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Abstract In this article, we study the metric subregularity of generalized equations
using a new tool of nonsmooth analysis. We obtain a sufficient condition for a gen-
eralized equation to be metrically subregular, which is not a necessary condition for
metric regularity, using a subtle adjustment of the Mordukhovich coderivative. We
apply these results to the study of the metric subregularity in a Cournot duopoly game.

Keywords Metric subregularity · Nonsmooth analysis · Generalized equation

Mathematics Subject Classification 90C31 · 49K40

1 Introduction

Metric subregularity is an important concept in analysis. For this reason, a large quan-
tity of publications about metric subregularity and its applications (see, e.g., [1–8])
exists. This article deals with metric subregularity in generalized equations. Metric
subregularity in generalized equations has been studied by many authors (see, e.g.,
[7–9]) and has many applications; for example, it allows for constraint qualifications
in mathematical programming with equilibrium constraints or bi-level problems to be
obtained (see, e.g., [10–12]) and it also allows for stability results with respect to a
parameter in equilibrium problem to be obtained (see, e.g., [13,14]). In several cases,
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no metric regularity in a generalized equation exists but metric subregularity does,
so the Mordukhovich criterion for metric regularity is not well adapted to the study
of metric subregularity in generalized equations. In [15–17], the authors introduce
directional versions of metric regularity and metric subregularity and have applied it
to nonsmooth optimization problems and MPEC problems.

In some recent advances [1,4–6], the authors introduce some outer objects in order
to obtain sufficient conditions for metric subregularity which are not necessary condi-
tions for metric regularity. In this article, we make a subtle adjustment of these outer
objects in order to obtain a well adapted sufficient condition for metric subregularity
in generalized equations.

The article is organized as follows: in Sect. 2, we introduce the tools of nonsmooth
analysis that we used. In Sect. 3, we obtain a sufficient condition for a generalized
equation to be metrically subregular. In Sect. 4, we apply the results that we obtained
in Sect. 3 in a Cournot duopoly game.

2 Coderivative and Metric Subregularity

This section is directly inspired by Mordukhovich’s article [18] and book [19]. We
introduce some notations: consider a set-valued mapping T : Rn ⇒ R

m . We define
the domain of T by dom(T ) := {x ∈ R

n : T (x) �= ∅}, the graph of T by Gr(T ) :=
{(x, y) ∈ R

n × R
m : y ∈ T (x)} and the inverse map of T by T−1(y) := {x ∈

R
n : y ∈ T (x)} for all y ∈ R

m . We can observe that Gr(T−1) = {(y, x) : (x, y) ∈
Gr(T )}.

Consider a set-valued mapping T : Rn ⇒ R
n . Let x̄ ∈ dom(T ). The limsup of T

at x̄ is given by:

Limsup
x→x̄

T (x) := {
x∗ ∈ R

n : ∃xn → x̄ , ∃x∗
n → x∗ with ∀n , x∗

n ∈ T (xn)
}
.

Let K ⊂ R
n and x ∈ K , we define the Fréchet normal cone by:

N̂ (K , x) :=
⎧
⎨

⎩
x∗ ∈ R

n : Limsup
x ′ K→x̄

〈x∗, x ′ − x〉
‖x ′ − x‖ ≤ 0

⎫
⎬

⎭
.

The limiting normal cone of K at x̄ ∈ K is defined by:

NL(K , x̄) := Limsup

x
K→x̄

N̂ (K , x).

Let T : Rn ⇒ R
m be a set-valued mapping and (x̄, ȳ) ∈ Gr(T ). The coderivative

D∗T (x̄ |ȳ) : Rm ⇒ R
n is given by:

∀y∗ ∈ R
m, D∗T (x̄ |ȳ)(y∗) := {x∗ ∈ R

n : (x∗,−y∗) ∈ NL(Gr(T ), (x̄, ȳ))}.
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We also define the limiting subdifferential of ϕ : Rn → R∪ {+∞} at a point x̄ where
ϕ(x̄) < +∞ by:

∂ϕ(x̄) := {x∗ ∈ R
n : (x∗,−1) ∈ NL(epi(ϕ), (x̄, ϕ(x̄)))},

where epi(ϕ) := {(x, y) ∈ R
n × R : y ≥ ϕ(x)}.

The following sum rule is very important. The proof is given, for example, in [19,
Theorem 6.2]. If F : R

n ⇒ R
m is a set-valued map and f : R

n �→ R
m is a C1

function around x̄ , then we have, for any ȳ ∈ F(x̄):

D∗(F + f )(x̄ |ȳ + f (x̄, λ̄))(y∗) = D∗F(x̄ |ȳ)(y∗) + Df (x̄)∗(y∗). (1)

We recall that Df (x̄)∗ is the adjoint of the differential Df (x̄). When we use the
sum rule (1) with F ≡ Om , we obtain: if f is a C1 function around x̄ , then
D∗ f (x̄ | f (x̄))(y∗) = Df (x̄)∗(y∗).

The following defines the metric regularity and subregularity. We recall that for
any subset K ⊂ R

n and x ∈ R
n , the distance from x to K is given by dist(x, K ) :=

inf {‖x − y‖ : y ∈ K }.
Definition 2.1 Let T : Rn ⇒ R

m and (x̄, ȳ) ∈ Gr(T ).

1. We say that T is τ -metrically regular around (x̄, ȳ), with τ > 0, if there exists a
constant r > 0 such that:

∀x ∈ B(x̄, r) , ∀y ∈ B(ȳ, r) , τdist(x, T−1(y)) ≤ dist(y, T (x)).

2. We say that T is τ -metrically subregular at (x̄, ȳ), with τ > 0, if there exists a
constant r > 0 such that:

∀x ∈ B(x̄, r) , τdist(x, T−1(ȳ)) ≤ dist(ȳ, T (x)).

3. We say that T is metrically regular around (x̄, ȳ) (resp. T is metrically subregular
at (x̄, ȳ)) if there exists a constant τ > 0 such that T is τ -metrically regular around
(x̄, ȳ) (resp. T is τ -metrically subregular at (x̄, ȳ)).

The metric subregularity is a weaker version of the metric regularity. Consider a
set-valued mapping T : Rn ⇒ R

m and (x̄, ȳ) ∈ Gr(T ), the Mordukhovich criterion
for metric regularity says that if T has a closed graph, then T is metrically regular
around (x̄, ȳ) if and only if the following implication holds true (see, e.g., [18,19]):

0 ∈ D∗T (x̄ |ȳ)(y∗) �⇒ y∗ = 0. (2)

If T is a sum T = F + f , where F : Rn ⇒ R
m and f : Rn → R

m is C1 function,
then by sum rule (1), T is metrically regular around (x̄, ȳ + f (x̄)) ∈ Gr(T ) if and
only if the following implication holds true:

0 ∈ D∗F(x̄ |ȳ)(y∗) + Df (x̄)∗(y∗) �⇒ y∗ = 0. (3)
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The coderivative gives a criterion for metric regularity which is a sufficient condition
of metric subregularity, but in many cases a metric subregular set-valued mapping is
not metrically regular. A good tool for metric subregularity is the outer coderivative
(see, e.g., [1,4]), which is given by:

D∗
>T (x̄ |ȳ)(y∗) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x∗ ∈ R
n : (x∗,−y∗) ∈ Limsup

(x,y)→(x̄,ȳ)
(x,y)∈Gr(T )

ȳ /∈T (x)

NL(Gr(T ), (x, y))

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(4)

In this paper, we introduce the following object, which is a subtle adjustment of the
outer coderivative (4).

Definition 2.2 Consider a set-valued mapping F : R
n ⇒ R

p. We define, for any
z∗ ∈ R

p, D∗�=F(x̄ |z̄)(z∗) by:

D∗�=F(x̄ |z̄)(z∗) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x∗ ∈ R
n : (x∗,−z∗) ∈ Limsup

(x,z)→(x̄,z̄)
(x,z)∈Gr(F)

x �=x̄

NL(Gr(T ), (x, y))

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(5)

Consider a set-valued mapping F : R
n ⇒ R

p, a function f : R
n → R

p and
(x̄, ȳ) ∈ Gr(F). Define T : Rn ⇒ R

p given by T (x) = F(x)+ f (x). We assume that
F has a closed graph at x̄ and f is C1 around x̄ . We claim that we have the following
graph:

As we have seen before, the first line results from the sum rule (1) and from [18,19].
Line 1 implies line 2 and line 2 implies line 3 are consequence of the following
inclusions:

D∗
>T (x̄ |ȳ)(y∗) ⊂ D∗�=T (x̄ |ȳ)(y∗) ⊂ D∗T (x̄ |ȳ)(y∗).
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Box H implies box F is true by [1, Theorem 3.1]. Box D implies box E is true because
the sum rule (1) is also true with D∗�=. Box G cannot imply the metric subregularity as
the following example shows.

Example 2.1 Consider F(x) = max{−x, 0} and f (x) = max{0, x}2. We can observe
that

F(x) + f (x) =
{−x, if x ≤ 0,
x2, if x ≥ 0.

We have D∗
>F(0|0)(y∗) = {−y∗} and Df (0)∗(y∗) = 0, which implies that

D∗
>F(0|0)(y∗) + Df (0)∗(y∗) = {−y∗}. The following implication holds,

0 ∈ D∗
>F(x̄ |ȳ − f (x̄))(y∗) + Df (x̄)∗(y∗) �⇒ y∗ = 0,

with (x̄, ȳ) = (0, 0), but F + f is not metrically subregular at (0, 0). This proves
that the sufficient condition (3) cannot be extended to metric subregularity for the sum
with the outer coderivative in place of the coderivative.

The next section deals with the metric subregularity of a set-valued mapping which
has the form (x, y) ⇒ F(x)+ f (x, y), where f : Rn ×R

m → R
p and F : Rn ⇒ R

p.
The previous graph shows that itmaybe advantageous toworkwith the newly proposed
D∗�=. We will obtain a sufficient condition for metric subregularity of this class of set-
valued mapping in terms of

0 ∈ D∗�=F(x̄ |z̄ − f (x̄, ȳ))(z∗) × {0} + Df (x̄, ȳ)∗(z∗) �⇒ z∗ = 0. (6)

Given the closed subset K of Rn and x ∈ R
n , we define:

Proj(x, K ) := {y ∈ K : ‖x − y‖ = dist(x, K )} .

The following lemma will be used in the proof of Theorem 3.1.

Lemma 2.1 Let T : R
n ⇒ R

m be a set-valued mapping with closed graph and
ȳ ∈ R

m. We define π(x) := dist(ȳ, T (x)). Let x̄ ∈ dom(T ) \ T−1(ȳ). We have:

∂π(x̄) ⊂
⋃

y∈Proj (ȳ,T (x̄))

D∗T (x̄ |y)
(
‖y − ȳ‖−1(y − ȳ)

)
.

Proof Consider σ(y) given by σ(y) = ‖y − ȳ‖. We have:

π(x) = min{σ(y) : y ∈ T (x)}.

Given that σ is a Lipschitzian function, we have, by [19, Theorem 3.38]:

∂π(x̄) ⊂
⋃

y∈Proj (ȳ,F(x̄))

{x∗ ∈ D∗T (x̄ |y)(y∗) : y∗ ∈ ∂σ(y)}.
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Since ȳ /∈ T (x̄), we have, for any y ∈ Proj(ȳ, T (x̄)), y �= ȳ. This implies that
∂σ(y) = {‖y − ȳ‖−1(y − ȳ)}. We then obtain:

∂π(x̄) ⊂
⋃

y∈Proj (ȳ,T (x̄))

D∗T (x̄ |y)(‖y − ȳ‖−1(y − ȳ)).

��

The following lemma relates the coderivative of Φ with the coderivative of F and the
differential of f when Φ is given by Φ(x, y) = F(x) + f (x, y). This lemma is used
in the proof of Theorem 3.1.

Lemma 2.2 Let f : Rn × R
m → R

p and F : Rn ⇒ R
p. We define the set-valued

mapping Φ : Rn × R
m ⇒ R

p by, for all (x, y) ∈ R
n × R

m,

Φ(x, y) := F(x) + f (x, y).

Let (x̄, ȳ, z̄) ∈ Gr(Φ). We suppose that f is a C1 function around (x̄, ȳ). We then
have:

∀z∗ ∈ R
p , D∗Φ(x̄, ȳ|z̄)(z∗) = D∗F(x̄ |z̄ − f (x̄, ȳ))(z∗) × {0} + Df (x̄, ȳ)∗(z∗).

Proof By the sum rule on the coderivative of Φ, we obtain that

D∗Φ(x̄, ȳ|z̄)(z∗) = D∗T (x̄, ȳ|z̄ − f (x̄, ȳ))(z∗) + Df (x̄, ȳ)∗(z∗),

where T : Rn × R
m ⇒ R

p is given by T (x, y) = F(x). Since

Gr(T ) = {(x, y, z) : (x, z) ∈ Gr(F) , y ∈ R
m},

we obtain that

NL(Gr(T ), (x̄, ȳ, z̄)) = {(x∗, 0, z∗) : (x∗, z∗) ∈ NL(Gr(F), (x̄, z̄))},

which implies that:

D∗T (x̄, ȳ|z̄ − f (x̄, ȳ))(z∗) = D∗F(x̄ |z̄ − f (x̄, ȳ))(z∗) × {0}.

We then have:

D∗Φ(x̄, ȳ|z̄)(z∗) = D∗F(x̄ |z̄ − f (x̄, ȳ))(z∗) × {0} + Df (x̄, ȳ)∗(z∗).

��
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3 A Sufficient Condition for Metric Subregularity in a Generalized
Equation

In this section, we study the metric subregularity of the set-valued mapping (x, y) ⇒
F(x) + f (x, y) at (x̄, ȳ, z̄) where (x̄, ȳ) is a solution of the generalized equation

z̄ ∈ F(x) + f (x, y).

Theorem 3.1 Let f : Rn × R
m → R

p and F : Rn ⇒ R
p. We define the set-valued

mapping Φ by, for all (x, y) ∈ R
n × R

m,

Φ(x, y) := F(x) + f (x, y).

Let (x̄, ȳ, z̄) ∈ Gr(Φ). Suppose that F has a closed graph near x̄ , f is a C1 function
around (x̄, ȳ), the set-valuedmapping y ⇒ F(x̄)+ f (x̄, y) is τ1-metrically subregular
at (ȳ, z̄) and

τ2 := inf

{
‖u∗‖ : u∗ ∈ D∗�=F(x̄ |z̄ − f (x̄, ȳ))(z∗) × {0} + Df (x̄, ȳ)∗(z∗)

with ‖z∗‖ = 1

}
> 0.

Then for all τ ∈]0,min{τ1, τ2}[, Φ is τ -metrically subregular at (x̄, ȳ, z̄).

Proof Let τ ∈]0,min{τ1, τ2}[. We suppose that Φ is not τ -metrically subregular at
(x̄, ȳ, z̄). There exists a sequence (xk, yk) → (x̄, ȳ) such that for all k ∈ N,

τdist((xk, yk),Φ
−1(z̄)) > dist(z̄, Φ(xk, yk)). (7)

Clearly this implies that (xk, yk) /∈ Φ−1(z̄), thus z̄ /∈ Φ(xk, yk). We introduce the
function π : Rn × R

m → R+ defined as

∀(x, y) ∈ R
n × R

m , π(x, y) = dist(z̄, Φ(x, y)).

Observe that the inequality (7) can be written as

∀k ∈ N, τdist((xk, yk),Φ
−1(z̄)) > π(xk, yk). (8)

We first prove that π(xk, yk) → 0. Suppose that there exist a subsequence (xkl , ykl )l
and a constant L > 0 such that π(xkl , ykl ) ≥ L for all l. Therefore, inequality (8)
implies that dist((xkl , ykl ),Φ

−1(z̄)) > L/τ , which implies that ‖(xkl , ykl )−(x̄, ȳ)‖ >

L/τ > 0. That contradicts the fact that (xk, yk) → (x̄, ȳ). Therefore, π(xk, yk) → 0.
SinceΦ has a closed graph around (x̄, ȳ), there exists δ > 0 such that the functionπ

is lower semi-continuous on B̄((x̄, ȳ), δ), then by the variational principle of Ekeland
applied with ε = π(xk, yk) > 0 and α = 1

τ ′ π(xk, yk) > 0, where τ ′ ∈]τ,min{τ1, τ2}[
and k is large enough to ensure that 1

τ ′ π(xk, yk) < δ, there exists (x̃k, ỹk) such that:
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‖(xk, yk) − (x̃k, ỹk)‖ ≤ 1

τ ′ π(xk, yk), (9)

π(x̃k, ỹk) ≤ π(xk, yk), (10)

(x̃k, ỹk) ∈ Argmin
B̄((x̄,ȳ),δ)

π(·, ·) + τ ′‖(·, ·) − (x̃k, ỹk)‖. (11)

We first observe that (x̃k, ỹk) → (x̄, ȳ), indeed by the inequalities (8) and (9), we
have

‖(xk, yk) − (x̃k, ỹk)‖ ≤ 1

τ ′ π(xk, yk)

≤ τ

τ ′ dist((xk, yk),Φ
−1(z̄))

≤ τ

τ ′ ‖(xk, yk) − (x̄, ȳ)‖,

which implies that ‖(xk, yk)−(x̃k, ỹk)‖ → 0 since (xk, yk) → (x̄, ȳ), then (x̃k, ỹk) →
(x̄, ȳ). We now prove that (x̃k, ỹk) /∈ Φ−1(z̄). By contradiction, if (x̃k, ỹk) ∈ Φ−1(z̄),
then:

π(xk, yk) < τdist((xk, yk),Φ
−1(z̄)) by (8)

≤ τ‖(xk, yk) − (x̃k, ỹk)‖
≤ τ

τ ′ π(xk, yk) by (9).

Therefore, we have π(xk, yk) < τ
τ ′ π(xk, yk) which implies that τ ′ < τ (because

(xk, yk) /∈ Φ−1(z̄) then π(xk, yk) > 0 by definition of π ), that is a contradiction with
τ ′ > τ . Finally (x̃k, ỹk) /∈ Φ−1(z̄).

Applying the necessary optimality condition to (11), we deduce that

0 ∈ ∂π(x̃k, ỹk) + B
(
0, τ ′) ,

then there exists u∗
k ∈ ∂π(x̃k, ỹk) with ‖u∗

k‖ ≤ τ ′. Since (x̃k, ỹk) /∈ Φ−1(z̄), we have
z̄ /∈ Φ(x̃k, ỹk), then by Lemma 2.1, we have:

u∗
k ∈

⋃

p∈Proj (z̄,Φ(x̃k ,ỹk ))

D∗Φ(x̃k, ỹk |p)
(
‖p − z̄‖−1(p − z̄)

)
.

Let pk ∈ Proj(z̄, Φ(x̃k, ỹk)) and z∗k = ‖pk − z̄‖−1(pk − z̄) be such that:

u∗
k ∈ D∗Φ(x̃k, ỹk |pk)(z∗k ). (12)

We now prove that x̃k �= x̄ for all k large enough. By contradiction, suppose that there
exists a subsequence x̃kl such that x̃kl = x̄ for all l large enough. By (11), for all
(x, y) ∈ B((x̄, ȳ), δ), for all l ∈ N, one has:
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π(x̄, ỹkl ) ≤ π(x, y) + τ ′(‖x − x ′‖ + ‖y − ỹkl‖). (13)

Inequality (13) with x = x̄ and y ∈ B(ȳ, δ) gives:

π(x̄, ỹkl ) ≤ π(x̄, y) + τ ′‖y − ỹkl‖. (14)

Define the set-valued mapping Φ̃ : Rm ⇒ R
p defined as Φ̃(y) := Φ(x̄, y). Let y ∈

Φ̃−1(z̄), we have π(x̄, y) = dist(z̄, Φ(x̄, y)) = 0, then by (14), we have π(x̄, ỹkl ) ≤
τ ′‖y − ỹkl‖. Taking the infimum on y ∈ Φ̃−1(z̄), we obtain that:

π(x̄, ỹkl ) ≤ τ ′dist(ỹkl , Φ̃−1(z̄)). (15)

By assumption Φ̃ is τ1-metrically subregular at (ȳ, z̄), then for all l large enough, we
have:

τ1dist(ỹkl , Φ̃
−1(z̄)) ≤ dist(z̄, Φ̃(ỹkl )) = dist(z̄, Φ(x̄, ỹkl )). (16)

Using the equality π(x̄, ỹkl ) = dist(z̄, Φ(x̄, ỹkl )), we obtain from (15) and (16) that:

τ1dist(ỹkl , Φ̃
−1(z̄)) ≤ τ ′dist(ỹkl , Φ̃−1(z̄)).

Since (x̄, ỹkl ) /∈ Φ−1(z̄), we have ỹkl /∈ Φ̃−1(z̄), then dist(ỹkl , Φ̃
−1(z̄)) > 0. There-

fore, we obtain τ1 ≤ τ ′ which contradicts the inequality τ ′ < min{τ1, τ2}. Finally
x̃k �= x̄ for all k large enough.

Since for all k, ‖u∗
k‖ ≤ τ ′, there exists a subsequence (u∗

k j
) j∈N of (u∗

k)k∈N such
that u∗

k j
→ u∗ ∈ R

n . By (12) and by Lemma 2.2, for all j , we have

u∗
k j ∈ D∗F(xk j |pk j − f (xk j , yk j ))(z

∗
k j ) × {0} + Df (xk j , yk j )

∗(z∗k j )

then

u∗
k j − Df (xk j , yk j )

∗(z∗k j ) ∈ D∗F(xk j |pk j − f (xk j , yk j ))(z
∗
k j ) × {0}.

Given that

(xk j , yk j ) → (x̄, ȳ) , pk j − f (xk j , yk j ) → z̄ − f (x̄, ȳ) and xk j �= x̄,

we have

u∗ − Df (x̄, ȳ)∗(z∗) ∈ D∗�=F(x̄ |z̄ − f (x̄, ȳ))(z∗) × {0},

which implies that

u∗ ∈ D∗�=F(x̄ |z̄ − f (x̄, ȳ))(z∗){0} + Df (x̄, ȳ)∗(z∗).
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Since ‖u∗
k j

‖ ≤ τ ′, for all j , we have ‖u∗‖ ≤ τ ′ < τ2, that is a contradiction with the
definition of τ2. Therefore, Φ is metrically subregular at (x̄, ȳ, z̄). ��
The following Corollary relates the metric subregularity of the set-valued mapping
(x, y) ⇒ F(x) + f (x, y) with (6).

Corollary 3.1 Let f : Rn × R
m → R

p and F : Rn ⇒ R
p. We define the set-valued

mapping Φ by, for all (x, y) ∈ R
n × R

m,

Φ(x, y) := F(x) + f (x, y).

Let (x̄, ȳ, z̄) ∈ Gr(Φ). Suppose that F has a closed graph near x̄ , f is a C1 function
around (x̄, ȳ), the set-valued mapping y ⇒ F(x̄) + f (x̄, y) is metrically subregular
at (ȳ, z̄) and

0 ∈ D∗�=F(x̄ |z̄ − f (x̄, ȳ))(z∗) × {0} + Df (x̄, ȳ)(z∗) ⇒ z∗ = 0. (17)

Then Φ is metrically subregular at (x̄, ȳ, z̄).

Proof Suppose that Φ is not metrically subregular at (x̄, ȳ, z̄). Since the set-valued
mapping y ⇒ F(x̄)+ f (x̄, y) is metrically subregular at (ȳ, z̄), F has a closed graph
near x̄ and f is a C1 function around (x̄, ȳ), by Theorem 3.1, we have:

inf

{
‖u∗‖ : u∗ ∈ D∗�=F(x̄ |z̄ − f (x̄, ȳ))(z∗) × {0} + Df (x̄, ȳ)∗(z∗)

with ‖z∗‖ = 1

}
= 0.

This implies that there exists a sequence (xn, yn, zn) → (x̄, ȳ, z̄) with, for all n,
xn �= x̄ and (xn, yn, zn) ∈ Gr(Φ); a sequence z∗n with norm 1 and a sequence

u∗
n ∈ D∗F(xn|zn − f (xn, yn))(z

∗
n) × {0} + Df (xn, yn)

∗(z∗n)

with ‖u∗
n‖ → 0.

Consider a subsequence z∗nk of z∗n such that z∗nk → z∗. We have, for all k, u∗
nk −

Df (xnk , ynk )
∗(z∗nk ) ∈ D∗F(xnk |znk − f (xnk , ynk ))(z

∗
nk ) × {0}. By definition of D∗�=,

since f is C1 near (x̄, ȳ) and xnk �= x̄ for all k, we have

−Df (x̄, ȳ)∗(z∗) ∈ D∗�=F(x̄ |z̄ − f (x̄, ȳ))(z∗),

which implies that:

0 ∈ D∗�=F(x̄ |z̄ − f (x̄, ȳ))(z∗) × {0} + Df (x̄, ȳ)∗(z∗).

Then by (17), we have z∗ = 0, we deduce that ‖z∗nk‖ → 0, which contradicts that
‖z∗nk‖ = 1, for all k. Finally Φ is metrically subregular at (x̄, ȳ, z̄). ��
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4 Application to Cournot Duopoly Game

In this section, we apply the previous results to Cournot duopoly game. Cournot
duopoly game consists in solving the following generalized Nash equilibrium prob-
lem:

Player 1: min
x1

c1(x1) − x1 p(x1 + x2) s. t. 0 ≤ x1 ≤ M1

Player 2: min
x2

c2(x2) − x2 p(x1 + x2) s. t. 0 ≤ x2 ≤ M2

where c1 and c2 are cost functions and p is the price function. We make the following
assumptions:

(H1) The functions c1 and c2 are convex and piecewise C2 on [0,+∞[.
(H2) The price function is given by p(y) = max(α − βy, 0) with α and β positive

real numbers.
(H3) For i ∈ {1, 2}, there exists a finite set D(i) ⊂]0, Mi [ such that ci is C2 on

R \ D(i) and (ci )′′ has left and right finite limits at every point of D(i). We
define D(i) = {a j

i : 1 ≤ j ≤ qi }.
For each i ∈ {1, 2} and j ∈ {1, · · · , qi }, we define b j,−

i and b j,+
i such that

∂ci (a
j
i ) = [b j,−

i , b j,+
i ] and define:

d j,−
i = lim

xi→a j
i , xi<a j

i

c′′
i (xi ) , d j,+

i = lim
xi→a j

i , xi>a j
i

c′′
i (xi ).

The first step consists of formulating this problem in terms of a generalized equation.

We define g(x) =

⎛

⎜⎜
⎝

−x1
x1 − M1
−x2
x2 − M2

⎞

⎟⎟
⎠. The Cournot duopoly game can be formulated into:

Player 1: min
x1

c1(x1) − x1 p(x1 + x2) s. t. g1(x) ≤ 0 , g2(x) ≤ 0.

Player 2: min
x2

c2(x2) − x2 p(x1 + x2) s. t. g3(x) ≤ 0 , g4(x) ≤ 0.

We introduce:

F1(x) = ∂c1(x1) × ∂c2(x2),

F2(x) =
(

− ∂
∂x1

(x1 p(x1 + x2))

− ∂
∂x2

(x2 p(x1 + x2))

)

=
(−p(x1 + x2) − x1 p′(x1 + x2)

−p(x1 + x2) − x1 p′(x1 + x2)

)

=
(−α − β(x1 + x2) − βx1

−α − β(x1 + x2) − βx2

)
,

F(x) = F1(x) + F2(x)
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and

G(x, λ) =
(

∂g1
∂x1

λ1 + ∂g2
∂x1

λ2
∂g3
∂x2

λ3 + ∂g4
∂x2

λ4

)

=
(−λ1 + λ2

−λ3 + λ4

)
.

We also define T (x) = F(x) × {0} and f (x, λ) =
(
G(x, λ)

min{−g(x), λ}
)
, where

min{−g(x), λ} := (min{−gk(x), λk})k∈{1,...,4}.

Given that the functions x1 �→ −x1 p(x1 + x2), x2 �→ −x2 p(x1 + x2), c1 and c2
are convex, the objective function of each player is convex with respect to its decision
variable, then by the KKT conditions, the Cournot duopoly game is equivalent to the
following generalized equation:

0 ∈ T (x) + f (x, λ). (18)

We define Φ(x, λ) = T (x) + f (x, λ) and study the metric subregularity of Φ at
(x̄, λ̄, 0)where (x̄, λ̄) is a solution of (18). In [14, Theorem 6.4], using the coderivative
criterion for metric regularity, we obtain that Φ is metrically regular at (x̄1, x̄2, λ̄, 0)
if x̄1 /∈ D(1) or x̄2 /∈ D(2). In this section, we use the coderivative, which we define
in (5), in order to prove that Φ is metrically subregular at (x̄1, x̄2, λ̄, 0) ∈ Gr(Φ)

without assuming that x̄1 /∈ D(1) or x̄2 /∈ D(2). We will only consider the case where
x̄1 > 0 and x̄2 > 0 with (x̄1, x̄2) a solution of the Cournot duopoly game because
it is natural to assume that both producers produce. We can observe that if c1 and c2
are piecewise linear-quadratic then the metric subregularity of Φ is automatic since
system (18) becomes polyhedral.

We first prove that given (x̄, λ̄) a solution of (18), the set-valued mapping λ ⇒
Φ(x̄, λ) is metrically subregular at (λ̄, 0).

Lemma 4.1 Let (x̄, λ̄) a solution of (18). The set-valued mapping λ → Φ(x̄, λ) is
metrically subregular at (λ̄, 0).

Proof We can observe that λ ⇒ Φ(x̄, λ) is a polyhedral multifunction, then by Robin-
son’s theorem [20], the set-valued mapping λ → Φ(x̄, λ) is metrically subregular at
(λ̄, 0). ��
The following Theorem is a consequence of Corollary 3.1 and the proof is very similar
to the proof of Theorem 4.3 in [14]. Given x̄ , we define

A(x̄) := {k ∈ {1, · · · , 4} : gk(x̄) = 0}

and use the notation A for A(x̄) when there is no confusion. Given a vector y ∈ R
q

and a set B ⊂ {1, · · · , q}, we define yB as yB := (yk)k∈B and |B| as the cardinal of
set B.
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Theorem 4.1 Let (x̄, λ̄, 0) ∈ Gr(Φ) with (x̄1, x̄2) ∈]0, M1]×]0, M2]. Suppose that
λ̄A > 0 and the following condition holds:

∀(y∗, z∗) ∈ R
2 × R

|A|,

0 ∈ D∗�=F(x̄ | − G(x̄, λ̄))(y∗) − JgA(x̄)⊥z∗
y∗
1 = 0 if x̄1 = M1
y∗
2 = 0 if x̄2 = M2

⎫
⎬

⎭
⇒ y∗ = 0 , z∗ = 0. (19)

Then the set-valued mapping Φ is metrically subregular at (z̄, 0).

Proof Observe that assumption (19) can be written as follows:

0 ∈ D∗�=F(x̄ | − G(x̄, λ̄))(y∗) − JgA(x̄)⊥z∗
JgA(x̄)y∗ = 0

}
⇒ y∗ = 0 , z∗ = 0. (20)

We suppose that 0 ∈ D∗�=T (x̄ | − f (x̄, λ̄))(y∗, z∗) × {0} + J f (x̄, λ̄)⊥
(
y∗
z∗

)
. Using

the same way than in the proof of Theorem 4.3 in [14] with D∗�= in place of D∗, we
can prove that assumption (20) implies that y∗ = 0, z∗ = 0. By Corollary 3.1 and
Lemma 4.1, Φ is metrically subregular at (z̄, 0). ��
In order to study the metric subregularity ofΦ at (z̄, 0) ∈ Gr(Φ), we need to compute
D∗�=F1(x̄ |ȳ)(y∗). Given x̄ ∈ R

2, ȳ ∈ F1(x̄) and y∗ ∈ R
2, for any i ∈{1, 2}, we define

δi (x̄i , ȳi , y∗
i ) as follows: suppose x̄i ∈ D(i), let j ∈ {1, · · · , qi } such that x̄i = a j

i ,
then:

δi (x̄i , ȳi , y
∗
i ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∅ if b j,−
i < ȳi < b j,+

i and y∗
i �= 0,

R if y∗
i = 0,

[d j,−
i y∗

i ,+∞[ if ȳi = b j,−
i and y∗

i > 0,
{d j,−

i y∗
i } if ȳi = b j,−

i and y∗
i < 0,

] − ∞, d j,+
i y∗

i ] if ȳi = b j,+
i and y∗

i < 0,
{d j,+

i y∗
i } if ȳi = b j,+

i and y∗
i > 0.

If x̄i /∈ D(i), then we define δi (x̄i , ȳi , y∗
i ) as δi (x̄i , ȳi , y∗

i ) = {(ci )′′(x̄i )y∗
i }. The

following lemma gives D∗F1(x̄ |ȳ)(y∗), which has been proven in [14].

Lemma 4.2 [14, Lemma 6.1] Let x̄ ∈ R
2 and ȳ ∈ F1(x̄). We have:

D∗F1(x̄ |ȳ)(y∗) = δ1(x̄
1, ȳ1, y∗,1) × δ2(x̄

2, ȳ2, y∗,2).

The next lemma gives D∗�=F1(x̄ |ȳ)(y∗).
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Lemma 4.3 Let x̄ ∈ R
2 and ȳ ∈ F1(x̄). If x̄1 /∈ D(1) or x̄2 /∈ D(2), then we have

D∗�=F1(x̄ |ȳ)(y∗) = δ1(x̄1, ȳ1, y
∗
1 ) × δ2(x̄2, ȳ2, y

∗
2 ),

if x̄1 ∈ D(1) and x̄2 ∈ D(2), there exist (d1, d2) ∈ [0,+∞[2 such that:

D∗�=F1(x̄ |ȳ)(y∗) ⊂ δ1(x̄1, ȳ1, y
∗
1 ) × {d2y∗

2 } ∪ {d1y∗
1 } × δ2(x̄2, ȳ2, y

∗
2 ).

Proof By the definition of D∗�=F1 given in (5), we have:

D∗�=F1(x̄ |ȳ)(y∗) = Limsup
(x,y)→(x̄,ȳ)
(x,y)∈Gr(F1)

x �=x̄

D∗F1(x |y)(y∗).

We consider two cases.
Case 1 x̄1 /∈ D(1) or x̄2 /∈ D(2).Without loss of generality, suppose that x̄1 /∈ D(1).

Since c1 is C1 at x̄1, we have c′
1(x̄1) = lim

x1→x̄1
c′
1(x1), then:

D∗F1(x̄ |ȳ)(y∗) = Limsup
(x,y)→(x̄,ȳ)
(x,y)∈Gr(F1)

x1 �=x̄1

D∗F1(x |y)(y∗) ⊂ D∗�=F1(x̄ |ȳ)(y∗).

Since by definitionwehave D∗�=F1(x̄ |ȳ)(y∗) ⊂ D∗F1(x̄ |ȳ)(y∗), we then have equality,
thus we can conclude by Lemma 4.3.

Case 2 x̄1 ∈ D(1) and x̄2 ∈ D(2). We have:

D∗�=F1(x̄ |ȳ)(y∗) = Limsup
(x,y)→(x̄,ȳ)
(x,y)∈Gr(F1)

x �=x̄

D∗F1(x |y)(y∗)

= Limsup
(x2,y2)→(x̄2,ȳ2)

(x2,y2)∈Gr(∂c2)

x2 �=x̄2

D∗F1(x̄1, x2|ȳ1, y2)(y∗)

∪ Limsup
(x,y)→(x̄,ȳ)
(x,y)∈Gr(F1)

x1 �=x̄1

D∗F1(x1, x̄2|y1, ȳ2)(y∗)

∪ Limsup
(x,y)→(x̄,ȳ)
(x,y)∈Gr(F1)

x1 �=x̄1,x2 �=x̄2

D∗F1(x |y)(y∗)

= Limsup
(x2,y2)→(x̄2,ȳ2)

(x2,y2)∈Gr(∂c2)

x2 �=x̄2

δ1(x̄1, ȳ1, y
∗
1 ) × {(c2)′′(x2)y∗

2 }

∪ Limsup
(x,y)→(x̄,ȳ)
(x,y)∈Gr(F1)

x1 �=x̄1

{(c1)′′(x1)y∗
1 } × δ2(x̄2, ȳ2, y

∗
2 )
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∪ Limsup
(x,y)→(x̄,ȳ)
(x,y)∈Gr(F1)

x1 �=x̄1,x2 �=x̄2

{(c1)′′(x1)y∗
1 } × {(c2)′′(x2)y∗

2 }.

Without loss of generality, we suppose that x̄1 = a j1
1 and x̄2 = a j2

2 with j1 ∈
{1, . . . , q1} and j2 ∈ {1, . . . , q2}.

If (ȳ1, ȳ2) ∈]b j1,−
1 , b j1,+

1 [×]b j2,−
2 , b j2,+

2 [, then Limsup
(x,y)→(x̄,ȳ)
(x,y)∈Gr(F1)

x �=x̄

D∗F1(x |y)(y∗) = ∅, then

the inclusion D∗�=F1(x̄ |ȳ)(y∗) ⊂ δ1(x̄1, ȳ1, y∗
1 ) × {d2y∗

2 } ∪ {d1y∗
1 } × δ2(x̄2, ȳ2, y∗

2 )

holds.
If ȳ1 = b j1,−

1 and ȳ2 ∈]b j2,−
2 , b j2,+

2 [, then:

Limsup
(x2,y2)→(x̄2,ȳ2)

(x2,y2)∈Gr(∂c2)

x2 �=x̄2

δ1(x̄1, ȳ1, y
∗
1 ) × {(c2)′′(x2)y∗

2 } = ∅,

Limsup
(x,y)→(x̄,ȳ)
(x,y)∈Gr(F1)

x1 �=x̄1,x2 �=x̄2

{(c1)′′(x1)y∗
1 } × {(c2)′′(x2)y∗

2 } = ∅.

We can deduce the following equality:

D∗�=F1(x̄ |ȳ)(y∗) = Limsup
(x,y)→(x̄,ȳ)
(x,y)∈Gr(F1)

x1 �=x̄1

{(c1)′′(x1)y∗
1 } × δ2(x̄2, ȳ2, y

∗
2 ) = {d−

1 j y
∗
1 } × δ2(x̄2, ȳ2, y

∗
2 ).

If ȳ1 = b j1,−
1 and ȳ2 = b j2,−

2 , then:

Limsup
(x2,y2)→(x̄2,ȳ2)

(x2,y2)∈Gr(∂c2)

x2 �=x̄2

δ1(x̄1, ȳ1, y
∗
1 ) × {(c2)′′(x2)y∗

2 } = δ1(x̄1, ȳ1, y
∗
1 ) × {d j2,−

2 y∗
2 }

Limsup
(x,y)→(x̄,ȳ)
(x,y)∈Gr(F1)

x1 �=x̄1

{(c1)′′(x1)y∗
1 } × δ2(x̄2, ȳ2, y

∗
2 ) = {d j1,−

1 y∗
1 } × δ2(x̄2, ȳ2, y

∗
2 )

Limsup
(x,y)→(x̄,ȳ)
(x,y)∈Gr(F1)

x1 �=x̄1,x2 �=x̄2

{(c1)′′(x1)y∗
1 } × {(c2)′′(x2)y∗

2 } = {d j1,−
1 y∗

1 } × {d j2,−
2 y∗

2 }.

We can deduce the following equality:

D∗�=F1(x̄ |ȳ)(y∗) = δ1(x̄1, ȳ1, y
∗
1 ) × {d j2,−

2 y∗
2 } ∪ {d j1,−

1 y∗
1 } × δ2(x̄2, ȳ2, y

∗
2 ).

Given that d j1,−
1 ≥ 0 and d j2,−

2 ≥ 0 because c1 and c2 are convex functions, we deduce
that the inclusion D∗�=F1(x̄ |ȳ)(y∗) ⊂ δ1(x̄1, ȳ1, y∗

1 )×{d2y∗
2 }∪{d1y∗

1 }×δ2(x̄2, ȳ2, y∗
2 )
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always holds with some nonnegative real numbers d1 and d2. The other cases can be
treated in the same way. ��
We now give the result of metric subregularity of Φ.

Theorem 4.2 Let (x̄, λ̄) ∈ R
2 × R

4 such that 0 ∈ Φ(x̄, λ̄). If λ̄A > 0, then Φ is
metrically subregular at (x̄, λ̄, 0).

Proof Suppose that we have

0 ∈ D∗�=F(x̄ | − G(x̄, λ̄))(y∗) − JgA(x̄)⊥z∗
y∗
1 = 0 if x̄1 = M1
y∗
2 = 0 if x̄2 = M2

with y∗ ∈ R
2 and z∗ ∈ R

|A|. By Lemma 4.3, we have

0 ∈ δ1(x̄1, ȳ1, y∗
1 ) × {d2y∗

2 } + β

(
2y∗

1 + y∗
2

y∗
1 + 2y∗

2

)
− JgA(x̄)⊥z∗

y∗
1 = 0 if x̄1 = M1
y∗
2 = 0 if x̄2 = M2

or

0 ∈ {d1y∗
1 } × δ2(x̄2, ȳ2, y∗

2 ) + β

(
2y∗

1 + y∗
2

y∗
1 + 2y∗

2

)
− JgA(x̄)⊥z∗

y∗
1 = 0 if x̄1 = M1
y∗
2 = 0 if x̄ = M2

with d1 ≥ 0 and d2 ≥ 0. We consider the following cases:
Case 1: x̄1 ∈]0, M1[ and x̄2 ∈]0, M2[. In this case we have

0 ∈ {d1y∗
1 } × δ2(x̄2, ȳ2, y

∗
2 ) + β

(
2y∗

1 + y∗
2

y∗
1 + 2y∗

2

)

or

0 ∈ δ1(x̄1, ȳ1, y
∗
1 ) × {d2y∗

2 } + β

(
2y∗

1 + y∗
2

y∗
1 + 2y∗

2

)
.

Using the same process as in Proposition 8.2 [14], we can prove that y∗ = 0.
Case 2: x̄1 = M1 and x̄2 ∈]0, M2[. In this case we have A = {1}, then gA(x) =

x1 − M1, which implies that JgA(x)⊥ =
(
1
0

)
.

The function c1 is differentiable at M1 because by (H3), D(1) ⊂]0, M1[. Since
y∗
1 = 0, we have:

0 ∈ {0} × δ2(x̄2, ȳ2, y
∗
2 ) + β

(
y∗
2
2y∗

2

)
−

(
z∗
0

)
.
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By Lemma 4.3, we have δ2(x̄2, ȳ2, y∗
2 ) = {d2y∗

2 } or δ2(x̄2, ȳ2, y∗
2 ) = [d2y∗

2 ,+∞[ or
δ2(x̄2, ȳ2, y∗

2 ) =] − ∞, d2y∗
2 ], where d2 ≥ 0. Suppose first that

δ2(x̄2, ȳ2, y
∗
2 ) = {d2y∗

2 }.

In this case we have
(

β −1
d2 + 2β 0

) (
y∗
2
z∗

)
=

(
0
0

)
.

The determinant of this matrix is equal to d2 + 2β > 0, which implies that (y∗
2 , z

∗) =
(0, 0). We suppose now that δ2(x̄2, ȳ2, y∗

2 ) = [d2y∗
2 ,+∞[. In this case we have:

βy∗
2 − z∗ = 0

(d2 + 2β)y∗
2 ≤ 0

y∗
2 > 0.

Given that β > 0 and y∗
2 > 0, we obtain that (d2 + 2β)y∗

2 > 0, which contradicts
(d2 + 2β)y∗

2 ≤ 0, then the case δ2(x̄2, ȳ2, y∗
2 ) = [d2y∗

2 ,+∞[ cannot occur. In the
same way, we can prove that the case δ2(x̄2, ȳ2, y∗

2 ) =] − ∞, d2y∗
2 ] cannot occur,

finally we obtain that (y∗
1 , y

∗
2 , z

∗) = (0, 0, 0).

Case 3: x̄1 = M1 and x̄2 = M2. In this case we have gA(x) =
(
x1 − M1
x2 − M2

)
, which

implies that gA(x)⊥ =
(
1 0
0 1

)
. Moreover, c1 and c2 are differentiable at M1 and

M2, respectively, because D(1) ⊂]0, M1[ and D(2) ⊂]0, M2[, then:

(
d1y∗

1
d2y∗

2

)
+ β

(
2y∗

1 + y∗
2

y∗
1 + 2y∗

2

)
−

(
z∗1
z∗2

)
=

(
0
0

)

y∗
1 = 0
y∗
2 = 0.

This implies that (y∗
1 , y

∗
2 , z

∗
1, z

∗
2) = (0, 0, 0, 0). Then in all the cases, the set-valued

mapping Φ is metrically subregular at (x̄, λ̄, 0) by Theorem 4.1. The other cases can
be treated in the same way. ��

5 Conclusions

In this article, we have obtained a sufficient condition for a generalized equation
to be metrically subregular using an object of nonsmooth analysis well adapted to
the structure of our problem. We have applied these results to a Cournot duopoly
game, extending the metric subregularity result that we obtained in [14]. Two natural
extensions of this work would be to obtain the same kind of sufficient conditions for
Hölder-metric subregularity in generalized equations and to extend these results in
infinite-dimensional spaces.
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