiffiffi
b0

p ; A ¼ E;

FiðrÞ ¼
1

℘0ðΩiÞ

"
ζðΩiÞ℘−1ðUÞ þ ln

&&&&
σ½℘−1ðUÞ −Ωi'
σ½℘−1ðUÞ þΩi'

&&&&

#
;

ð3:22Þ

with

Ω1 ¼ ℘−1
$
β1
12

%
; Ω2 ¼ ℘−1

$
3þ ββ1
12β

%
;

and

FðrÞ ¼ A0ðΠ − Π0Þ −
X2

i¼1

1

ð℘0½ωi'Þ2

"
ζ½Π − ωi'

− ζ½Π0 − ωi' þ
℘00½ωi'
℘0½ωi'

ln
&&&&
σ½Π − ωi'
σ½Π0 − ωi'

&&&&

#
; ð3:23Þ

with
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Π≡ ℘−1ðUÞ and
β1
12

¼ 1

ð℘½ω1' − β1
12Þ

2
¼ 1

ð℘½ω2' − β1
12Þ

2
;

and

A0 ¼ −
X2

i¼1

"
℘½ωi'

ð℘0½ωi'Þ2
þ ℘00½ωi'ζ½ωi'

ð℘0½ωi'Þ3

#
;

where we have used Π0 ¼ ℘−1½Uðr0Þ'.

IV. THE ORBITS

In this section we analyze the different kinds of orbits
that the test particles follow in the magnetically charged
stringy black hole for the following parameters: m ¼ 0.1,

q ¼ 0.05, g ¼ −0.05, M ¼ 1, and Q ¼ 0.75. The potential
is shown in Fig. 4, where we observe the two possible
cases; one of them is the potential for bound orbits (E < m)
and the other one is the potential for unbound orbits
(E ≥ m). The orbits of the first kind are the relativistic
analogues of the Keplerian orbits to which they tend in the
Newtonian limit. The orbits of the second kind have no
Newtonian analogues [26].
In order to obtain a full description of the radial motion

of charged particles, we study separately the two possible
cases. For bound orbits, in Fig. 5 we show the behavior of
the orbit for a charged particle that oscillates between the
periastro and apoastro distance; this first kind of orbit
corresponds to a planetary orbit. Also, we show the
projection of the orbit onto the x − z-plane. Then, in
Fig. 6 we show the orbit of a particle with the same energy
as the previous case, but it is localized to the left of the
potential. Also, we show that the projection of the orbit
onto the x − z-plane is an orbit of the first kind. Then, in
Fig. 7 we show the behavior of critical orbits of the first
kind with E ¼ 0.0953; we can observe that the trajectory
starts at a certain aphelion distance and approaches the
circle, asymptotically, by spiraling around it an infinite
number of times. Also, we show the projection of the orbit
onto the x − z-plane.
In Fig. 8 we show the behavior of critical orbits of the

second kind with the same energy as the previous case, but
the particle is localized to the left of the potential. Also, we
show the projection of the orbit onto the x − z-plane. On the
other hand, for unbound orbits in Fig. 9 we show the
trajectory of a particle that arrives from infinity with
E ¼ 0.1519, and we show the projection of the orbit onto
the x − z-plane. It is an orbit of the first kind, due to the fact
that the orbit is an analogue to the hyperbolic orbit of the
Newtonian theory [26].

0 2 4 6 8 10 12 14
r

V r

0.08

0.10

0.12

0.14

0.16

FIG. 4. Effective potential for bound orbits k ¼ 0, 14 (thick
line), unbound orbit k ¼ 0, 5 (dashed line), E ¼ 0.0951,
E ≈ 0.1519, and E ¼ m with g ¼ −0.05, Q ¼ 0.75, M ¼ 1,
m ¼ 0.1.

FIG. 5. Planetary orbit with k ¼ 0.14, L ¼ 0.3, and E ¼ 0.0951. The left figure shows three-dimensional motion, where the central
circle corresponds to the event horizon, and the right figure is the projection of the orbit onto the x − z-plane, where the small circle
corresponds to the event horizon and the other one corresponds to the periastro distance.
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FIG. 6. Bound orbits of the second kind with k ¼ 0.14, L ¼ 0.3, and E ¼ 0.0951. The left figure shows three-dimensional motion,
where the central circle corresponds to a return point inside the horizon (by simplicity we choose Q2=M, as the return point), and the
right figure is the projection of the orbit onto the x − z-plane, where the small circle corresponds to the return point and the other one
corresponds to the event horizon. Note that the trajectory has a physical meaning outside the horizon.

FIG. 7. Critical orbits of the first kind with k ¼ 0.14, L ¼ 0.3, and E ¼ 0.0953. The left figure shows three-dimensional motion, and
the right figure is the projection of the orbit onto the x − z-plane. The circle corresponds to the unstable circular orbit.

FIG. 8. Critical orbits of the second kind with k ¼ 0.14, L ¼ 0.3, and E ¼ 0.0953. The left figure shows three-dimensional motion,
where the central circle corresponds to a return point inside the horizon (by simplicity we choose Q2=M, as the return point), and the
right figure is the projection of the orbit onto the x − z-plane, where the small circle corresponds to the return point and the other one
corresponds to the event horizon. Note that the trajectory has a physical meaning outside the horizon.
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V. THE OBSERVABLES

In this section following [28] we calculate some possible
observables. However, as our work is about massive
particles we study the perihelion shift and the Lense-
Thirring effect. So, we consider here bound orbits, like
the planetary orbits; these orbits precess between the
aphelion distance, rA, and the perihelion distance, rP.
The r-motion is periodic with a period given by

ωr ¼ 2γðrAÞ

¼ 2

κp

$
℘−1

"
1

4ðrP −Q2=MÞ
þ β1
12

#

− ℘−1
"

1

4ðrA −Q2=MÞ
þ β1
12

#%
: ð5:1Þ

The corresponding orbital frequency is 2π=ωr. On the other
hand, the period of the θ-motion is given by

ωθ ¼ 2γðθ2Þ ¼
2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kþ q2Q2
p ; ð5:2Þ

and the corresponding frequency by 2π=ωθ.
The secular accumulation rates of the angle ϕ and the

time t are given by

Yϕ ¼ 2

ωθ
ϕðθ2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ q2Q2

q
; ð5:3Þ

Γ ¼ 2

ωr
tðrAÞ

¼ 2

ωr
ðA1½F1ðrAÞ − F1ðrPÞ'

þ A2½F2ðrAÞ − F2ðrPÞ' þ A½FðrAÞ'Þ; ð5:4Þ

and the orbital frequencies Ωr, Ωθ, and Ωϕ read

Ωr ¼
2π
ωr

1

Γ
; Ωθ ¼

2π
ωθ

1

Γ
; Ωϕ ¼

Yϕ

Γ
: ð5:5Þ

The perihelion shift and the Lense-Thirring effects are
defined as differences between these orbital frequencies,

ΔPerihelion ¼ Ωϕ −Ωr ¼
1

Γ

$ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ q2Q2

q
−
2π
ωr

%
; ð5:6Þ

ΔLense-Thirring ¼ Ωϕ −Ωθ ¼ 0: ð5:7Þ

Therefore, we can see that there is no Lense-Thirring effect,
due to the fact that the orbital frequencies Ωϕ and Ωθ

coincide as it was found in [28,29]. This happens because
in the Lense-Thirring effect three rotations are involved;
one of them is the rotation of the gravitating body, the other
is the rotation of the test body around its own axis, and the
last one is the rotation of the axis of rotation of the test
body. However, in the case that we have analyzed these
rotations are not present.

VI. CONCLUSIONS

In this work we studied the motion of massive particles
with electric and magnetic charges in the background of the
magnetically charged Garfinkle-Horowitz-Strominger
black hole. We solved analytically the equations of motion
for the test particles in terms of the Weierstrass ℘, σ, and ζ
elliptic functions. We found that the radial r-motion and
time t-motion depends on the mass and the magnetic charge
of the test particle, while angular motion depends only on
the electric charge of the test particle. We note that in the
case of a test particle moving in the background of the
electrically charged GHS black hole, its radial motion

FIG. 9. Trajectory for a particle that arrives from infinity (magnetic Rutherford scattering) with k ¼ 0.5, L ¼ 0.3, and E ¼ 0.1519.
The left figure shows three-dimensional motion, and the right figure is the projection of the orbit onto the x − z-plane. The small circle
corresponds to the event horizon and the other one corresponds to the closest approach distance.
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depends on the parameters that define the test particle, that
is, the mass and electric charge of the test particle [14].
Analyzing the effective potential, we found that bound

orbits exist for E < m, while for E ≥ m the orbits are
unbound, wherem and E are the mass and energy of the test
particle. In analogy to the gravitational Rutherford scatter-
ing observed in [14] we have observed the dispersion
between the magnetic charge of the black hole and the
magnetic charge of the test particle, which we have called
magnetic Rutherford scattering. Finally, we have studied
two observables, the perihelion shift and the Lense-
Thirring effects. The perihelion shift depends on electric
and magnetic charges of the test particle and there is no
Lense-Thirring effect due to the fact that the rotations
involved in the Lense-Thirring effect are not present in the
case analyzed.
The behavior of the radial motion of the test particle,

apart from its mass, depends also on two crucial
parameters, the magnetic charge of the black hole Q and
the magnetic charge g of the test particle. We found in
Sec. III B that the stability of the radial motion of the test
particle, if it crosses the horizon or if it goes to infinity,
depends on a critical value of Qc and gc. However, the
magnetic charge Q of the GHS black hole is related to
the strength of the string coupling through the relation
e−2φ ¼ 1 − Q2

Mr. Therefore, the string coupling affects the
behavior of radial motion of the test particle.
It would be interesting to see if the magnetically charged

GHS black hole can radiate its charge and find what the role
is of the string coupling in this effect. However, the test
particle we considered in this work does not have its own
dynamics to trigger such an effect. We plan to study in the
lines of [30,31] the super-radiance effect of a magnetically
charged scalar wave scattered off the magnetically charged
GHS black hole.
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APPENDIX: HAMILTON-JACOBI FORMALISM

In this appendix we show how the Hamilton-Jacobi
formalism is connected to the Euler-Lagrange formalism.
From the Lagrangian formulation you can construct the
Hamiltonian and then perform a canonical transformation
in order to obtain the Hamilton-Jacobi equation. In the

Lagrangian formalism one defines a Lagrangian from the
metric

2L ¼ gμν _xμ _xν ¼ −m; ðA1Þ

where _xμ ¼ dxμ
dτ and τ is an affine parameter, which can be

the proper time for massive particles. The Hamiltonian is
given by

H ¼ pμ _xμ − L ¼ 1

2
gμνpμpν; ðA2Þ

where dxμ=dτ was expressed in terms of the conjugate
momentum and the coordinates. Now, one can perform a
canonical transformation from the coordinates of the phase
space xμ, pν where the Hamiltonian is H to the coordinates
Xμ, Pν where the Hamiltonian is K,

pμdxμ −Hdτ ¼ PμdXμ − Kdτ þ dF; ðA3Þ

where F is a function of the phase space coordinates and τ.
Considering the transformations

pμ ¼ pμðxα; Pν; τÞ; Xμ ¼ Xμðxν; Pα; τÞ ðA4Þ

and integrating by parts the term PμdXμ, we get

pμdxμ −Hdτ ¼ −XμdPμ − Kdτ þ dðF þ XμPμÞ: ðA5Þ

Defining the generating function S of the canonical trans-
formation as

Sðxσ; Pμ; τÞ ¼ F þ XμPμ; ðA6Þ

we obtain

dS ¼ ∂S
∂xμ dx

μ þ ∂S
∂Pμ

dPμ þ
∂S
∂τ dτ: ðA7Þ

Then Eq. (A5) gives

$
pμ −

∂S
∂xμ

%
dxμ −

$
Hþ ∂S

∂τ
%
dτ

¼ −
$
Xμ −

∂S
∂Pμ

%
dPμ − Kdτ: ðA8Þ

From this equation we get

pμ ¼
∂S
∂xμ ; ðA9Þ

Xμ ¼ ∂S
∂Pμ

; ðA10Þ
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K ¼ Hðxμ; pσ; τÞ þ
∂S
∂τ : ðA11Þ

Setting the new Hamiltonian K to 0 we obtain a coordinate
transformation for S,

H
$
xμ;

∂S
∂xσ ; τ

%
þ ∂S

∂τ ¼ 0: ðA12Þ

Then using the Hamiltonian (A2) we finally get

1

2
gμν

∂S
∂xμ

∂S
∂xν þ

∂S
∂τ ¼ 0: ðA13Þ

In the case of the presence of electromagnetic fields the
Hamilton-Jacobi equation is trivially modified.
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