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Awarm inflationary universe scenario on a warped Dvali-Gabadadze-Porrati brane during intermediate
inflation is studied. We consider a general form for the dissipative coefficient ΓðT;ϕÞ ∝ Tm=ϕm−1, and also
study this model in the weak and strong dissipative regimes. We analyze the evolution of the Universe in the
slow-roll approximation and find the exact solutions to the equations of motion. In both regimes, we utilize
recent data from the BICEP2 experiment and also from the Planck satellite to constrain the parameters in
our model in accordance with the theory of cosmological perturbations.
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I. INTRODUCTION

It is well known that the scenario of warm inflation is
different than that of traditional cold inflation, notably in that
warm inflation avoids a reheating period [1]. During the
evolution of warm inflation, dissipative effects are important,
and radiation effects take place at the same time as the
expansion of the Universe. The dissipating effect occurs due
to a friction term which accounts for the processes of the
scalar field dissipating into a thermal bath. In further relation
to these dissipative effects, the dissipative coefficient Γ is a
fundamental quantity. This parameter Γ was studied in a
supersymmetric model [2] for a low-temperature scenario.
For a scalar field with multiplets of heavy and light fields that
give different expressions for the dissipation coefficient, see
Refs. [2–7]. A general form for the dissipative coefficient
ΓðT;ϕÞ, can be written as [5,6]

ΓðT;ϕÞ ¼ Cϕ
Tm

ϕm−1 ; ð1Þ

where the constant Cϕ is associated with the dissipative
microscopic dynamics and the constant m is an integer.
Various values of m have been considered in the literature
(see Refs. [5,6]). Specifically, for the value of m ¼ 3,
i.e., Γ ∝ T3ϕ−2, the parameter Cϕ corresponds to Cϕ ¼
0.02h2N Y , where a generic supersymmetric model with
chiral superfields Φ, X and Yi, i ¼ 1;…N Y is considered
[7,8]. For the special value m ¼ 1, Γ is associated with the
high-temperature supersymmetry (SUSY) case. For the spe-
cial case m ¼ 0, the dissipation coefficient represents an

exponentially decaying propagator in the high-temperature
SUSY model. For the value m ¼ −1, i.e., Γ ∝ ϕ2=T, agrees
with the non-SUSY case [3,9]. Additionally, thermal fluctu-
ations during the inflationary scenario may play a funda-
mental role in producing the initial fluctuations essential for
large-scale structure (LSS) formation [10,11]. During the
warm inflationary scenario the density perturbations arise
from the thermal fluctuations of the scalar field and dominate
over the quantumorigin of the initial density perturbations. In
this form, an essential condition forwarm inflation scenario is
the existence of a radiation component with temperature
T > H, during the expansion of the Universe, since the
thermal and quantum fluctuations are proportional to T and
H, respectively [1,10,11].Also relevant, as theUniverse heats
up and becomes radiation dominated, then warm inflation
ends. Here, the Universe stops inflating and smoothly enters
in a radiation Big-Bang phase [1]. For a comprehensive
review of warm inflation, see Ref. [12].
On the other hand, from high-dimensional gravity

theory, Dvali-Gabadadze-Porrati (DGP) considered a
braneworld model [13] where the Universe is a four-
dimensional brane embedded in a five-dimensional
Minkowski space-time. In this perspective, the induced
gravity brane-world in the DGP model was put forward as
an alternative to the Randall-Sundrum (RS) one-brane
model [14]. The gravitational behaviors in the DGP model
are divided between the five-dimensional curvature scalar
in the bulk and the four-dimensional curvature scalar on the
brane. According to the embedding of the brane in the bulk
in the DGP brane, there are two branches of background
solutions; i.e., there are two forms to embed space-time (the
four-dimensional brane into the five-dimensional space).
The inflationary universe model in the context of warped
DGP has been analyzed in Refs. [15–19]. In particular, the
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warm inflation model in a DGP scenario was analyzed in
Ref. [20], where the authors studied a standard scalar field
coupled to radiation for an effective exponential potential.
Also, the cosmological dynamics of a quintom field on the
warped DGP brane was analyzed in Ref. [21], and
observational constraints on the normal branch of a warped
DGP cosmology were found in Ref. [22]. For a review of
the DGP model, see Ref. [23].
On the other hand, in the context of the exact solutions,

can be obtained for instance in the intermediate inflation
model [24], where the scale factor is slower than de Sitter
expansion, but quicker than power law (hence the name
“intermediate”). During this scenario, the scale factor
grows as

aðtÞ ¼ exp½Atf�; ð2Þ

where A and f are two constants, and in which A > 0 and
the constant f varies between 0 < f < 1 [24]. It is well
known that the exact solutions in inflationary scenarios can
be obtained from an exponential potential or “power-law”
inflation, in which aðtÞ ∼ tp, where p > 1 [25]. Similarly,
an exact solution can be found from a constant potential, de
Sitter inflation [26]. In the context of the intermediate
model, the scale factor aðtÞ was earlier elaborated as an
exact result of the equation of motion, but the dynamics of
the model may be best described from slow-roll approxi-
mation. In the slow-roll approximation, it is feasible to
obtain a spectral index ns ∼ 1 (and in particular for the
specific value of f ¼ 2=3, the spectral index results
ns ¼ 1, or the Harrizon-Zel’dovich spectrum). Likewise,
an important observational magnitude found in the inter-
mediate model is the tensor-to-scalar ratio r, which
becomes r ≠ 0 [27].
Thus the aim of the paper is to study an intermediate

scale factor during warm inflation scenario in the frame-
work of a warped DGP model, and how a generalized form
of dissipative coefficient ΓðT;ϕÞ ∝ Tm=ϕm−1 influences
our model. We will consider a warm intermediate inflation
on a warped DGP model for two regimes; the weak and the
strong dissipative scenarios, respectively. Also, we will
investigate the cosmological perturbations, which are
expressed in terms of different parameters appearing in
our model. These parameters are constrained by the
BICEP2 experiment data [28] and the Planck satellite
[29]. The BICEP2 results imply a large amplitude of
primordial gravitational waves and hence has important
theoretical significance on inflationary universe models.
The observational data on the tensor-to-scalar ratio r, has
been obtained at more than 5σ confidence level (C.L.) with
a rigorous constraint, where r ¼ 0.20þ0.07

−0.05 at 68% C.L., also
r ¼ 0.16þ0.06

−0.05 with foreground subtracted. However, the
ratio r has become less clear when grave criticisms to the
BICEP2 analysis appeared in the literature. Recently,
the Planck Collaboration has issued the data relating the

polarized dust emission [30]. Here, an analysis of the
polarized thermal emissions from diffuse Galactic dust in
the range of 353 to 150 GHz suggests that BICEP2
gravitational wave result could be due to the dust con-
tamination, and a detailed study of Planck and BICEP2 data
would be required for a definitive answer.
The outline of the paper is as follows. The next section

presents a short review of the Friedmann equation on the
warped DGP inflation model. In Sec. III we present the
warm inflationary phase on the warped DGP model, study
the weak and strong dissipative regimes, and discuss the
inflationary epoch and the cosmological perturbations in
both regimes. Finally, Sec. IV summarizes our findings. We
choose units so that c ¼ ℏ ¼ 1.

II. THE FRIEDMANN EQUATION ON THE
WARPED DGP BRANE

The Friedmann equation on the warped DGP model can
be written from the Friedmann-Robertson-Walker (FRW)
metric as

H2 ¼ 1

3μ2
½ρþ ρ0ð1þ ϵAðρ; aÞÞ�; ð3Þ

where H ¼ _a=a corresponds to the Hubble parameter and
ρ is the total energy density. Here, the dots mean
derivatives with respect to time. The constant μ denotes
the strength of the induced gravity term on the brane (the
special case when μ ¼ 0 yields the RS model [14]). The
parameter ϵ corresponds to þ1 or −1, which are the two
branches of the warped DGP brane. For the value ϵ ¼ −1,
we will consider the brane tension as positive, and for the
value ϵ ¼ þ1, negative. Here, the function Aðρ; aÞ is
defined as

A ¼
�
A2

0 þ
2η

ρ0

�
ρ − μ2

E0

a4

��1
2

; ð4Þ

where the constants A0, ρ0, and η are given by

A0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2η μ2Λ

ρ0

q
, ρ0¼m4

λþ6
m6

5

μ2
, η ¼ 6m6

5

ρ0μ
2 (0 < η ≤ 1),

and the constant Λ becomes Λ ¼ 1
2
ðð5ÞΛþ 1

6
κ45λ

2Þ. Here,
κ5 is the five-dimensional Newton constant, ð5ÞΛ corre-
sponds to the five-dimensional cosmological constant in
the bulk, E0 is a constant related to Weyl radiation, and the
brane tension is specified by λ. Here, there are three mass
scales, μ, mλ ¼ λ1=4, and m5 ¼ κ−2=35 . Since we are only
concerned with inflationary dynamics in our model, we
will ignore the dark radiation term. Also, we shall restrict
ourselves to the RS critical case, where Λ ¼ 0. In this
form, Eq. (3) yields

H2 ¼ 1

3μ2

�
ρþ ρ0 þ ϵρ0

�
1þ 2ηρ

ρ0

�
1=2

�
: ð5Þ
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Note that in the ultrahigh energy limit in which
ρ ≫ ρ0 ≫ m4

λ , the Friedmann equation given by Eq. (5)
becomes H2 ∝ ðρþ ϵ

ffiffiffiffiffiffiffiffiffiffi
2ρρ0

p Þ and corresponds to four-
dimensional gravity on the brane. Also, in the inter-
mediate energy region in which ρ ≪ ρ0 but ρ ≫ m4

λ ,
for the branch with ϵ ¼ −1, Eq. (3) becomes H2 ∝
ðρþ ρ2

2m4
λ
− μ2m4

λ

6m6
5

ρ − μ2

4m6
5

ρ2Þ, and at the low energy limit,

where ρ ≪ m4
λ ≪ ρ0 then Eq. (3) becomes H2 ∝

½ρþOðρ=ρ0Þ2�, where μp is the effective four-dimensional
Planck mass and μ2p ¼ μ2=ð1 − ηÞ.

III. WARM INFLATION: BASIC EQUATIONS

In the following, we consider the Universe filled with a
self-interacting scalar field of energy density ρϕ together
with a radiation field given by ργ. In this form, the total
energy density ρ can be written as ρ ¼ ρϕ þ ργ . In the
following, we will assume that the energy density asso-
ciated with the scalar field is ρϕ ¼ _ϕ2=2þ VðϕÞ and the
pressure is Pϕ ¼ _ϕ2=2 − VðϕÞ, where the quantity VðϕÞ
represents the effective potential.
Also, we will assume that the total energy density ρ

is confined to the brane in the bulk satisfying the con-
tinuity equation given by _ρþ 3Hðρþ PÞ ¼ 0. In this
form, the dynamical equations for ρϕ and ργ are described
by [1]

_ρϕ þ 3Hðρϕ þ PϕÞ ¼ −Γ _ϕ2; ð6Þ

and

_ργ þ 4Hργ ¼ Γ _ϕ2; ð7Þ

where the dissipation coefficient Γ > 0 [see Eq. (1)], and
produces decay of the scalar field into radiation. Recall that
the parameter Γ can be assumed to be a function of the
temperature of the thermal bath ΓðTÞ, or a function of the
scalar field ΓðϕÞ, or a function of ΓðT;ϕÞ or simply a
constant [1].
In the context of warm inflation, the energy density

related to the scalar field predominates over the energy
density of the radiation field, i.e., ρϕ ≫ ργ [1,10,31–33]
and then ρ ∼ ρϕ. In this approximation, Eq. (5) can be
written as

H2 ≈
1

3μ2

�
ρϕ þ ρ0 þ ϵρ0

�
1þ 2ηρϕ

ρ0

�
1=2

�
;

or equivalently as

H2 ≈
1

3μ2

�
_ϕ

2
þ VðϕÞ þ ρ0 þ ϵρ0

�
1þ η½ _ϕþ 2VðϕÞ�

ρ0

�1=2�
:

ð8Þ

From Eqs. (6) and (8), we get

_ϕ2 ¼ 2μ2
ð− _HÞ
ð1þ RÞ ½1 − ϵðαþ βH2Þ−1=2�; ð9Þ

where R ¼ Γ
3H denotes the rate between Γ and the Hubble

parameter. Note that for the case of the weak or strong
dissipation regime, we make R < 1 or R > 1, respectively.
Following Ref. [19], the constants α and β are defined by

α ¼ 1þA2
0

η2
−
2

η
; and β ¼ 6μ2

ηρ0
:

On the other hand, during the inflationary scenario, we
assume that radiation production is quasistable, i.e., _ργ ≪
4Hργ and _ργ ≪ Γ _ϕ2 (see Refs. [1,10,31–33]). In this form,
by using Eqs. (7) and (9), the density ργ, becomes

ργ ¼
Γ _ϕ2

4H
¼ μ2Γð− _HÞ

2Hð1þ RÞ ½1 − ϵðαþ βH2Þ−1=2�: ð10Þ

Also, the energy density of the radiation field could be
written as ργ ¼ CγT4, where the constant Cγ ¼ π2g�=30.
Here, g� represents the number of relativistic degrees of
freedom. Combining Eq. (10) with ργ ∝ T4, we get

T ¼
�

μ2Γð− _HÞ
2CγHð1þ RÞ

�1=4
½1 − ϵðαþ βH2Þ−1=2�1=4: ð11Þ

In particular for the weak dissipative regime in which
R < 1, from Eqs. (1) and (11), the temperature of the
thermal bath T becomes

T ¼
��

Cϕμ
2ϕ1−mð− _HÞ
2CγH

�
½1 − ϵðαþ βH2Þ−1=2�

� 1
4−m

; ð12Þ

and for the strong dissipative regime (R > 1), the temper-
ature is given by

T ¼
�
3μ2ð− _HÞ
2CγH

�1=4
½1 − ϵðαþ βH2Þ−1=2�1=4: ð13Þ

On the other hand, the scalar potential V can be found
combining Eqs. (8) and (9),

V ¼ ηρ0
2

ðαþ βH2Þ½1 − ϵðαþ βH2Þ−1=2�2 −A2
0ρ0
2η

þ μ2 _H
ð1þ RÞ

�
1þ 3

2
R

�
½1 − ϵðαþ βH2Þ−1=2�; ð14Þ

and this effective potential could also be obtained explicitly
in terms of the scalar field, i.e., V ¼ VðϕÞ.
Also, the dissipation coefficient, by using Eqs. (1) and

(11), can be rewritten as
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Γ4−m
4 ð1þ RÞm4 ¼ Cϕ

�
μ2

2Cγ

�m
4

ϕ1−m
�
− _H
H

�m
4

× ½1 − ϵðαþ βH2Þ−1=2�m4 : ð15Þ

Note that Eq. (15) fixes the dissipation coefficient in the
weak (or strong) dissipative regime as a function of the
scalar field ϕ (or the cosmological time t).
In the following, we will consider our model for a

dissipative coefficient Γ ¼ ΓðT;ϕÞ given by Eq. (1), and
we will restrict ourselves to the weak and strong dissipation
regimes.

A. The weak dissipative regime

Assuming that our model evolves in agreement with the
weak dissipative regime, where Γ < 3H, and using Eqs. (2)
and (9), we obtain

ϕðtÞ − ϕ0 ¼
F½t�
K

; ð16Þ

where ϕðt ¼ 0Þ ¼ ϕ0 is an integration constant, that can be
assumed ϕ0 ¼ 0. The constant K is defined by K ≡
afð 1−f

2μ2AfÞ1=2ðβA2f2Þ−af=2 and the function F½t� corresponds
to the incomplete Lauricella function [34], defined as

F½t�≡
�
αþ β

t2ð1−fÞ

�−af
2

Fð3Þ
D

�
af; 1þ

af
2
; 1þ af

2
;
−1
2

; af þ 1;
ffiffiffi
α

p
;−

ffiffiffi
α

p
; ϵ

�
αþ β

t2ð1−fÞ

�−1
2

�
;

where the constant af is given by af ¼ f
2ð1−fÞ. The Hubble

parameter as a function of the inflaton field, ϕ, from Eq. (16)
becomes HðϕÞ ¼ Af

ðF−1½Kϕ�Þ1−f, where F−1 represents the

inverse function of the incomplete Lauricella function [34].
From Eq. (14), the scalar potential as function of the

scalar field becomes

VðϕÞ≃ ηρ0
2

�
αþ βA2f2

ðF−1½Kϕ�Þ2ð1−fÞ
�

×

�
1 − ϵ

�
αþ βA2f2

ðF−1½Kϕ�Þ2ð1−fÞ
�−1=2�2

−
A2

0ρ0
2η

:

ð17Þ

Here, we considered that only the first term of Eq. (14)
predominates at large values of scalar field ϕ. Also, we
observed that we would have found the same scalar
potential given by Eq. (17) using the slow-roll approx-
imations i.e., _ϕ2 ≪ VðϕÞ and ϕ̈ ≪ 3H _ϕ.
That said, introducing the dimensionless slow-roll

parameter ε, defined as ε ¼ − _H
H2 ¼ 1−f

AfðF−1½Kϕ�Þf, and with

the requirement for inflation to take place, ε < 1 (or
equivalently ä > 0), we get ϕ > 1

K F½ð1−fAf Þ1=f�. Also,
assuming that the inflationary scenario starts at the earliest
possible scenario, in which ε ¼ 1 (see Ref. [27]), the field
ϕ1 can be written as ϕ1 ¼ 1

K F½ð1−fAf Þ1=f�.
Introducing the number of e-folds N among two values

of cosmological times t1 and t2, or equivalently among two
different values ϕ1 and ϕ2, we get

N ¼
Z

t2

t1

Hdt ¼ A½ðF−1½Kϕ2�Þf − ðF−1½Kϕ1�Þf�: ð18Þ

Here we have considered Eqs. (2) and (16).

In the following, we will study the scalar and tensor
perturbations in the weak dissipative regime for the warm
warped DGP brane. Following Refs. [1,35], the density
perturbation is given by PR

1=2 ¼ H
_ϕ
δϕ. Here, we consider

the gauge invariant quantity ζ ¼ H þ δρ=_ρ, which is
defined on slices of uniform density and contracts to the
curvature perturbation. A characteristic of this gauge
invariant is that it is closely constant on super-horizon
scales and does not depend on gravitational dynamics [36]
(see also, Ref. [37]). In this case, the spectrum associated
with the curvature spectrum could be written as
PR

1=2 ≃ ffiffiffiffiffiffiffiffi
hζ2i

p ≃ H
_ϕ
δϕ, which persists unchanged in the

warped DGP model [38].
To continue in the scenario warm inflation, a thermalized

radiation component exists and the fluctuations δϕ are
predominantly thermal instead of quantum. For the weak
dissipative regime, the amplitude of the scalar field fluc-
tuation is given by δϕ2 ≃HT [10]. In this form, by using
Eqs. (9) and (11), the power spectrum PR, results in

PR ¼
ffiffiffiffiffiffi
3π

p

4μ2

�
μ2Cϕ

2Cγ

� 1
4−m

ϕ
1−m
4−mH

11−3m
4−m ð− _HÞ−ð3−mÞ

4−m

× ½1 − ϵðαþ βH2Þ−1=2�−ð3−mÞ
4−m : ð19Þ

Also, the power spectrum as function of the field ϕ, from
Eqs. (16) and (19) can be written as

PRðϕÞ≃ k1ϕ
1−m
4−mðF−1½Kϕ�Þ2fð4−mÞþm−5

4−m

×

�
1 − ϵ

�
αþ βA2f2

ðF−1½Kϕ�Þ2ð1−fÞ
�−1=2�−ð3−mÞ

4−m
;

ð20Þ
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where the constant k1 is defined as k1 ¼
ffiffiffiffi
3π

p
4μ2

ðμ2Cϕ

2Cγ
Þ

1
4−m×

ðAfÞ8−2m4−m ð1 − fÞm−3
4−m.

Likewise, the power spectrum as function of the number
N, yields

PRðNÞ ¼ k2ðF½JðNÞ�Þ1−m4−mðJ½N�Þ2fð4−mÞþm−5
4−m

×

�
1 − ϵ

�
αþ βA2f2

ðJ½N�Þ2ð1−fÞ
�−1=2�−ð3−mÞ

4−m
; ð21Þ

where JðNÞ and k2 are given by JðNÞ ¼ ½1þfðN−1Þ
Af �1f and

k2 ¼ k1K−1−m
4−m, respectively.

The scalar spectral index ns given by ns − 1 ¼ d lnPR
d ln k ,

where the wave number k, is associated with the number of
e-folds through d ln kðϕÞ ¼ dNðϕÞ ¼ ðH= _ϕÞdϕ. By using
Eqs. (2) and (21), this yields

ns ¼ 1 −
5 −m − 2fð4 −mÞ

Afð4 −mÞðF−1½Kϕ�Þf þ n2 þ n3; ð22Þ

where n2 and n3 are given by

n2 ¼ μ
1 −m
4 −m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − fÞ

Af

s
ðF−1½Kϕ�Þ−f=2

ϕ

×

�
1 − ϵ

�
αþ βA2f2

ðF−1½Kϕ�Þ2ð1−fÞ
�−1=2�1=2

;

and

n3 ¼ ϵ
βAfð1 − fÞ
ðF−1½Kϕ�Þ2−f

�
αþ βA2f2

ðF−1½Kϕ�Þ2ð1−fÞ
�−3=2

×
�
1 − ϵ

�
αþ βA2f2

ðF−1½Kϕ�Þ2ð1−fÞ
�−1=2�−1

;

respectively.
Also, ns can be written in terms of N. By using Eqs. (18)

and (22), we obtain

ns ¼ 1 −
5 −m − 2fð4 −mÞ

ð4 −mÞ½1þ fðN − 1Þ� þ n2N þ n3N; ð23Þ

where

n2N ¼ μK
1 −m
4 −m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − fÞ

Af

s
ðJ½N�Þ−f=2
F½JðNÞ�

×

�
1 − ϵ

�
αþ βA2f2

ðJ½N�Þ2ð1−fÞ
�−1=2�1=2

;

and

n3N ¼ ϵ
βAfð1 − fÞ
ðJ½N�Þ2−f

�
αþ βA2f2

ðJ½N�Þ2ð1−fÞ
�−3=2

×

�
1 − ϵ

�
αþ βA2f2

ðJ½N�Þ2ð1−fÞ
�−1=2�−1

:

We observe numerically from Eq. (23) that the value of
ns ≫ 1, for the positive value of ϵ, i.e., the positive branch.
This value of scalar spectral index is disproved by the
observational data. In this way, the model of warm
intermediate inflation on a warped DGP does not work
for the case ϵ ¼ þ1. In the following, we will study the
negative branch in which ϵ ¼ −1.
On the other hand, it is well known that the generation of

tensor perturbations during the inflationary epoch would
produce gravitational waves [39]. In the warped DGP
model, the amplitude of gravitational waves [15], becomes

Pg ¼
64π

m2
p
ðH=2πÞ2G2

γðxÞ; ð24Þ

where G−2
γ ðxÞ¼γþð1−γÞFðxÞ−2 is the correction to stan-

dard general relativity. Here, the parameter γ ¼ ðμ=mpÞ2
and the function FðxÞ ¼ ½ ffiffiffiffiffiffiffiffiffiffiffi

1þ x
p

− x2sinh−1ð1=xÞ�−1=2, in
which x ¼ H=μ̄, where μ̄ is the energy scale related with
the bulk curvature [40]. In particular, in the case when
x → 0, thenGγ → 1 and thus reduces to standard amplitude
of gravitational waves, where Pg ¼ 64π

m2
p
ðH=2πÞ2. Also, in

the case when γ → 0, the expression for Pg, coincides with
the amplitude of gravitational waves in the RS case [41].
In this form, using Eqs. (20) and (24), we may define the

tensor-to-scalar ratio as r ¼ ðPg=PRÞ, and in terms of the
scalar field, this ratio, in the weak dissipative regime, can be
written as

rðϕÞ≃ 16A2f2

πm2
pðF−1½Kϕ�Þ2ð1−fÞ

�
G2

γðϕÞ
PRðϕÞ

�
: ð25Þ

Also, the tensor-to-scalar ratio can be rewritten in terms
of the number of e-folds N, as

rðNÞ≃ 16A2f2

πm2
pðJ½N�Þ2ð1−fÞ

�
G2

γðNÞ
PRðNÞ

�
: ð26Þ

In Fig. 1 we show the evolution of the ratio Γ=3H and the
tensor-to-scalar ratio r on the scalar spectral index ns in the
weak dissipative regime, for the specific case m ¼ 3, in
which the dissipation coefficient becomes Γ ¼ CϕT3=ϕ2.
In both panels we have considered three different values of
Cϕ. The upper panel shows the dependence of Γ=3H on the
warm inflation and we confirm that the model remains in
the weak dissipative regime (Γ=3H < 1) during inflation.
In the lower panel, we show the two-dimensional margin-
alized constraints, at 68% and 95% levels of confidence, for
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the tensor-to-scalar ratio and the scalar spectral index
(taken BICEP2 experiment data in connection with
PlanckþWPþ highL, see Ref. [28]). From Eqs. (2),
(15), (16), and (18) we can obtain in the weak dissipative
regime R < 1, the ratio Γ=3H as a function of the number
of e-folds N, i.e., Γ=3H ¼ fðNÞ, and together with
Eq. (23), we numerically obtain the parametric plot of
the curve Γ=3H ¼ Γ=3HðnsÞ (upper panel). Analogously,
we consider Eqs. (23) and (26) and we numerically find the
parametric plot of the consistency relation r ¼ rðnsÞ (lower
panel). Here, we consider that the range for the number of
e-folds N is given by 30 ≤ N ≤ 120. In these plots we use
the values of Cγ ¼ 70, mp ¼ 1, μ ¼ 0.99, η ¼ 1, ϵ ¼ −1,
A0 ¼ 1 and Ωrc ¼ ðβH2

0Þ−1 ¼ 0.014 [22], in which
H0 ¼ 68.6 km s−1Mpc−1. In addition, we numerically
make use of Eqs. (21) and (23), and we find that A ¼
0.08 × 10−6 and f ¼ 0.43 for the value ofCϕ ¼ 5 × 105 for
which ns ¼ 0.96, PR ¼ 2.43 × 10−9 and N ¼ 60.

Similarly, Cϕ ¼ 106 corresponds to A ¼ 0.19, f ¼ 0.42;
for the case in which Cϕ ¼ 5 × 106, then A ¼ 0.23,
f ¼ 0.39. From the lower plot we find that the range for
the parameter Cϕ, in the special case m ¼ 3, is given by
5 × 105 < Cϕ < 5 × 106, which is well corroborated from
the BICEP2 experiment and also from Planck data.
In Fig. 2 we show the evolution of the tensor-to-scalar

ratio r on the scalar spectral index ns for the weak
dissipative regime, where in the upper panel we fix m ¼
1 and in the lower panel m ¼ 0. As before we consider
three values ofCϕ. Again, we use Eqs. (23) and (26) and we
numerically find the parametric plot r ¼ rðnsÞ for m ¼ 1
and m ¼ 0, where Cγ ¼ 70, mp ¼ 1, μ ¼ 0.99, η ¼ 1,
ϵ ¼ −1, A0 ¼ 1 and Ωrc ¼ ðβH2

0Þ−1 ¼ 0.014 [22]. As

C
φ
= 5x106

C
φ
= 106

C
φ
= 5x105

m= 3

FIG. 1 (color online). The evolution of the ratio Γ=3H versus
the scalar spectrum index ns (upper panel) and the evolution of
the tensor-scalar ratio r versus the scalar spectrum index ns
(lower panel) in the weak dissipative regime, for three different
values of the parameter Cϕ and the specific case m ¼ 3, i.e.,
Γ ∝ T3=ϕ2. In both panels, the dotted, solid, and dashed lines
correspond to the pairs (A ¼ 0.08, f ¼ 0.43), (A ¼ 0.19,
f ¼ 0.42) and (A ¼ 0.23, f ¼ 0.39), respectively. Also, in these
plots we have taken the values Cγ ¼ 70, mp ¼ 1, μ ¼ 0.99,
η ¼ 1, ϵ ¼ −1, A0 ¼ 1 and Ωrc ¼ ðβH2

0Þ−1 ¼ 0.014 [22].

FIG. 2 (color online). The upper and lower panels show the
evolution of the tensor-scalar ratio r versus the scalar spectrum
index ns in the weak dissipative regime, for the cases m ¼ 1 and
m ¼ 0, respectively. In both panels we consider three different
values of the parameter Cϕ. For the case m ¼ 1 (upper panel), the
dotted, solid, and dashed lines are for the pairs (A ¼ 0.67,
f ¼ 0.29), (A ¼ 0.79, f ¼ 0.29) and (A ¼ 0.95, f ¼ 0.29).
For the case m ¼ 0 (lower panel), the dotted, solid, and dashed
lines are for the pairs (A ¼ 0.99, f ¼ 0.27), (A ¼ 1.38, f ¼ 0.27)
and (A ¼ 1.75, f ¼ 0.26). Also, in both panels we have taken the
values Cγ ¼ 70, mp ¼ 1, μ ¼ 0.99, η ¼ 1, ϵ ¼ −1, A0 ¼ 1 and
Ωrc ¼ ðβH2

0Þ−1 ¼ 0.014 [22].
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before, we solve Eqs. (21) and (23), and we find that for the
case m ¼ 1 (upper panel), the dotted, solid, and dashed
lines correspond to the pairs (A ¼ 0.67, f ¼ 0.29),
(A ¼ 0.79, f ¼ 0.29) and (A ¼ 0.95, f ¼ 0.29), respec-
tively. For the case m ¼ 0 (lower panel), the dotted, solid,
and dashed lines correspond to the pairs (A ¼ 0.99,
f ¼ 0.27), (A ¼ 1.38, f ¼ 0.27) and (A ¼ 1.75,
f ¼ 0.26), respectively. From the upper plot we obtain
the range for Cϕ in the specific case m ¼ 1, given by
10−8 < Cϕ < 10−5. From the lower plot we observe that
the range for Cϕ in the case m ¼ 0 is given by
10−15 < Cϕ < 5 × 10−11. These ranges of the parameter
Cϕ, for both models, are well supported by BICEP2
experiment data and Planck data. Finally, for the special
casem ¼ −1, i.e., Γ ∝ ϕ2=T1, we find that the range for Cϕ

becomes 10−22 < Cϕ < 10−16, where Cϕ ¼ 10−22 corre-
sponds to A ¼ 2.22, f ¼ 0.25 and for the case in which
Cϕ ¼ 10−16, then A ¼ 1.27, f ¼ 0.24 (not shown). In this
form, we observe that when we decrease the value of the
parameter m the range of the parameter Cϕ also decreases.
Also, we noted that in the weak dissipative regime the
constraint on the parameter Cϕ only arises from the
BICEP2 experiment (or Planck data) and not from of
the ratio Γ=3H.
In Fig. 3 we show the evolution of the ratio T=H on the

number of e-folds N for the weak dissipative regime, where
in the upper panel we fix m ¼ 3 and in the lower panel
m ¼ 1. In order to write down values for the ratio T=H and
the number of e-folds N, for the special cases m ¼ 3 and
m ¼ 1, we utilize Eqs. (2), (12), (16), and (18), together
with the same parameters from Figs. 1 and 2. From the
upper panel we note that the value Cϕ > 5 × 105 is well
supported by the necessary condition for the warm inflation
scenario, i.e., T > H. In particular, for the value Cϕ ¼ 106

and evaluating for the value of N ¼ 60 (where ns ¼ 0.96),
we get that the value of the ratio T=H ≃ 1.47, for the value
Cϕ ¼ 5 × 106 corresponds to T=H ≃ 5.51 and for Cϕ ¼
5 × 105 it corresponds to T=H ≃ 0.79. In this way, we find
that the range for the parameter Cϕ, in the special case
m ¼ 3, is given by 5 × 105 < Cϕ < 5 × 106, which are
well corroborated from Planck data and the BICEP2
experiment together with the condition for warm inflation
T=H > 1.
From the lower panel we observe that the value Cϕ ≳

10−6 is well supported by the condition for warm inflation,
i.e., T=H > 1 ( for N ≥ 60). In particular, for the value
Cϕ ¼ 10−5, we obtain that T=H ≃ 5.28 for N ¼ 60 and for
the value Cϕ ¼ 10−6 corresponds to T=H ≃ 1.67. For the
values Cϕ ¼ 10−8 and N ¼ 60 corresponds to T=H ≃ 0.17
and the model of the weak dissipative regime is disfavored
from the essential condition for the warm inflation scenario,
since the ratio T=H < 1. It interesting to note that from the
condition T=H > 1, we have found a lower bound for the
parameter Cϕ. In this form, for the valuem ¼ 1we can set a
new constraint for the parameter Cϕ, given by 10−6 ≲ Cϕ <

10−5 from BICEP2 experiment (or Planck data) and the
condition T=H > 1.
For the case m ¼ 0 the evolution of the ratio T=H on the

number of e-folds N for the weak dissipative regime, is
similar to the casem ¼ 1 (figure not shown). As before, we
note that the value Cϕ ≳ 10−13 is well supported by the
condition for the warm inflation scenario T=H > 1. Also,
we find that for the values Cϕ ¼ 10−15 and N ¼ 60
corresponds to T=H ≃ 0.15 and then T=H < 1. Again,
we observe that from the condition T=H > 1 we have
obtained a lower bound for Cϕ, and the range for this
parameter from BICEP2 experiment (or Planck data) and
T=H > 1, is given by 10−6 ≲ Cϕ < 10−5. Finally, for the
special case m ¼ −1, we note that the value Cϕ ≳ 10−19

is well supported by the condition T=H > 1 for N ≥ 60
(not shown). Also, in particular we note that for the
values Cϕ ¼ 10−22 and N ¼ 60 the model of the weak
dissipative regime is disfavored from the condition for the
warm inflation scenario, since the rate T=H ≃ 0.14.
Again, we observe that from T=H > 1 we have found
a lower bound for Cϕ. In this form, for m ¼ −1 the new

FIG. 3. The upper and lower panels show the evolution of the
ratio T=H versus the number of e-folds N in the weak dissipative
regime, for the cases m ¼ 3 and m ¼ 1, respectively. Here, we
have used the same parameters of the Figs. 1 and 2.
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constraint for the parameter Cϕ from the Planck data (or
BICEP2) and T=H > 1, is given by 10−19 ≲ Cϕ < 10−16.
Finally, we note that in the weak dissipative regime from
the essential condition for warm inflation T=H > 1, we
have found a lower bound for the parameter Cϕ and this
bound becomes independent from Planck data and
BICEP2 experiment.

B. The strong dissipative regime

Now we study the case of the strong dissipative regime,
i.e., Γ > 3H. By using Eqs. (9) and (15), and considering
the intermediate expansion given by Eq. (2), we obtain a
relation between the scalar field and cosmological time.
However, we must study two cases separately, namely

m ¼ 3, and m ≠ 3. For the case m ¼ 3, the solution for the
scalar field yields

ϕðtÞ − ϕ0 ¼ exp

�
~F½t�
~K

�
; ð27Þ

again ϕðt ¼ 0Þ ¼ ϕ0 is an integration constant, the constant
~K is defined by

~K ≡
�
Cϕ

6μ2

�1
2

�
3μ2

2Cγ

�3
8ð1 − fÞ78β− ð5fþ2Þ

16ð1−fÞðAfÞ− 7
8ð1−fÞ;

and the new function ~F½t� corresponds to the incomplete
Lauricella function [34] given by

~F½t�≡ ½ϵðαþ β
t2ð1−fÞÞ−1=2�2ðν−1Þ
2ðν − 1Þ Fð3Þ

D

�
2ðν − 1Þ; ν; ν;− 1

8
; 2ν − 1;

ffiffiffi
α

p
;−

ffiffiffi
α

p
; ϵ

�
αþ β

t2ð1−fÞ

�
−1=2

�
;

where the constant ν is defined as ν ¼ 18−11f
16ð1−fÞ.

For the case m ≠ 3, the solution for the scalar field can be written as

φðtÞ − φ0 ¼
~Fm½t�
~Km

; ð28Þ

where now the new scalar field φ is defined as φðtÞ ¼ 2
3−mϕðtÞ

3−m
2 , the constant ~Km ¼ ðCϕ

6μ2
Þ12ð3μ2

2Cγ
Þm8ð1 − fÞ4þm

8 β
4þfðm−8Þ−2m

16ð1−fÞ ×

ðAfÞ− 4þm
8ð1−fÞ, and the function ~Fm½t� is defined as

~Fm½t�≡
½ϵðαþ β

t2ð1−fÞÞ−1=2�2ðν−1Þ
2ðν − 1Þ Fð3Þ

D

�
2ðν − 1Þ; ν; ν;− ð4 −mÞ

8
; 2ν − 1;

ffiffiffi
α

p
;−

ffiffiffi
α

p
; ϵ

�
αþ β

t2ð1−fÞ

�
−1=2

�
;

in which the constant νm ¼ 2ð6þmÞ−fð8þmÞ
16ð1−fÞ .

In this regime, the Hubble parameter as a function of the inflaton field ϕ for both cases becomes

HðϕÞ ¼ Af

ð ~F−1½ ~K lnϕ�Þ1−f ; for m ¼ 3; ð29Þ

and

HðϕÞ ¼ Af

ð ~F−1
m ½ ~Kmφ�Þ1−f

; for m ≠ 3: ð30Þ

As before, considering the slow-roll approximation, the scalar potential in the strong dissipative regime from Eq. (14)
yields

VðϕÞ≃ ηρ0
2

�
αþ βA2f2

ð ~F−1½ ~K lnϕ�Þ2ð1−fÞ
��

1 − ϵ

�
αþ βA2f2

ð ~F−1½ ~K lnϕ�Þ2ð1−fÞ
�−1=2�2

−
A2

0ρ0
2η

−
3

2
μ2

Afð1 − fÞ
ð ~F−1½ ~K lnϕ�Þ2−f

�
1 − ϵ

�
αþ βA2f2

ð ~F−1½ ~K lnϕ�Þ2ð1−fÞ
�−1=2�

ð31Þ

for the case in which m ¼ 3, and
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VðϕÞ≃ ηρ0
2

�
αþ βA2f2

ð ~F−1
m ½ ~Kmφ�Þ2ð1−fÞ

��
1 − ϵ

�
αþ βA2f2

ð ~F−1
m ½ ~Kmφ�Þ2ð1−fÞ

�−1=2�2
−
A2

0ρ0
2η

−
3

2
μ2

Afð1 − fÞ
ð ~F−1

m ½ ~Kmφ�Þ2−f
�
1 − ϵ

�
αþ βA2f2

ð ~F−1
m ½ ~Kmφ�Þ2ð1−fÞ

�−1=2�
ð32Þ

for m ≠ 3.
Also, the dissipation coefficient from Eqs. (15), (27), and

(28) becomes

ΓðϕÞ ¼ δϕ−2ð ~F−1½ ~K lnϕ�Þ−3ð2−fÞ
4 ½1 − ϵðαþ βH2Þ−1=2�3=4;

for m ¼ 3; ð33Þ

where the constant δ ¼ Cϕð3μ
2Afð1−fÞ
2Cγ

Þ3=4 and

ΓðϕÞ ¼ δmϕ
1−mð ~F−1

m ½ ~Kmφ�Þ−
mð2−fÞ

4 ½1 − ϵðαþ βH2Þ−1=2�m=4

for m ≠ 3: ð34Þ

Here the constant δm is defined as δm ¼ Cϕð3μ
2Afð1−fÞ
2Cγ

Þm=4
.

Now for this regime, the dimensionless slow-roll param-
eter ε is given by ε ¼ − _H

H2 ¼ 1−f
Afð ~F−1½ ~K lnϕ�Þf, for the case in

which m ¼ 3; for the case m ≠ 3, we get ε ¼ 1−f
Afð ~F−1

m ½ ~Kmφ�Þf.
As before, the condition for inflation ä > 0 is satisfied

when the scalar field ϕ > exp ½1~K ~F½ð1−fAf Þ1=f��, for the case in
which m ¼ 3; for m ≠ 3, the condition is satisfied for the
new scalar field when φ > 1

~Km

~Fm½ð1−fAf Þ1=f�. As in the weak

dissipative regime, the inflationary scenario begins at the
earliest possible scenario in which ε ¼ 1. Here,
ϕ1 ¼ exp ½1~K ~F½ð1−fAf Þ1=f��, for the case in which m ¼ 3,

and φ1 ¼ 1
~Km

~Fm½ð1−fAf Þ1=f� for the case m ≠ 3.

In the strong dissipative regime, the expression for the
number of e-folds between two different values ϕ1 and ϕ2,
from Eqs. (2), (27), and (28), becomes

N ¼
Z

t2

t1

Hdt ¼ A½ð ~F−1½ ~K lnϕ2�Þf − ð ~F−1½ ~K lnϕ1�Þf�;

for m ¼ 3; ð35Þ
and

N ¼ A½ð ~F−1
m ½ ~Kmφ2�Þf − ð ~F−1

m ½ ~Kmφ1�Þf�; for m ≠ 3:

ð36Þ
On the other hand, as before the power spectrum related

to the curvature spectrum could be written as PR ≃ H
_ϕ
δϕ,

where in the strong dissipative regime, i.e., Γ > 3H, we get
that δϕ2 ≃ kFT

2π2
[1], in which kF ¼ ffiffiffiffiffiffiffi

ΓH
p

. In this way, from
Eqs. (2), (11), and (15), the expression for the spectrum of
the scalar perturbation yields

PR ≃H
5
2Γ1

2T

2π2 _ϕ2
¼ C3=2

ϕ

2π2

�
1

6μ2

��
3μ2

2Cγ

�3mþ2
8

ϕ
3ð1−mÞ

2 H
3
2ð− _HÞ3m−6

8

× ½1 − ϵðαþ βH2Þ−1=2�3m−6
8 : ð37Þ

As before, it is necessary to separate the specific cases
m ¼ 3 and m ≠ 3. Replacing Eqs. (2), (27), and (28) in
Eq. (37), we can obtain the power spectrum in terms of the
scalar field for both values ofm. In this form, for the case in
which m ¼ 3, we get

PR ¼ kϕ−3ð ~F−1½ ~K lnϕ�Þ3ð5f−6Þ8

× ½1 − ϵðαþ βA2f2ð ~F−1½ ~K lnϕ�Þ−2ð1−fÞÞ−1=2�38;
ð38Þ

where the constant k is defined as k ¼ C3=2
ϕ

2π2
1
6μ2

ð3μ2
2Cγ

Þ118 ×
ð1 − fÞ38ðAfÞ158 . For the specific case in which m ≠ 3, the
spectrum of the scalar perturbation yields

PR ¼ kmϕ
3ð1−mÞ

2 ð ~F−1
m ½ ~Kmφ�Þ

3½fðmþ2Þ−2m�
8

× ½1 − ϵðαþ βA2f2ð ~F−1
m ½ ~Kmφ�Þ−2ð1−fÞÞ−1=2�

3m−6
8 ;

ð39Þ

where the constant km¼C3=2
ϕ

2π2
1
6μ2

ð3μ2
2Cγ

Þ3mþ2
8 ð1−fÞ3m−6

8 ðAfÞ3mþ6
8 .

In order to manipulate numerically the equations, it is
useful to rewrite the scalar power spectrum in terms of the
number of e-folds. By using Eqs. (35) and (36), the above
expressions becomes

PR ¼ k exp

�
−
3

~K
~F½J½N��

�
ðJ½N�Þ3ð5f−6Þ8

× ½1 − ϵðαþ βA2f2ðJ½N�Þ−2ð1−fÞÞ−1=2�38; ð40Þ

for the case in which m ¼ 3, and

PR ¼ ~γmð ~Fm½J½N��Þ3ð1−mÞ
3−m ðJ½N�Þ3½fðmþ2Þ−2m�

8

× ½1 − ϵðαþ βA2f2ðJ½N�Þ−2ð1−fÞÞ−1=2�3m−6
8 ð41Þ

for the case m ≠ 3. Here, the constant ~γm is given

by ~γm ¼ kmð2 ~Km
3−mÞ

−3ð1−mÞ
3−m .

From Eqs. (38) and (39), the scalar spectral index ns in
the strong dissipative regime yields
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ns ≃ 1þ 3ð5f − 6Þ
8Af

ð ~F−1½ ~K lnϕ�Þ−f þ nϵ1 þ nϵ2; ð42Þ

where nϵ1 and nϵ2, are given by

nϵ1 ¼ −3 ~Kð1 − fÞ1=8ðAfÞ−3=8ð ~F−1½ ~K lnϕ�Þ2−3f8

× ½1 − ϵðαþ βA2f2ð ~F−1½ ~K lnϕ�Þ−2ð1−fÞÞ−1=2�1=8;

and

nϵ2 ¼ −ϵ
3

8
βAfð1 − fÞð ~F−1½ ~K lnϕ�Þf−2

× ðαþ βA2f2ð ~F−1½ ~K lnϕ�Þ−2ð1−fÞÞ−3=2

× ½1 − ϵðαþ βA2f2ð ~F−1½ ~K lnϕ�Þ−2ð1−fÞÞ−1=2�−1;

for the specific case in whichm ¼ 3. For the casem ≠ 3we
have

ns ≃ 1þ 3½fð2þmÞ − 2m�
8Af

ð ~F−1
m ½ ~Kmφ�Þ−f þ nϵ1m þ nϵ2m;

ð43Þ
where

nϵ1m ¼ 3ð1 −mÞ
2

× ~Kmð1 − fÞ4−m8 ðAfÞ−m
8ϕ

m−3
2 ð ~F−1

m ½ ~Kmφ�Þ
½mð2−fÞ−4�

8

× ½1 − ϵðαþ βA2f2ð ~F−1
m ½ ~Kmφ�Þ−2ð1−fÞÞ−1=2�

4−m
8 ;

and

nϵ2m ¼ −ϵ
ð3m − 6Þ

8
βAfð1 − fÞð ~F−1

m ½ ~Kmφ�Þf−2

× ðαþ βA2f2ð ~F−1
m ½ ~Kmφ�Þ−2ð1−fÞÞ−3=2

× ½1 − ϵðαþ βA2f2ð ~F−1
m ½ ~Kmφ�Þ−2ð1−fÞÞ−1=2�−1:

Analogously as before, the scalar spectral index ns can
be rewritten in terms of the number of e-folds. By
considering Eqs. (35) and (36), the scalar spectral index
results

ns ≃ 1þ 3ð5f − 6Þ
8Af

ðJ½N�Þ−f þ nϵ1½J½N�� þ nϵ2½J½N��;
ð44Þ

where

nϵ1½J½N�� ¼ −3 ~Kð1 − fÞ1=8ðAfÞ−3=8ðJ½N�Þ2−3f8

× ½1 − ϵðαþ βA2f2ðJ½N�Þ−2ð1−fÞÞ−1=2�1=8;

and

nϵ2½J½N�� ¼ −ϵ
3

8
βAfð1 − fÞðJ½N�Þf−2

× ðαþ βA2f2ðJ½N�Þ−2ð1−fÞÞ−3=2
× ½1 − ϵðαþ βA2f2ðJ½N�Þ−2ð1−fÞÞ−1=2�−1

for the specific case in whichm ¼ 3. For the casem ≠ 3 the
spectral index can be written as

ns ≃ 1þ 3½fð2þmÞ − 2m�
8Af

ðJ½N�Þ−f

þ nϵ1m ½J½N�� þ nϵ2mJ½½N��; ð45Þ

where

nϵ1m ½J½N�� ¼ 3ð1 −mÞ
3 −m

ð1 − fÞðAfÞ½ðf−2Þm−4�
8ð1−fÞ β

½4þfðm−8Þ−2m�
16ð1−fÞ

× ð ~Fm½J½N��Þ−1ðJ½N�Þ½mð2−fÞ−4�
8

× ½1 − ϵðαþ βA2f2ðJ½N�Þ−2ð1−fÞÞ−1=2�4−m8 ;

and

nϵ2m ½J½N�� ¼ −ϵ
ð3m − 6Þ

8
βAfð1 − fÞðJ½N�Þf−2

× ðαþ βA2f2ðJ½N�Þ−2ð1−fÞÞ−3=2
× ½1 − ϵðαþ βA2f2ðJ½N�Þ−2ð1−fÞÞ−1=2�−1:

On the other hand, from Eqs. (24) and (39), the tensor-to-
scalar ratio for the warped DGP model in the strong
dissipative regime, for the case m ¼ 3, can be written as

r ¼ ζϕ3ð ~F−1½ ~K lnϕ�Þfþ2
8

× ½1 − ϵðαþ βA2f2ð ~F−1½ ~K lnϕ�Þ−2ð1−fÞÞ−1=2�−3
8; ð46Þ

where the constant ζ ¼ 24ð μ2m2
p
Þ ðAfÞ

1
8

C3=2
ϕ

ð2Cγ

3μ2
Þ118 ð1 − fÞ−3

8, and for

the specific case in which m ≠ 3, we get

r ¼ ζmϕ
−3
2
ð1−mÞð ~F−1

m ½ ~Kmφ�Þ18½−16þfð10−3mÞþ6m�

× ½1 − ϵðαþ βA2f2ð ~F−1
m ½ ~Kmφ�Þ−2ð1−fÞÞ−1=2�−

1
8
ð3m−6Þ;

ð47Þ

where ζm ¼ 24ð μ2m2
p
Þ ðAfÞ

1
8
ð10−3mÞ

C3=2
ϕ

ð2Cγ

3μ2
Þ3mþ2

8 ð1 − fÞ−ð3m−6Þ
8 .

Analogously as before, the tensor-to-scalar ratio r as a
function of the number e-folds N becomes

rðNÞ ¼ ζ exp

�
3

~K
~F½J½N��

�
ðJ½N�Þfþ2

8

× ½1 − ϵðαþ βA2f2ðJ½N�Þ−2ð1−fÞÞ−1=2�−3
8; ð48Þ
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for the case in which m ¼ 3, and

r ¼ ~ζmð ~Fm½J½N��Þ−3ð1−mÞ
3−m ðJ½N�Þ18½−16þfð10−3mÞþ6m�

× ½1 − ϵðαþ βA2f2ðJ½N�Þ−2ð1−fÞÞ−1=2�−1
8
ð3m−6Þ; ð49Þ

for the case m ≠ 3, where the constant ~ζm is defined

as ~ζm ¼ ζmð2 ~Km
3−mÞ

3ð1−mÞ
3−m .

In Fig. 4 we establish the dependence of the tensor-scalar
ratio r versus the primordial tilt ns, for the specific case in
which we fix m ¼ 3 (Γ ∝ T3=ϕ2), in the strong dissipative
regime. Here, we have considered three different values of
the parameter Cϕ. Again, we show the two-dimensional
marginalized constraints (68% and 95% C.L.) from
BICEP2 experiment [28]. In order to write down values
for the tensor-scalar ratio and the scalar spectrum index for
the special case m ¼ 3, i.e., Γ ∝ T3=ϕ2, we use Eqs. (44)
and (48), where Cγ ¼ 70, mp ¼ 1, μ ¼ 0.99, η ¼ 1,
ϵ ¼ −1, A0 ¼ 1 and Ωrc ¼ ðβH2

0Þ−1 ¼ 0.014 [22]. Also,
we numerically make use of Eqs. (40) and (44) and obtain
A ¼ 1.08 × 10−6 and f ¼ 0.99 for the value of Cϕ ¼ 108

for which ns ¼ 0.96, PR ¼ 2.43 × 10−9 and N ¼ 60.
Similarly, Cϕ ¼ 109 corresponds to A ¼ 3.92 × 10−6,
f ¼ 0.82; for the case in which Cϕ ¼ 1010, then
A ¼ 4.86 × 10−5, f ¼ 0.64. From the plot we observe that
the value Cϕ < 1010 is well corroborated by the C.L. from
the BICEP2 experiment and also from Planck data.
Additionally, we observe that the parameter Cϕ > 108 is
well supported by the strong regime, in which Γ=3H > 1
(not shown). In this form, the range for the parameter Cϕ in

the specific case in which m ¼ 3, is given by
108 < Cϕ < 1010. We note that this range for the parameter
Cϕ in the strong dissipative regime, becomes similar to the
range obtained in Ref. [42]. Finally, for this case, we
observed that we have found a lower bound for the
parameter Cϕ from the ratio Γ=3H > 1 and an upper
bound from BICEP2 experiment or Planck satellite.
For the case in which m ¼ 1 (Γ ∝ T), we find that the

tensor-scalar ratio r≃ 0, and the model is disproved from
BICEP2, since r ¼ 0.2þ0.07

−0.05 , with r ¼ 0 disproved at 7.0σ.
However, previous CMB observations from the Planck
satellite and other CMB experiments yielded only an upper
limit for the ratio r < 0.11 (at 95% C.L.). In this form, for
the case m ¼ 1 we numerically obtain that the parameter
Cϕ > 0.05 is well supported by the strong regime, in which
Γ=3H > 1. Also, we observe that when we increase the
value of the parameter Cϕ, the value of the tensor-to-scalar
ratio r≃ 0. In particular, for the value Cϕ ¼ 0.05 corre-
sponds to ð Γ

3HÞ∣N¼60 ≃ 1.5, the ratio ðTHÞ∣N¼60 ≃ 88 and the
tensor-to-scalar ratio r∣ns¼0.96 ≃ 0.002.
Also, in the strong regime we observe that for the cases

in which m ¼ 0 and m ¼ −1, the models are disproved
from observations; since spectral index ns > 1, these
models do not work.
Analogous to the case of the weak dissipative regime, we

also study the evolution of the ratio T=H on the number of
e-folds N for the strong dissipative regime. For the special
case m ¼ 3, we find that the constraint for the parameter
Cϕ, given by 108 < Cϕ < 1010 is well supported by the
condition for the warm inflation scenario in which T=H >
1 when the number of e-folds N ≥ 60. Here, we numeri-
cally utilize Eqs. (2), (13), (27), and (35) together with the
same parameters of the Fig. 4. In particular, for the value
Cϕ ¼ 108 we find that the value of ratio ðTHÞ∣N¼60 ≃ 49.5,
for the value Cϕ ¼ 109 corresponds to ðTHÞ∣N¼60 ≃ 311.1
and for Cϕ ¼ 1010 it corresponds to ðTHÞjN¼60 ≃ 1104.3.

IV. CONCLUSIONS

In this paper we have studied the intermediate infla-
tionary model in the context of warped DGP-warm
inflation. In the slow-roll approximation, we have
obtained analytic solutions of the equations of motion,
during the weak and strong regime, for a general form of
the dissipative coefficient. For the dissipative coefficient
ΓðT;ϕÞ ¼ CϕTm=ϕm−1, we have investigated the specific
values m ¼ 3, m ¼ 1, m ¼ 0, and m ¼ −1. In our model,
we have found analytical expressions for the correspond-
ing effective potential, power spectrum, scalar spectrum
index, and tensor-to-scalar ratio. From these quantities,
we have obtained, in both regimes, constraints on the
parameters of the model from the BICEP2 experiment
and Planck, where we have consider the constraint on the
r − ns plane.

FIG. 4 (color online). Evolution of the tensor-scalar ratio r
versus the scalar spectrum index ns in the strong dissipative
regime, for three different values of the parameter Cϕ and m ¼ 3.
The dotted, solid , and dashed lines are for the pairs
(A ¼ 4.86 × 10−5, f ¼ 0.64), (A ¼ 3.92 × 10−6, f ¼ 0.82) and
(A ¼ 1.08 × 10−6, f ¼ 0.99), respectively. Also, in this plot we
have taken the values Cγ ¼ 70, mp ¼ 1, μ ¼ 0.99, η ¼ 1,
ϵ ¼ −1, A0 ¼ 1 and Ωrc ¼ ðβH2

0Þ−1 ¼ 0.014 [22].
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On the other hand, we have obtained a constraint for the
value of the parameter Cϕ from the both regimes, i.e.,
Γ=3H < 1 or Γ=3H > 1, and also we have found a new
constraint for the parameter Cϕ from the condition the
warm inflation T > H. In the weak dissipative regime, we
have obtained an upper bound for the parameter Cϕ from
BICEP2, Planck and a lower bound from the condition for
the warm inflation T > H, and we have observed that when
we decrease the value of m, the value of the parameter Cϕ

also decreases. For the strong dissipative regime, the model
only works for the case m ¼ 3, i.e., Γ ∝ T3=ϕ2. Here, we
have obtained a lower bound for the parameter Cϕ from the
ratio Γ=3H > 1, and an upper bound from the BICEP2
experiment and Planck data. For the case in which m ¼ 1

(Γ ∝ T), we have found that r≃ 0, and the model is
disproved by BICEP2. However, from the Planck satellite
in which r < 0.11, we have found a lower bound for the
parameter Cϕ. Finally, we have observed that for the cases
in which m ¼ 0 and m ¼ −1, the models are disproved by
observations, since the spectral index ns > 1, and these
models do not work.
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