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a b s t r a c t

We present a model based on determinist cellular automata architecture for studying systems with
frustrated interactions that present elemental excitations, such as magnetic monopoles. This model is
especially designed to be applied for systems with components that have energy levels much higher than
kT . This would imply that for these systems thermal fluctuations are negligible and they can be analyzed
under the supposition that the dynamic is produced at zero temperature. This category includes artificial
magnetic spin ice systems and donor and recipient electrical charge molecular systems. The dynamics
of these systems can be simulated in real time with this model, with a minimum of computational
requirements. It can be an excellent complement to Monte Carlo methods and in some cases can even
replace them directly. In this report, we show the designed structure and some interesting results
obtained in studying the dynamics of emergent magnetic monopoles in artificial spin ice systems and
excitations in graphane molecular arrays.

© 2012 Elsevier B.V. All rights reserved.
Introduction

Artificial spin ice systems

Frustrated physical systems have interactions that cannot be
simultaneously minimized. A consequence of this frustration is
that these systems present residual entropy at zero temperature.
Water ice is one of the most often cited examples of this
type of system [1]. Natural spin ice systems in rare earths
have recently received much attention from researchers because
elemental excitations equivalent to magnetic monopoles have
been detected at sub-kelvin temperatures [2–4]. Artificial spin
ice systems are arrays of nanomagnets with anisotropy energy
on the order of 104 K [5]. This allows their study at ambient
temperature and the simulation of the behavior of natural spin ice
systems [6,7]. A recent report of Mengotti [8] reported the first
direct observation of emergent magnetic monopoles in artificial
spin ice systems. All these experimental results have provided
considerable information about these frustrated systems, but at the
same time have raised many unanswered questions about some
situations on which experiments have not shed any light. Because
of this, it is necessary to have robust models for simulating the
complex dynamics of these elemental excitations.

Frustrated molecular systems

In many problems at the molecular level, electrical inter-
action cannot be minimized completely owing to frustration.
In particular, there is a proposal to propagate and process digital
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information using the polarization of a molecular array [9,10]. In
the logic gates defined for this technological proposal, the phe-
nomenon of frustration is presented in the minimization of elec-
trostatic energy. To correctly assess the performance of these and
similar systems, simplemodels are needed to simulate the dynam-
ics of electrical charges in these systems.

Cellular automata (CA)

Cellular automata are models used to simulate the dynamics
of complex systems. The main idea is to define an array of
entities (cells of the automaton) that have a discrete set of
states. The change of state of a particular cell is defined with
updating rules for the automaton and depends on the state of
the cells being considered and the state of neighboring cells.
A variety of models based on CA have been used to efficiently
study problems in biology, physics, chemistry, engineering and
materials sciences [11,12]. They represent an excellent alternative
to models based on differential equations and to Monte Carlo
algorithms because they can simulate highly complex systems
with a low computational cost. The first attempt to use CA in
the study of magnetism was that with the model proposed by
Vichniac [13], which was subsequently developed by Pomeau [14]
and Hermann [15] and is termed the VPH model. This is being
used to resolve an Ising type spin system. To avoid a ‘‘feedback
catastrophe’’, the automaton is updated in more than one step.
The model functions well at high temperatures (T > TC ), but
fails at low temperatures. Subsequently, Ottavi et al. [16] used a
microcanonical algorithm in a CA to resolve the Ising spin system.
A determinist version of thismodel provided acceptable results at a
low temperature [16]. Amore recentmodel studies the Isingmodel
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using a quantum algorithm in a cellular automaton [17]. The 2D
simulation shows a good agreement with the analytical solution.
Our work shows the design of a model based on the architecture
of a cellular automaton for the study of frustrated magnetic and
electrical systems.

Frustrated cellular automata (FCA)

Our model consists of a cellular automaton composed of cells
that are connected at n first neighbors. The number nwill be called
the coordination number. Fig. 1 shows three examples where we
can apply the FCA model. Fig. 1(a) shows a squared network with
n = 4. The cells of the automaton are represented by red and
yellow circles. We can see in the figure that each cell is connected
at four first neighbors, such that each red cell is connected at four
yellow cells and each yellow cell is connected at four red cells.
For this squared geometry, we have four connections (north, west,
south and east). The ‘‘eastern’’ connection of the yellow cell is
the ‘‘western’’ connection of the red cell. With this color code, we
can define four connections that surround each cell. Horizontally,
we have the ‘‘yellow–red’’ connections and the ‘‘red–yellow’’
connections’’. Analogous to this, vertically, we have the same
‘‘red–yellow’’ and ‘‘yellow–red’’ connections. By way of examples,
Fig. 1(a) shows the horizontal ‘‘yellow–red’’ connections. Fig. 1(b)
shows a hexagonal network as red and yellow circles with n = 3.
Each red cell is connected to three yellow cells and vice versa, and
Fig. 1(b) shows the horizontal connections. A one-dimensional FCA
is represented by the horizontal lines in Fig. 1(c) with n = 2 (in this
case there are two kinds of connections). The updating function
u (t) is defined in n steps, updating the n nodes for each cell, as
indicated in expression (1):

u1 (t) → u2 (t) 99K un (t) ⇒ u(t). (1)

In this expression, u1 represents the updating of connector 1, u2
represents the updating of connector 2, etc. Once the updating of
the connections is completed, the entire FCA has been updated.

Because the structure of the FCA model is completely general,
the form of the function of partial uk updating depends on
the physical nature of the phenomenon that is being modeled.
However, the FCA automaton was designed to study systems
composed of magnetic nanoislands and polar molecular systems
with anisotropy energy much greater than kT . This implies that
the thermal fluctuations are negligible and they can be considered
as systems with temperatures equivalent to 0 K. For magnetic
systems, the connections correspond to magnetic nanoislands. For
molecular systems, the connections correspond to the direction
of the electrical dipolar moment. In both cases, the partial uk
updating corresponds to reversing the magnetic or electrical
moment. A very important objective for the study of these systems
is to learn about the elemental excitations that are generated by
the collaboration of many of these entities (emergent magnetic
monopoles, for example). Given this, the energy of the systemwas
assessed in the framework of magnetic or electrical charges.

General conditions to be met by systems that are simulated with the
FCA:

• The system must have a regular array of elementary entities
(magnets or molecules).

• The energy barrier for reversal (or tunneling energy for the
molecular case) must be much greater than the energy at room
temperature.

The FCA algorithm

Having defined the structure of the FCA, we will now explain
the global functioning of the proposed architecture.
Step 1: A connection is chosen randomly, among the available n.
Step 2: The automaton is reviewed in each cell and the chosen

connection at point 1 is updated (reversing the magnetic moment
or electric moment).

If 1E ≤ −EAnisotropy, the change is accepted (magnetic case). If
1E ≤ ETunneling, the change is accepted (molecular case).

Step 3: A connection is randomly chosen from among the n− 1
and step 2 is repeated.

Step 4: Once the connections are completed, the global
updating of the FCA is completed. At this stage, the physical
observables of the system (polarization, density of the charges,
Dirac string, etc.) are assessed.

Step 1 is repeated.
The description of the FCA algorithm has been proposed in

general terms, but we can incorporate variants in step 1. Instead of
making the choice randomly, we can define a particular sequence
for making the partial uk updating, and maintain this sequence for
all the steps of the algorithm. For example, for the square latticewe
work with the sequence u1 → u2 → u3 → u4. Another possible
variation in step 1 of the FCA algorithm is to choose combinations
of connections in the network. For example, in the hexagonal
network we can choose the sequence [(u1 ∨ u2) → u3] (t) →

[(u1 ∨ u2) → u3] (t + 1). This sequence means choosing between
connectors 1 and 2, updating the chosen connector and then
updating connector 3. In the following global step of the algorithm
we return to choosing between connectors 1 and 2, and the chosen
connector is updated and then connector 3 is updated. These
variants are not strictly necessary in the algorithm and are only
used to efficiently study some observable in particular, as will be
explained further on in the applications.

Applications of the FCA

Emergent magnetic monopoles in the hexagonal network

To illustrate the behavior of themodel,we begin by studying the
hexagonal network. The parameters used in this study correspond
to those of the experimental work of Mengotti et al. [6]. We
study the density of emergent monopoles in a global sequence of
magnetic reversal.

The system studied in this work is a magnetic nanoisland array
in a hexagonal lattice. Fig. 2(a) shows a scheme of the magnetic
bars arranged on the sides of a hexagon and Fig. 2(b) shows
the frustration in the hexagonal network. Three nanomagnets
converge in the vertices of the hexagons, as can be appreciated
in Fig. 2. Topologically, we can define two non-equivalent vertices
in the hexagonal lattice, vertices A and B. The two non-equivalent
vertices form the unit cell of the entire array. The cell is shown
in red in Fig. 2(a). In the magnetic charge model, the charges are
concentrated in these vertices. We define the magnetic charge at
a vertex as −1, when two south poles and a north pole, of the
three nanomagnets that form the vertex, converge. Equally, we
define the magnetic charge as +1, when two north poles and a
south pole converge in the vertex considered. Fig. 3 shows the array
with an applied magnetic field. The upper left of Fig. 3 shows the
array subjected to a field in the direction of the negative axis x.
In the lower left of the figure the field is shown directed to the
right. The nanomagnets with the x component of the magnetic
moment directed to the left are represented by gray bars, and the
nanomagnets with the x component from the magnetic moment
directed to the right are represented by black bars. When the
sample is totally magnetized in directions +x or −x, all the type
A vertices have +1 or −1 charges, while all the B vertices have −1
or +1 charges. This can be seen in Fig. 3.

We suppose that we are under the condition of total magne-
tization, with the magnetic field directed to the left (upper left
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Fig. 1. (a) Square network with n = 4. The figure shows one of the four possible interactions that are updated (with the double blue arrow). We can see in the figure that
for a yellow node the interaction is with a node to its right, while for a red node the interaction is to its left. (b) Hexagonal network with n = 3. The figure shows one of
the possible interactions that is updated (with a double green arrow). (c) One-dimensional network with n = 3. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
Fig. 2. (a) Scheme of the nanomagnet array. (b) Frustration in the hexagonal network.
Fig. 3. Scheme of the nanomagnet array when the sample is totally saturated by the influence of an external magnetic field.
of Fig. 3). Under this condition, we define a positive and mobile
monopole, if a nanomagnet converging in a class A vertex inverts
its magnetic moment. The charge of vertex A goes from qA =

−1 → q∗

A = +1 =⇒ 1qA = +2. If this is produced in a
B type vertex, we define a negative monopole and would have
qB = +1 → q∗

B = −1 =⇒ 1qB = −2, where q∗

A and q∗

B rep-
resent the charges of the vertex after the inversion and qA and qB
represent the charges of the vertices A and B, respectively, in the
their initial states. In this manner, when a nanomagnet inverts its
magnetic moment, there emerges amonopole–antimonopole pair.
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Fig. 4. (a) Scheme of the FCA cells. (b) Scheme of replacing the magnetic moments
by the magnetic charge model.

Fig. 5. Scheme of the configuration of charges in each vertex and of the length
parameters.

If the three nanomagnets that converge in a vertex invert theirmo-
ments, the condition 1qA = +2 and 1qB = −2 is also generated,
but in this case the monopoles remain trapped and do not move
through the sample.

The magnetic charge model
The moment −→m of each nanoisland in this model is replaced by

two charges (one positive and the other negative), located at the
ends of the nanomagnet, as shown in Fig. 4(b). The magnitude of
each charge is q =

m
l , where l is the length of the bar. The total

charge in each vertex is the sum of the three charges associated
with the vertex. Vertex j gives Qj =


kϵj qk and the total energy of

the system is given by the expression

U =


1
2

µ0

4π


i,j

QiQj

rij
, i ≠ j

fi, i = j.
(2)

The term for i ≠ j takes into account the interaction among
the vertices of the array. The term i = j considers the energy of
the site. This term considers the interaction among the ends of the
three nanomagnets that converge. Fig. 5 shows a scheme of the
configuration of charges in each vertex and the parameters of the
associated length.

The energy in each vertex is given by the expression

fi =
µ0

4π

q1q2
d

+
q1q3
d

+
q2q3
d


. (3)

In accordance with the parameters of the hexagonal lattice,
d =

√
3
2 (a − l). Defining q0 =

m
l and writing the energy in units of

µ0q20
4πa , the total energy can be written as

U =


1
2


i,j

QiQj

rij
, i ≠ j

2
√
3ε

{q1q2 + q1q3 + q2q3} , i = j.
(4)
Here ε = 1−
l
a . When the automaton is updated, the change in

total energy is registered (using Eq. (4)), that is, under themagnetic
charge model. The interaction of the charges with the applied
magnetic field and the anisotropy energy are added to the total
energy.

Reversal of the magnetization for a sample with very few impurities
(system 1)

The system studied (system 1) is composed of 4600 nanomag-
nets, arranged in a region of 40 µm × 40 µm. The lattice constant
has a value of 577 nm and the length of the nanoislands is 470 nm.
The anisotropy energy is 56× 104 K. The simulation contemplates
a completely magnetized nanoisland array with the magnetic mo-
ment directed to the left. A magnetic field is applied to reverse
the magnetization. The lower part of Fig. 6 shows the magnetic
average polarization per nanoisland, the total density of magnetic
monopoles (includingmobile and non-mobile monopoles) and the
density of the mobile monopoles (in units of total maximum den-
sity of the monopole σmax), as a function of the applied magnetic
field (in oersteds), in the first phase of magnetic reversal. This sys-
tem has 5% of the nanomagnets with the magnitude at the mag-
netic moment mi in the range 0.99 m ≤ mi ≤ m, where m is the
moment when 95% of the nanoislands remain.

These results show thatmagnetic reversal begins at the extreme
left and right of the sample. North–south monopole pairs are
generated in these extremes, but only one of them is mobile, while
the other remains trapped in the end and does not contribute
to the mobile density. Fig. 6 (upper part) shows a scheme for
different field values in the magnetic reversal of this system. It can
be seen clearly in Fig. 6 that the northern monopoles (red circles)
are moving to the right and the southern monopoles (blue circles)
are moving to the left in response to the applied magnetic field.
Also, the Dirac string associated with the magnetic monopoles
can be clearly seen. When the northern and southern fronts meet
they are annihilated as the Dirac strings are joined. Only trapped
monopoles (and not mobile monopoles) participate in the final
reversal process. This behavior can be seen from analysis of Fig. 6
(lower part). Considering the graph of the density of the mobile
monopoles of Fig. 6, we can appreciate that the maximum density
of the mobile monopoles occurs at a magnetic field close to the
coercivity value (127 Oe) and the total density presents a small
plateau near to this value.

Magnetization reversal for a sample with impurities (system 2)
System 2 has all the parameters of system 1, but with 10% of the

nanomagnets with the magnitude at the magnetic moment mi in
the range 0.9m ≤ mi ≤ m, wherem is themomentwhen90%of the
nanoislands remain. The procedure for reversing magnetization is
the same as that used for the previous system. The study of the
magnetic average polarization per nanoisland and of themonopole
densities is shown in Fig. 7. In contrast to the case for the study of
system1, the results of this simulation are in qualitative agreement
with the experimental results of the study by Mengotti et al. [8].
The maximum density value of the emergent monopoles is close
to 10%, which corresponds to the data reported in the study [8].
Themagnetic polarization curvepresents the same structure as the
experimental data. However, the experimental system ofMengotti
et al. studied a central region of the sample (without considering
the edges in the statistics); the results are similar to those of our
study (which considers the edges in the statistics). Consequently,
we can conclude that there is little disorder in the experimental
sample.

Fig. 7 (upper part) shows part of themagnetic reversal sequence
for system 2. We can appreciate that owing to impurities the
monopoles emerge randomly in the nanoisland array and not just
at the ends, as in the first case. The emergent monopoles, which
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Fig. 6. Scheme of the four steps of the magnetic reversal simulation of system 1 using the FCA (upper part of the figure). The lower part of the figure shows the magnetic
average polarization per nanoisland, the total density of magnetic monopoles (including mobile and non-mobile monopoles) and the density of the mobile monopoles (in
units of the total maximum density of the monopole σmax), as a function of the applied magnetic field (in oersteds), in the first phase of magnetic reversal.
come from impurities and are generated in the central part of
the nanomagnet arrays, move toward the ends, thus extending
the Dirac string. This behavior is also well documented in the
experimental results [8]. Considering graph of the density of
the mobile monopoles of the Fig. 7, we can appreciate that the
maximum density of the mobile monopoles occurs at a magnetic
field close to the coercivity value (123 Oe) and the total density
presents a small plateau near to this value.

Magnetic reversal in a square lattice

We now examine the behavior of the FCA model in the reversal
of the lattice square of nanomagnets. This lattice is shown in
Fig. 1(a). The frustration happens due to the fact that the four
nanoislands that they converge to on a vertex cannot minimize its
total energy. The system studied is a square of 2320 nanoislands
with a surface area of 22 µm × 22 µm. The lattice constant is
570nmand the length of the nanoislands is 470nm. The anisotropy
energy is on the order of 104 K. The sample contains 1% of
impurities randomly located, with a similar value to that described
for the hexagonal network. The initial configuration of this system
is 100% magnetized in the direction 45◦ of the axis x. This implies
that all the nanoislands in a horizontal direction have rightward
magnetic moments, while all the vertically directed nanoislands
have upward magnetic moments. We apply a magnetic field in
the direction of the diagonal (45◦) in the following manner:

−→
H =

−Hx î−Hy ĵ, in the which the components of the field increase over
time. The FCA algorithmoperateswith a similar updating sequence
for each time stage. The sequence (n → w → s → e) updates the
connections, advancing counterclockwise. Fig. 8 (left) shows the
change in magnetization as the applied magnetic field increases.
The right part of the figures shows the density of emergent
monopoles. The monopoles emerge when a nanoisland is inverted
in a vertex. This implies that the sum of the electrical charges for
this vertex is +2 (positive monopole) or −2 (negative monopole).
Analysis of Fig. 8 shows that the magnetic reversal occurs with the
appearance of these monopoles and the associated Dirac strings.

Fig. 9 shows some stages in the magnetic reversal for this
system. We can note that in the first phase of the reversal, the
monopoles occur at the four ends and that although the sample
has impurities, there are no events in the center of the sample.
In the first phase of the magnetic reversal, the Dirac strings move
diagonally and are separated by a lattice site. When the reversal
of these strings is completed, chains begin to form in free sites,
giving rise to the secondmaximum in the density curve. This could
explain the two peaks that can be observed in Fig. 8. In this case,
the maximum density of mobile monopoles is between 2% and 3%
of the maximummonopole density.

Propagation of binary information through a molecular array

We tested the FCA model with a problem of a one-dimensional
molecular array. A recent theoretical work [18] studied the
dynamics of a molecular array with a graphane structure [19,
20]. The aim of the work was to demonstrate that there is a
set of geometric parameters that allow for transmitting binary
information through a molecular cable. These molecules present
two oxido-reduction centers (quantum dots) and when the
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Fig. 7. Scheme of the four steps of the magnetic reversal simulation of system 2 using the FCA (upper part of the figure). The lower part of the figure shows the magnetic
average polarization per nanoisland, the total density of magnetic monopoles (including mobile and non-mobile monopoles) and the density of the mobile monopoles (in
units of total maximum density of the monopole σmax), as a function of the applied magnetic field (in oersteds), in the first phase of magnetic reversal.
Fig. 8. The left part of the figure shows the average magnetization per nanoisland as a function of the applied magnetic field. The right part shows the density of monopoles
(positive and negative) as a percentage of the density per site.
molecule is a cation, it presents a hole with a positive charge
that can move between these quantum dots. The position of this
charge excitation generates electrical polarization in themolecule.
Depending on the position of the charge, the logic states 1 and 2 can
be defined. Fig. 10 shows a scheme of the graphane type molecule
and the proposed molecular array.

In the work with these structures [18], the distances that
minimize the energy were studied and the value of the tunnel-
ing energy between quantum points was determined, all using
first-principles calculations. The dynamic response of the molec-
ular cable was studied with a model based on the Hubbard Hamil-
tonian. In this work we used the FCA model to determine the
dynamic response of a cable formed by five molecules. The details
of the units and parameters used are outlined in the work [18].
The polarization of the firstmolecule ismanipulated externally and
the changes in the polarization of the remaining four molecules
are studied. The frustration in this array occurs because of an anti-
ferromagnetic type of ordering occurring in order to minimize the
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Fig. 9. Different steps of magnetic reversal of the lattice square studied. The gray squares indicate that the moments of the horizontal nanoislands are directed to the right
and those of the vertical nanoislands are directed upward. The dark squares indicate the opposite directions in both cases. The red circles indicate positive monopoles. The
blue circles represent negative monopoles. The yellow circles represent vertices with q = 0. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
Fig. 10. (a) Scheme of the graphane type molecules. The large gray circles represent carbon atoms. The small circles represent hydrogen atoms. Also, part (a) represents the
isosurface for the minimum energy state HOMO (with the charge at one of the quantum points). (b) The scheme of the logic states defined in the molecular cation and of an
array of these molecules that define a molecular cable.
energy, during the reversal of the driver molecule. Therefore, we
must actualize our automaton in two steps. The quantum com-
ponent of the system is incorporated in the FCA algorithm with
tunneling energy. Figs. 11 and 12 show the dynamics in the po-
larization of the five-molecule cable. In the first case (Fig. 11) an
array of small molecules is studied. The distance between the
quantum points is 6.6 Å and the tunneling energy is 1329 eV. The
molecules are separated by a distance of 7.5 Å. The distances and
the electrostatic energies involved imply that the thermal fluc-
tuations are negligible. The second case, represented in Fig. 12,
considers molecules where the distance between quantum points
is 15.2 Å and the tunneling energy is 0.254 eV. We can appreci-
ate that in the results for the first case, the first molecule does not
succeed in polarizing the cable and the remaining four molecules
remain in a state of permanent oscillation. In contrast, in the
second case, the molecules change their polarization state in re-
sponse to excitation. These results are in close agreement with
the results shown for the same systems using the time-dependent
Schrödinger equation [18]. This result is very important given that
in studying more sophisticated systems, such as logic gates and



2096 A. León / Computer Physics Communications 183 (2012) 2089–2097
1.0

0.5

0.0

-0.5

-1.0

1.0

0.5

0.0

-0.5

-1.0

1.0

0.5

0.0

-0.5

-1.0

1.0

0.5

0.0

-0.5

-1.0

1.0

0.5

0.0

-0.5

-1.0

0 10 20

Time
30 40 50

Time
0 10 20 30 40 50

Time
0 10 20 30 40 50

Time
0 10 20 30 40 50

Time
0 10 20 30 40 50

Fig. 11. Electrical polarization (in atomic units) of each molecule that forms the molecular cable for the small system explained in the text.
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Fig. 12. Electrical polarization (in atomic units) of each molecule that forms the molecular cable for the large system explained in the text.
circuits, the Hamiltonian formalism of Hubbard cannot be applied
to study the dynamic response.

Conclusion

This work presents a semi-deterministic model used to
study frustrated systems. It is specifically designed for magnetic
nanoisland arrays and charged molecules, but can be applied
to any problem where there is frustration and where thermal
fluctuations are negligible. The great advantage of themodel is that
it can make efficient simulations of highly complex phenomena
in real time with a minimum of computational requirements.
All the simulations shown in this paper were carried out using
in a personal desktop computer [21]. They represent a perfect
complement to the methods based on Monte Carlo algorithms for
studying the elemental physics of problemswith quantumentities.
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