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Abstract Motivated by black hole solutions with matter
fields outside their horizon, we study the effect of these mat-
ter fields on the motion of massless and massive particles. We
consider as background a four-dimensional asymptotically
AdS black hole with scalar hair. The geodesics are studied
numerically and we discuss the differences in the motion of
particles between the four-dimensional asymptotically AdS
black holes with scalar hair and their no-hair limit, that is,
Schwarzschild AdS black holes. Mainly, we found that there
are bounded orbits like planetary orbits in this background.
However, the periods associated to circular orbits are modi-
fied by the presence of the scalar hair. Besides, we found that
some classical tests such as perihelion precession, deflection
of light, and gravitational time delay have the standard value
of general relativity plus a correction term coming from the
cosmological constant and the scalar hair. Finally, we found
a specific value of the parameter associated to the scalar hair,
in order to explain the discrepancy between the theory and
the observations, for the perihelion precession of Mercury
and light deflection.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . .
2 Four-dimensional asymptotically AdS black holes

with scalar hair . . . . . . . . . . . . . . . . . . . . .
3 Geodesics . . . . . . . . . . . . . . . . . . . . . . . .

3.1 Time-like geodesic . . . . . . . . . . . . . . . .
3.1.1 Radial motion . . . . . . . . . . . . . . . .
3.1.2 Angular motion . . . . . . . . . . . . . . .
3.1.3 Perihelion precession . . . . . . . . . . . .

3.2 Null geodesic . . . . . . . . . . . . . . . . . . .

a e-mail: pablo.gonzalez@udp.cl
b e-mail: marco.olivaresr@mail.udp.cl
c e-mail: yvasquez@userena.cl

3.2.1 Radial motion . . . . . . . . . . . . . . . .
3.2.2 Angular motion . . . . . . . . . . . . . . .
3.2.3 Deflection of light . . . . . . . . . . . . .
3.2.4 Gravitational time delay . . . . . . . . . .

4 Concluding comments . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . .

1 Introduction

Hairy black holes are interesting solutions of Einstein’s The-
ory of Gravity and also of certain types of Modified Gravity
Theories. The first attempts to couple a scalar field to gravity
was done in an asymptotically flat spacetime finding hairy
black hole solutions [1–3] but these solutions violated the no-
hair theorems because they were not physically acceptable
as the scalar field was divergent on the horizon and stability
analysis showed that they were unstable [4]. Then, by intro-
ducing a cosmological constant hairy black hole solutions
with a minimally coupled scalar field and a self-interaction
potential in asymptotically dS space were found, but they
were unstable [5,6]. Also, a hairy black hole configuration
was reported for a scalar field non-minimally coupled to grav-
ity [7], but perturbation analysis showed the instability of the
solution [8,9]. In the case of a negative cosmological con-
stant, stable solutions were found numerically for spherical
geometries [10,11] and an exact solution in asymptotically
AdS space with hyperbolic geometry was presented in [12]
and generalized later to include electric charge [13,14]. Then
a generalization to non-conformal solutions was discussed in
[15]. Further hairy solutions in the presence of a cosmolog-
ical constant were reported in [16–21] with various prop-
erties. On the other hand, by introducing a coupling of a
scalar field to Einstein tensor that acts as an effective cos-
mological constant [22,23] a hairy black hole solution was
presented [24], and spherically symmetric hairy black hole
solutions with scalar hair were found [25]. Additionally, there
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are also very interesting recent developments in Observa-
tional Astronomy. High precision astronomical observations
of the supermassive black holes may pave the way to exper-
imentally test the no-hair conjecture [26]. Also, there are
numerical investigations of single and binary black holes in
the presence of scalar fields [27], and more recently it was
shown that it is not necessary to introduce a cosmological
constant to get scalar hairy black holes [28,29].

On the other hand, the recent developments in string the-
ory and specially the application of the AdS/CFT principle
to condensed matter phenomena like superconductivity (for
a review see [30]), triggered the interest of further study of
the behavior of matter fields outside the black hole horizon
[31,32]. In this context, the gauge/gravity duality is a prin-
ciple which relates strongly coupled systems to their weak
coupled gravity duals. One of the best-studied system is the
holographic superconductor. In its simplest form, the gravity
sector is a gravitating system with a cosmological constant,
a gauge field and a charged scalar field with a potential (for
a review see [33]). The dynamics of the system defines a
critical temperature above which the system finds itself in its
normal phase and the scalar field does not have any dynam-
ics. Below the critical temperature the system undergoes a
phase transition to a new configuration. From the gravity
side this is interpreted as the black hole to acquire hair while
from boundary conformal field theory site this is interpreted
as a condensation of the scalar field and the system enters a
superconducting phase.

It is well known that all solar system observations, such as
light deflection, the perihelion shift of planets, and the grav-
itational time delay among others, are described within Ein-
stein’s General Relativity. The study of geodesics has been
performed under several black hole geometries. For instance,
see [34–44] for the motion of particles on AdS spacetime.
In this work, motivated by black hole solutions with mat-
ter fields outside their horizon, we study their effect in the
motion of massless and massive particles in the background
of a four-dimensional asymptotically AdS black hole with
scalar hair [20]. These hairy black holes solutions are char-
acterized by a self-interacting potential that asymptotically
tends to the cosmological constant, and the scalar field is reg-
ular everywhere outside the event horizon and null at spatial
infinity. The geodesics are studied numerically and we dis-
cuss the differences in the motion of particles between the
four-dimensional asymptotically AdS black holes with scalar
hair and their no-hair limit, that is, Schwarzschild AdS black
holes. Also, we study classical tests such as perihelion preces-
sion, deflection of light and gravitational time delay in order
to determine the contribution that arises from the scalar hair.

The paper is organized as follows. In Sect. 2 we give a brief
review of the four-dimensional asymptotically AdS black
holes with scalar hair that we will consider as background.
In Sect. 3 we study the motion of massless and massive par-

ticles, and we perform some classical tests such as perihelion
precession, deflection of light and gravitational time delay.
Finally in Sect. 4 we conclude.

2 Four-dimensional asymptotically AdS black holes
with scalar hair

The hairy black hole that we consider is solution of the
Einstein–Hilbert action with a negative cosmological con-
stant and a neutral scalar field minimally coupled to the curva-
ture having a self-interacting potential V (φ) [20]. The action
is given by

S =
∫

d4x
√−g

(
1

2κ
R − 1

2
gμν∇μφ∇νφ − V (φ)

)
, (1)

the self-interacting potential being

V (φ) = −F
(

2 + cosh
(√

2φ
))

+ G

ν3

(
6 sinh

(√
2φ

)

−2
√

2φ
(

2 + cosh
(√

2φ
)))

. (2)

Here, the cosmological constant is incorporated in the poten-
tial, that is, � = V (0) (V (0) < 0). Here � = −6l−2/κ , l
being the length of the AdS space and κ = 8πGN , with GN

the Newton constant. This potential has a global maximum
at φ = 0. The equations of motion are

Rμν − 1

2
gμνR = κT (φ)

μν , (3)

where the energy momentum tensor T (φ)
μν for the scalar field

is

T (φ)
μν = ∇μφ∇νφ − gμν

[
1

2
gρσ ∇ρφ∇σ φ + V (φ)

]
, (4)

and the Klein–Gordon equation of the scalar field reads

�φ = dV

dφ
. (5)

The following metric is a solution of the theory defined by
(1):

ds2 = − f (r)dt2 + f −1(r)dr2 + a2(r)dσ 2
k , (6)

where

f (r) = k + Fr (r + ν)

+ G

ν3

(
−ν (ν + 2r) + 2r (r + ν) ln

(
r + ν

r

))
,

(7)

a2(r) = r(r + ν), (8)

and the scalar field is

φ (r) = 1√
2

ln
(

1 + ν

r

)
. (9)
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In Eq. (6), dσ 2
k is the metric of the spatial 2-section, which

can have positive, negative or zero curvature, and the coordi-
nates are defined in the ranges 0 < r < ∞, −∞ < t < ∞,
0 ≤ θ < π , 0 ≤ φ < 2π . For the lapse function k = 1, 0,−1
parametrizes the curvature of the spatial 2-sections and F , G
are constants being proportional to the cosmological constant
and to the mass respectively. It was shown that for spheri-
cal horizons k = 1 there is no phase transition of the hairy
asymptotically AdS black holes to Schwarzschild AdS black
hole. However, for hyperbolic horizons k = −1 there exists
a phase transition only for negative masses, and the hairy
black hole dominates for small temperatures, while for large
temperatures the topological black hole would be preferred,
for more details see [20].

In the next section we perform a numerical analysis of the
geodesics by considering the hairy black hole solution. So,
without loss of generality, we consider the following values
for the parameters: k = 1, ν = −1, F = 1, and G = 2. Thus,
in order to show that these parameters yield a hairy black hole
solution we plot in Fig. 1 the behavior of the metric function
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Fig. 1 The behavior of f (r) (top figure), R(r) and Rμνρσ Rμνρσ (r)
(center figure) and Rμν Rμν(r) (bottom figure) with k = 1, ν = −1,
F = 1, and G = 2

f (r), which changes sign for r = 1.15, signaling the pres-
ence of an horizon. Also we plot the behavior of the Ricci
scalar R(r), the principal quadratic invariant of the Ricci ten-
sor RμνRμν(r), and the Kretschmann scalar Rμνλτ Rμνλτ (r),
and we observe that there is no Riemann curvature singular-
ity outside the horizon. Also, we observe that the Riemann
curvature singularities are covered by the horizon. Therefore,
the choice of parameters mentioned above gives a hairy black
hole solution which is asymptotically AdS.

3 Geodesics

In order to find the geodesics of the spacetime described by
(6), we will solve the Euler–Lagrange equations for the vari-
ational problem associated with this metric. The Lagrangian
associated to the metric (6) is given by

2L=− f (r)ṫ2+ ṙ2

f (r)
+ a2(r)(θ̇2 + sin2 θ φ̇2)=−m, (10)

where q̇ = dq/dτ , and τ is an affine parameter along
the geodesic that we choose as the proper time. Since the
Lagrangian (10) is independent of the cyclic coordinates
(t, φ), their conjugate momenta (�t ,�φ) are conserved and
the equations of motion read

�̇q − ∂L
∂q

= 0, (11)

where �q = ∂L/∂q̇ is the conjugate momentum to the coor-
dinate q. The above equation can be written as

�̇t = 0, �̇r = − ṫ2

2

d f (r)

dr
+ ṙ2

2

d f (r)−1

dr

+a(r)
da(r)

dr
(θ̇2 + sin2 θφ̇2), (12)

�̇θ = a2(r) sin θ cos θ φ̇2, and �̇φ = 0, (13)

which yields

�t = − f (r)ṫ, �r = ṙ

f (r)
, (14)

�θ = a2θ̇ , and �φ = a2 sin2 θφ̇. (15)

Now, without loss of generality, we consider the motion to
develop in the invariant plane θ = π/2 and θ̇ = 0, which
is characteristic of the central fields. With this choice, Eqs.
(15) and (16) become

�t = − f (r)ṫ ≡ −√
E, �φ = a2φ̇ ≡ L , (16)

where E and L are dimensionless integration constants asso-
ciated to each of them. So, inserting Eq. (16) into Eq. (10)
we obtain
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(
dr

dτ

)2

= E − V (r), (17)

where V (r) is the effective potential given by

V (r) = f (r)

[
m + L2

r(r + ν)

]
, (18)

where m is the test mass. Finally, by normalization, we shall
take m = 1 for massive particles and m = 0 for photons.

3.1 Time-like geodesic

In order to observe the possible orbits, we plot the effective
potential for massive particles (18) which is shown in Fig.
(2). In the following, we describe the radial motion and the
angular motion.

3.1.1 Radial motion

In this case L = 0. The particles always fall into the horizon
from an upper distance determined by the constant of motion
E = 30.88. This fact is due to the attractive force generated
by the proportional term to the cosmological constant; see
Fig. 2. In Fig. 3 we plot the proper (τ ) and coordinate (t)
time as a function of r for a particle falling from a finite
distance with zero initial velocity, and we can see that the
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Fig. 2 The behavior of V (r) for radial (L = 7) and non-radial (L = 0)
particles, with k = 1, ν = −1, F = 1, and G = 2
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Fig. 3 The behavior of the proper (τ ) and coordinate (t) time as a
function of r , with k = 1, ν = −1, F = 1, and G = 2

particle falls toward the horizon in a finite proper time. The
situation is very different if we consider the trajectory in the
coordinate time, where t goes to infinity. This physical result
is consistent with the Schwarzschild AdS black hole.

3.1.2 Angular motion

For the angular motion we consider L > 0. The allowed
orbits depend on the value of the constant E .

• If E = 61.6 the particle can orbit in a stable circular orbit
at rs = 2.84; see Fig. 2.

• If E = 69.4 the particle can orbit in an unstable circu-
lar orbit at ru = 1.518. Also, there are two critic orbits
that approximates asymptotically to the unstable circu-
lar orbit. For the first kind, the particle starts from the
rest and a finite distance greater than the unstable radio;
see Fig. 4. For the second kind, the particle starts from a
finite distance greater than the horizon, but smaller than
the unstable radio; see Fig. 4.

• The planetary orbits are constrained to oscillate between
an aphelion and a perihelion. We plot in Fig. 5 the plan-
etary orbit for E = 65. We can observe that the particle
completes an oscillation in an angle less than 2π , contrary
to the Schwarzschild AdS black hole, where the angle is
greater than 2π [45].

It is possible to calculate the periods of the circular orbits
(rc.o.), which can be stable (rs) or unstable (ru) orbits using
the constant of motion

√
E and L , given by (16), which yields

Tτ = 2πrc.o.(rc.o. + ν)

L
, (19)

and

Tt = 2π
√
Erc.o.(rc.o. + ν)

L f (rc.o.)
, (20)

where Tτ is the period of the orbit with respect to the proper
time and Tt is the period of the orbit with respect to the coor-
dinate time. It is worth to mention that the periods depend
on the value of ν and in the limit ν → 0 these periods cor-
respond to the periods of the circular orbits in the spacetime
Schwarzschild AdS. On the other hand, for the stable circular
orbits it is possible to find the epicycle frequency, given by
κ2 = V ′′(rs)/2.

3.1.3 Perihelion precession

Here, we follow the treatment performed by Cornbleet [46],
which allows us to derive the formula for the advance of the
perihelia of planetary orbits. The starting point is to consider
the line element in unperturbed Lorentz coordinates
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Fig. 4 The first (left figure) and second (right figure) kind of critical orbits with L = 7, k = 1, ν = −1, F = 1, and G = 2
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Fig. 5 The planetary orbit with L = 7, k = 1, ν = −1, F = 1, and
G = 2 for E = 69.4

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θdφ2), (21)

together with line element (6). So, considering only the radial
and time coordinates in the binomial approximation, the
transformation gives

dt̃ ≈
(

1 − G

6r
+ Fr2

2
+ Gν

12r2 + Fνr

2

)
dt, (22)

dr̃ ≈
(

1 + G

6r
− Fr2

2
− Gν

12r2 − Fνr

2

)
dr. (23)

We will consider two elliptical orbits, one the classical Kepler
orbit in (r, t) space and a hairy AdS orbit in (r̃ , t̃) space. Then
in the Lorentz space dA = ∫R

0 rdrdφ = R2dφ/2, and hence

dA

dt
= 1

2
R2 dφ

dt
, (24)

which corresponds to Kepler’s second law. For the hairy AdS
case we have

d Ã =
∫ R

0
a(r)dr̃dφ, (25)

where dr̃ is given by Eq. (23), and the binomial approxima-
tion for the radial function a(r) is

a(r) ≈ r
(

1 + ν

2r

)
. (26)

So, we can write (25) as

d Ã =
∫ R

0
r
(

1 + ν

2r

)

×
(

1 + G

6r
− Fr2

2
− Gν

12r2 − Fνr

2

)
drdφ

≈ R
2

(
1 + G

3R − FR2

4
+ ν

R
)

dφ. (27)

Therefore, applying the binomial approximation we obtain

d Ã

dt̃
= R

2

(
1 + G

3R − FR2

4
+ ν

R
)

dφ

dt̃

≈ R
2

(
1 + G

3R − FR2

4
+ ν

R
)

×
(

1 + G

6R − FR2

2
− Gν

12R2 − FνR
2

)
dφ

dt
. (28)
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So, we use this increase to improve the elemental angle from
dφ to dφ̃. Then for a single orbit

∫ �φ̃

0
dφ̃ =

∫ �φ=2π

0

(
1 + G

2R − 3FR2

4
+ ν

R
)

dφ, (29)

where we have neglected products of G, F , and ν. The polar
form of an ellipse is given by

R = l

1 + ε cos φ
, (30)

where ε is the eccentricity and l is the semi-latus rectum. In
this way, plugging Eq. (30) into Eq. (29), we obtain

�φ̃ = 2π + G

2

∫ 2π

0

1 + ε cos φ

l
dφ

−3F

4

∫ 2π

0

(
l

1 + ε cos φ

)2

dφ

+ ν

∫ 2π

0

1 + ε cos φ

l
dφ, (31)

which at first order yields

�φ̃ ≈ 2π + πG

l
+ 3πFl2

2
+ 2πν

l
. (32)

Therefore, the perihelion advance has the standard value of
general relativity plus the correction term coming from cos-
mological constant and scalar hair. It is worth to mention
that there is a (negative) discrepancy between the observa-
tional value of the precession of perihelion for Mercury,
�φ̃Obs. = 5599.74 arcsec/Julian − century and the total
�φ̃Total = 5603.24 arcsec/Julian − century; see [47]. This
may be attributed to the scalar hair correction, given ν =
−0.359 km.

3.2 Null geodesic

In the next analysis, we consider two kinds of motion, for
L = 0 (radial motion), and L > 0 (angular motion) of the
photons (m = 0).

3.2.1 Radial motion

In this case, the master equation (17) can be written as

dr

dτ
= ±√

E, (33)

where (+) stands for outgoing photons and (−) stands for
ingoing photons. The solution of the above equation yields

r = ±√
Eτ + r0, (34)
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Fig. 6 The behavior of the proper (τ ) and coordinate (t) time for ingo-
ing photons as a function of r , with L = 0, k = 1, ν = −1, F = 1, and
G = 2
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Fig. 7 The behavior of the effective potential for photons as a function
of r , with L = 2, k = 1, ν = −1, F = 1, and G = 2

where r0 is an integration constant that corresponds to the
initial position of the photon, as in the Schwarzschild AdS
case. The photons always fall into the horizon from an upper
distance determined by the constant of motion E = 30.88.
In Fig. 6 we plot the proper (τ ) and coordinate (t) time as
a function of r for a photon falling from a finite distance
(r0 = 6), we can see that photons fall toward the horizon
in a finite proper time. The situation is very different if we
consider the trajectory in the coordinate time, where t goes
to infinity.

3.2.2 Angular motion

In this case, the allowed orbits for photons depend on the
value of the impact parameter b ≡ L/

√
E . Next, based on

the impact parameter values shown in Fig. 7, we give a brief
qualitative description of the allowed angular motions for
photons, described in the following.

• Capture zone: If 0 < b < bu , photons fall inexorably to
the horizon, and its cross section, σ , in this geometry is
[48]

σ = π b2
u . (35)

• Critical trajectories: If b = bu (Eu = 5.58), photons can
stay in one of the unstable inner circular orbit of radius
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Fig. 8 The first (left figure) and second (right figure) kind of critical orbits with L = 2 with k = 1, ν = −1, F = 1, and G = 2 for E = 5.58
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Fig. 9 The deflection of the light with L = 2, k = 1, ν = −1, F = 1,
and G = 2 for E = 5

ru (ru = 1.5). Therefore, the photons that arrive from the
initial distance ri (r+ < ri < ru , or ru < ri < ∞) can
asymptotically fall into a circle of radius ru ; see Fig. 8.

• Deflection zone. If bu < b < b0 = 1/
√
F , the photons

can fall from infinity to a minimum distance rd = 2.09
and can go back to infinity. This photons are deflected;
see Fig. 9. The other allowed orbits correspond to photons
moving into the other side of the potential barrier, which
plunge into the singularity. In the next section, we will
focus on this topic.

3.2.3 Deflection of light

The deflection of light is important because the deflection
of light by the Sun is one of the most important tests of
general relativity, and the deflection of light by galaxies is
the mechanism behind gravitational lenses. The distance of
the closest approach, r0, for the metric (6) can be defined by
(

dr

dφ

)2

= a(r)4

b2 − a(r)2 f (r), (36)

where b is the impact parameter. Now, by using the change
of variables u = 1/r , the above equation can be written as
(

− du

dφ

)2

= 1

b2 (1 + ν u)2 − (1 + ν u)u2 f (u), (37)

which at first order and applying the binomial approximation
wherever necessary leads to
(

− du

dφ

)2

= 1

b2 − F + 2ν u

b2 − u2 +
(
G

3
− ν

)
u3. (38)

Following [49] we define

y ≈ u − ν

b2 − 1

2

(
G

3
− ν

)
u2. (39)

So, solving for u yields

u = ν

b2 + y + 1

2

(
G

3
− ν

)
y2, (40)

where we have considered the first order terms. Therefore
(38) becomes

φ(u) =
∫ ∞

(1/b2−F)−1/2

1 + (G
3 − ν

)
y√

1
b2 − F − y2

dy. (41)
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This can be integrated to give

φ∞ = π

2
+

(
G

3
− ν

) √
1

b2 − F, (42)

and by considering �φ = 2 φ∞−π (see Fig. 9), it is possible
to find the deflection angle accurately, and it reads

�φ = 2

(
G

3
− ν

) √
1

b2 − F . (43)

Therefore, the deflection of light is given by the standard
value plus the correction term coming from the cosmological
constant (F) and scalar hair (ν). It is worth to mention that
there is a discrepancy between the theoretical value and the
observational value of deflection light measured by Edding-
ton and Dyson in the solar eclipse of March 29, 1919. For
the Sobral expedition this value is �φObs. = 1.98 ± 0.16′′,
and it is �φObs. = 1.61 ± 0.40′′ for the Principe expedition
[50]. Currently, the mean value is �φObs. = 1.89 [51]. So,
by attributing this discrepancy to the scalar hair correction
and neglecting the contribution from the cosmological con-
stant, one finds ν = −0.386 km, for �φObs. = 1.98, and
ν = −0.235 km, for the mean value of �φObs..

3.2.4 Gravitational time delay

An interesting relativistic effect in the propagation of light
rays is the apparent delay in the time of propagation for a light
signal passing near the Sun, which is a relevant correction
for astronomic observations, and is called the Shapiro time
delay. The time delay of Radar Echoes corresponds to the
determination of the time delay of radar signals which are
transmitted from the Earth through a region near the Sun to
another planet or spacecraft and then reflected back to the
Earth. The time interval between emission and return of a
pulse as measured by a clock on the Earth is

t12 = 2 t (r1, ρ0) + 2 t (r2, ρ0), (44)

where ρ0 is the closest approach to the Sun. Now, in order to
calculate the time delay we use (17) and the coordinate time,

ṙ = ṫ
dr

dt
=

√
E

f (r)

dr

dt
. (45)

So, (17) can be written as

√
E

f (r)

dr

dt
=

√
E − L2

a(r)2 f (r). (46)

By considering ρ0, the closest approach to the Sun, dr/dt
vanishes, so that

E

L2 = f (ρ0)

a(ρ0)2 . (47)

Now, by inserting (47) in (46), the coordinate time which the
light requires to go from ρ0 to r is

t (r, ρ0) =
∫ r

ρ0

dr

f (r)
√

1 − a(ρ0)2

f (ρ0)
f (r)
a(r)2

. (48)

So, at first order correction we obtain

t (r, ρ0) =
√
r2 − ρ2

0 + G

3
ln

⎛
⎝r +

√
r2 − ρ2

0

ρ0

⎞
⎠

+ 1

2

(
G

3
+ ν

) √
r − ρ0

r + ρ0

− F

6

√
r2 − ρ2

0 (2r2 + ρ2
0 ). (49)

Therefore, for the circuit from point 1 to point 2 and back,
the delay in the coordinate time is

�t := 2

[
t (r1, ρ0) + t (r2, ρ0) −

√
r2

1 − ρ2
0 −

√
r2

2 − ρ2
0

]

= tG + tF + tν, (50)

where

tG = G

3

⎡
⎢⎢⎣2 ln

⎛
⎜⎜⎝

(
r1 +

√
r2

1 − ρ2
0

) (
r2 +

√
r2

2 − ρ2
0

)

ρ2
0

⎞
⎟⎟⎠

+
√
r1 − ρ0

r1 + ρ0
+

√
r2 − ρ0

r2 + ρ0

⎤
⎥⎥⎦ , (51)

tF = − F

6

[√
r2

1 − ρ2
0 (2r2

1 + ρ2
0 )+

√
r2

2 − ρ2
0 (2r2

2 + ρ2
0 )

]
,

(52)

tν = ν

(√
r1 − ρ0

r1 + ρ0
+

√
r2 − ρ0

r2 + ρ0

)
. (53)

For a round trip in the solar system, we have (ρ0 << r1, r2)

�t ≈ 2G

3
ln

(
4r1r2

ρ0

)
+ 2

(
G

3
+ ν

)
− F

3
(r3

1 + r3
2 ). (54)

Therefore, as in the previous cases the time delay has the
standard value of general relativity plus the correction term
coming from the cosmological constant and scalar hair.
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4 Concluding comments

We have considered a four-dimensional asymptotically AdS
black hole with scalar hair [20]. These solutions asymptoti-
cally give the Schwarzschild anti-de Sitter solution, and they
are characterized by a scalar field with a logarithmic behav-
ior, being regular everywhere outside the event horizon and
null at spatial infinity, and by a self-interacting potential,
which tends to the cosmological constant at spatial infinity.
The equations for the geodesics were solved numerically in
order to study their behavior. We note that radial motion as
a result is found to be equivalent to the Schwarzschild AdS
spacetime [45]. Mainly, we have found that it is possible to
find bounded orbits like planetary orbits in the background
of a four-dimensional asymptotically AdS black holes with
scalar hair. However, the periods associated to circular orbits
are modified by the presence of the scalar hair. Besides,
we have found that some classical tests such as perihelion
precession, deflection of light, and gravitational time delay
have the standard value of general relativity plus a correction
term coming from the cosmological constant and scalar hair.
Finally, we found a specific value of the parameter associ-
ated to the scalar hair, in order to explain the discrepancy
between the theory and the observations, for the perihelion
precession of Mercury (ν = −0.359 km) and light deflec-
tion (ν = −0.386 km for �φObs. = 1.98). Interestingly,
these values are of the same order and sign. In furthering our
understanding, it would be interesting to study the motion of
massless and massive particles in a charged hairy black hole.
Work in this direction is in progress.
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