Regular self-proximal distances are Bregman

Felipe Alvarez*, Rafael Correa ${ }^{\dagger} \&$ Matthieu Marćhal ${ }^{\ddagger}$

Abstract

Bregman distances play a key role in generalized versions of the proximal algorithm. This paper proposes a new characterization of Bregman distances in terms of their gradient and Hessian matrix. Thanks to this characterization, we obtain two results: all the so called self-proximal distances are Bregman, and all the induced proximal distances, under some regularity assumptions, are Bregman functions.

1 Introduction

Given an open convex $C \subset \mathbb{R}^{n}$, we consider the optimization problem

$$
\begin{equation*}
f_{*}=\inf _{x \in \bar{C}} f(x), \tag{1}
\end{equation*}
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ is a proper, closed and convex function, and \bar{C} stands for the closure of C in \mathbb{R}^{n}. Auslender and Teboulle in 2006 [2] developed a complete study of the convergence of the Interior Proximal Algorithm (IPA), which consists of generating a sequence $\left(x^{k}\right)_{k}$ satisfying, for all $k \in \mathbb{N}$,

$$
\begin{equation*}
x^{k+1} \in \operatorname{Argmin}\left\{\lambda_{k} f(x)+d\left(x, x^{k}\right) \mid x \in \bar{C}\right\}, \quad k=0,1,2, \ldots, \tag{2}
\end{equation*}
$$

Here, $\left(\lambda_{k}\right)_{k}$ is a sequence of positive reals and $d: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}_{+} \cup$ $\{+\infty\}$, with $\mathbb{R}_{+}:=[0,+\infty)$, is a distance-like function which is called

[^0]a proximal distance with respect to C. The proximal distance d is required to have good properties, which force the iterates to stay in C, the interior of the feasible set given by \bar{C} (cf. [2, Definition 2.1] and Definition 2.1 below).

The convergence analysis of this algorithm relies on the existence of an induced proximal distance, that is a function H satisfying

$$
\begin{equation*}
\forall a, b, c \in C,\left\langle c-b, \nabla_{1} d(b, a)\right\rangle \leq H(c, a)-H(c, b) \tag{3}
\end{equation*}
$$

where ∇_{1} stands for the gradient with respect to the first variable of $d(\cdot, \cdot)$. An important class of proximal distances is the family of Bregman distances $[3,4,5,6,9,10]$. The Bregman distances are selfproximal, that is, the previous inequality holds with $H=d$. Another popular class of proximal distances are the φ-divergence distances, and their regularized versions $[1,6,7,8]$.

Our work is motivated by the observation that in the literature, the only known self-proximal distances are Bregman distances. Therefore we investigated whether all the self-proximal distances are Bregman. To this end, we obtained a new characterization of the Bregman distances.

The paper is organized as follows. In section 2 we recall the definition of proximal distance and motivate the notions of induced proximal and self-proximal distances. Then we obtain that under assumptions of regularity, the induced proximal distance is uniquely determined by the proximal distance. Section 3 is devoted to Bregman distances; we obtain a characterization of these distances, and deduce that all self-proximal distances are Bregman. Moreover, under an assumption of suitable regularity, we prove that all the induced distances are Bregman.

2 Induced proximal distances

Given a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ we define the (effective) domain of f by $\operatorname{dom} f:=\left\{x \in \mathbb{R}^{n} \mid f(x)<+\infty\right\}$. We say that f is proper if $\operatorname{dom} f \neq \emptyset$, and f is lower semi continuous (lsc) on \mathbb{R}^{n} if for all $\lambda \in \mathbb{R}$ the set $S_{\lambda}=\left\{x \in \mathbb{R}^{n} \mid f(x) \leq \lambda\right\}$ is closed. Given $\epsilon \geq 0$, an ϵ-subgradient of f at $x \in \operatorname{dom} f$ is an element $x^{*} \in \mathbb{R}^{n}$ verifying

$$
f\left(x^{\prime}\right)+\epsilon \geq f(x)+\left\langle x^{*}, x^{\prime}-x\right\rangle, \quad \forall x^{\prime} \in \mathbb{R}^{n}
$$

where $\langle\cdot, \cdot\rangle$ stands for the classical inner product of \mathbb{R}^{n}. The set of all ϵ-subgradients of f at x is the ϵ-subdifferential of f at x, it is denoted by $\partial_{\epsilon} f(x)$, with the convention that $\partial_{\epsilon} f(x)=\emptyset$ when $x \notin \operatorname{dom} f$. When $\epsilon=0$, we simply write $\partial f(x)$.

Definition 2.1 [2, Definition 2.1] A function $d: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}_{+} \cup$ $\{+\infty\}$ is called a proximal distance with respect to an open nonempty convex set $C \subset \mathbb{R}^{n}$ if for each $y \in C$ it satisfies the following properties:
$\left(P_{1}\right) d(\cdot, y)$ is proper, lsc, convex on \mathbb{R}^{n} and C^{1} on C;
$\left(P_{2}\right) \operatorname{dom} d(\cdot, y) \subset \bar{C}$ and $\operatorname{dom} \partial d(\cdot, y) \subset C$.
$\left(P_{3}\right) d(\cdot, y)$ is level bounded in \mathbb{R}^{n}, i.e., $\lim _{\|u\| \rightarrow \infty} d(u, y)=+\infty$;
$\left(P_{4}\right) d(y, y)=0$.
We denote by $\mathcal{D}(C)$ the set of functions d satisfying these properties.
As we mentioned in the introduction, the IPA solves (1) by generating a sequence $\left(x^{k}\right)_{k}$ according to the iterative scheme (2), where $d \in$ $\mathcal{D}(C)$. Due to $\left(P_{2}\right)$, under suitable assumptions on f and C, the iterates generated by (2) stay in C, the interior of the constraints set \bar{C}, as the following proposition shows.

Proposition 2.1 [2, Proposition 2.1] Suppose that $f_{*}>-\infty$ and $\operatorname{dom} f \cap C \neq \emptyset$, with f_{*} defined by (1). Let $d \in \mathcal{D}(C)$, and for all $v \in C$ consider the optimization problem
$(P(v)) \quad f_{*}(v)=\inf _{u \in \bar{C}} f(u)+d(u, v)$.
Then the optimal set of $P(v)$ is nonempty and compact. For each $\epsilon \geq 0$ there exist $u(v) \in C, g \in \partial_{\epsilon} f(u(v))$ such that $g+\nabla_{1} d(u(v), v)=0$. For such $u(v) \in C$, we have $f(u(v))+d(u(v), v) \leq f_{*}(v)+\epsilon$.

We now turn to the definition of the induced proximal distance.
Definition 2.2 We say that a function $H: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}_{+} \cup\{+\infty\}$ is an induced proximal distance to $d \in \mathcal{D}(C)$ if it satisfies the following properties:

1. H is finite-valued on $C \times C$.
2. $\forall a \in C, H(a, a)=0$
3. $\forall a, b, c \in C,\left\langle c-b, \nabla_{1} d(b, a)\right\rangle \leq H(c, a)-H(c, b)$.

We denote by $\mathcal{F}(C)$ the set of all pairs (d, H) with $d \in \mathcal{D}(C)$ and H an induced proximal distance to d.

We say that d is self-proximal when $(d, d) \in \mathcal{F}(C)$, that is when

$$
\begin{equation*}
\forall a, b, c \in C, \quad\left\langle c-b, \nabla_{1} d(b, a)\right\rangle \leq d(c, a)-d(c, b) \tag{4}
\end{equation*}
$$

Let us motivate the introduction of the induced proximal distance H for the analysis of IPA. Let x^{k+1} be generated by the iterative scheme given by (2). By Proposition 2.1, there exists $g^{k+1} \in \partial f\left(x^{k+1}\right)$ such that $\lambda_{k} g^{k+1}+\nabla_{1} d\left(x^{k+1}, x^{k}\right)=0$. If $(d, H) \in \mathcal{F}(C)$, we get

$$
\begin{aligned}
\lambda_{k}\left(f\left(x^{k+1}\right)-f(x)\right) & \leq\left\langle-\lambda_{k} g^{k+1}, x-x^{k+1}\right\rangle \\
& =\left\langle\nabla_{1} d\left(x^{k+1}, x^{k}\right), x-x^{k+1}\right\rangle \\
& \leq H\left(x, x^{k}\right)-H\left(x, x^{k+1}\right),
\end{aligned}
$$

for all $x \in C$. Next, suppose that the inequality can be extended to every $x \in \bar{C}$. Set $S:=\operatorname{Argmin}_{\bar{C}} f$, which is supposed to be nonempty, and take any $x^{*} \in S$. Then $\lambda_{k}\left(f\left(x^{k+1}\right)-f\left(x^{*}\right)\right) \leq H\left(x^{*}, x^{k}\right)-$ $H\left(x^{*}, x^{k+1}\right)$. Since $f\left(x^{k+1}\right) \geq f^{*}=f\left(x^{*}\right)$, we deduce that

$$
H\left(x^{*}, x^{k+1}\right) \leq H\left(x^{*}, x^{k}\right), \quad \forall x^{*} \in S .
$$

Thus the sequence $\left(x^{k}\right)_{k}$ is H-Fejer monotone with respect to the optimal set S. This is a key property for the asymptotic convergence of $\left(x^{k}\right)_{k}$ towards an optimal solution of (1). See [2] for all details.

The previous argument motivates the introduction of the set of pairs $\mathcal{F}(\bar{C})$ defined as follows: a pair (d, H) belongs to $\mathcal{F}(\bar{C})$ if $(d, H) \in$ $\mathcal{F}(C)$ and satisfies the following properties:

1. H is finite-valued on $\bar{C} \times C$.
2. $\forall a, b \in C, \forall c \in \bar{C},\left\langle c-b, \nabla_{1} d(b, a)\right\rangle \leq H(c, a)-H(c, b)$.
3. $\forall c \in \bar{C}$, the function $H(c, \cdot)$ is level-bounded on \mathbb{R}^{n}, i.e. for all $\lambda \in \mathbb{R}$, the set $\left\{y \in \mathbb{R}^{n} \mid H(c, y) \leq \lambda\right\}$ is bounded.
Our first result is the uniqueness of the induced proximal distance satisfying nice regularity assumptions.

Theorem 2.1 Let $(d, H) \in \mathcal{F}(C)$. Suppose that for every $x \in C$, $H(x, \cdot)$ is C^{1} on C. Then:
(a) If for each $y \in C, d(\cdot, y)$ is C^{2} on C, then

1. $\forall x, y \in C, \nabla_{2} H(x, y)=-\nabla_{1,1}^{2} d(y, y)(x-y)$,
2. $H(x, y)=\int_{0}^{1} t\left\langle\nabla_{1,1}^{2} d\left(z_{t}, z_{t}\right)(y-x), y-x\right\rangle d t$,
where $z_{t}=x+t(y-x)$.
(b) If for each $x \in C, \nabla_{1} d(x, \cdot)$ is C^{1} on C, then
3. $\forall x, y \in C, \nabla_{2} H(x, y)=\nabla_{1,2}^{2} d(y, y)(x-y)$,
4. $H(x, y)=-\int_{0}^{1} t\left\langle\nabla_{1,2}^{2} d\left(z_{t}, z_{t}\right)(y-x), y-x\right\rangle d t$,

$$
\text { where } z_{t}=x+t(y-x)
$$

Thus, under any of the above assumptions on d, there exists a unique induced proximal distance H to d such that for all $x \in C, H(x, \cdot)$ is C^{1} on C.

Proof. We prove (a). We suppose that for all $y \in C, d(\cdot, y)$ is C^{2} on C and for all $x \in C, H(x, \cdot)$ is C^{1} on C. Let $x, y \in C$, and define $\Phi: C \rightarrow \mathbb{R}$ by $\Phi(z):=H(x, y)-H(x, z)-\left\langle x-z, \nabla_{1} d(z, y)\right\rangle$. Since H is an induced proximal distance to d, for all $z \in C$, we have $\Phi(z) \geq 0$. Since $d(\cdot, y) \geq 0$ on C and $d(y, y)=0$, we have $\nabla_{1} d(y, y)=0$. This yields $\Phi(y)=0$, then y minimizes Φ on C. We deduce that $\nabla \Phi(y)=0$ (because C is an open set), and computing this gradient, we have, for all $x, y \in C, \nabla_{2} H(x, y)=-\nabla_{1,1}^{2} d(y, y)(x-y)$. Let $x, y \in C$. Since $H(x, x)=0$, we have:

$$
\begin{aligned}
H(x, y) & =\int_{0}^{1}\left\langle\nabla_{2} H(x, x+t(y-x)), y-x\right\rangle d t \\
& =-\int_{0}^{1}\left\langle\nabla_{1,1}^{2} d\left(z_{t}, z_{t}\right)\left(x-z_{t}\right), y-x\right\rangle d t \\
& \left.=\int_{0}^{1} t\left\langle\nabla_{1,1}^{2} d\left(z_{t}, z_{t}\right)\right)(y-x), y-x\right\rangle d t
\end{aligned}
$$

where $z_{t}=x+t(y-x)$. Therefore H is uniquely determined by d, so there exists a unique proximal distance H to d such that for all $x \in C$, $H(x, \cdot)$ is C^{1} on C. We have thus proven items 1. and 2 .; items 3 . and 4. are obtained by similar arguments.

As a direct consequence of Theorem 2.1, we get the following necessary conditions on the proximal distance d to have that the corresponding induced proximal distance is given by the Euclidean norm, an interesting special case for practical computations.

Corollary 2.1 Let $d \in \mathcal{D}(C)$ be a proximal distance such that there exists a real $\eta>0$ satisfying $\left(d,(x, y) \rightarrow \eta\|y-x\|^{2}\right) \in \mathcal{F}(C)$, that is

$$
\begin{equation*}
\forall a, b, c \in C,\left\langle c-b, \nabla_{1} d(b, a)\right\rangle \leq \eta\left(\|c-a\|^{2}-\|c-b\|^{2}\right) . \tag{5}
\end{equation*}
$$

The following assertions hold:
(a) if for all $y \in C, d(\cdot, y)$ is C^{2} on C, then $\nabla_{1,1}^{2} d(y, y)=2 \eta I$,
(b) if for all $x \in C, \nabla_{1} d(x, \cdot)$ is C^{1} on C, then $\nabla_{1,2}^{2} d(y, y)=-2 \eta I$.

The notation I stands for the identity matrix on \mathbb{R}^{n}.

3 Bregman distances

Let us recall the definition of Bregman distance.
Definition 3.1 Let $h: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ be proper, lsc and convex on \mathbb{R}^{n}, with dom $h \subset \bar{C}$ and dom $\nabla h=C$. Suppose that h is strictly convex and continuous on dom h, and C^{1} on int $(\operatorname{dom} h)=C$. Set

$$
\begin{align*}
D_{h}(x, y) & :=h(x)-h(y)-\langle\nabla h(y), x-y\rangle, x \in \mathbb{R}^{n}, y \in C \\
& :=+\infty \text { otherwise. } \tag{6}
\end{align*}
$$

The function D_{h} is the Bregman distance with kernel h.
It is easy to see that if the kernel h is level bounded, then the corresponding D_{h} is a proximal distance in the sense of Definition 2.1.

Remark 3.1 Every Bregman distance D_{h} satisfies the following property, which is referred to as the three point identity (see [5]): $\forall a, b \in$ $C, \forall c \in \operatorname{dom} h$

$$
\begin{equation*}
D_{h}(c, a)=D_{h}(c, b)+D_{h}(b, a)+\left\langle\nabla_{1} D_{h}(b, a), c-b\right\rangle . \tag{7}
\end{equation*}
$$

It is straightforward that (7) implies (4) with $d=D_{h}$, so that every Bregman distance is self-proximal. We will show that under fairly general conditions, self-proximal distances are indeed Bregman distances. To this end, we introduce new characterizations of Bregman functions.

Remark 3.2 When h is C^{2} on C, then $\nabla_{1,1}^{2} D_{h}(x, y)=\nabla^{2} h(x)$ and $\nabla_{2} D_{h}(x, y)=-\nabla^{2} h(y)(x-y)$, therefore D_{h} enjoys the following property:

$$
\begin{equation*}
\forall x, y \in C, \nabla_{2} D_{h}(x, y)=-\nabla_{1,1}^{2} D_{h}(y, y)(x-y) \tag{8}
\end{equation*}
$$

Thus (8) is a necessary condition for a proximal distance to be Bregman. An interesting question is to know whether this is also sufficient for a proximal distance to be a Bregman distance.

Remark 3.3 If $d=D_{h}$ is a Bregman distance, and $\tilde{h}: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup$ $\{+\infty\}$ is a convex function, then $D_{h}=D_{\tilde{h}}$ if and only if $\operatorname{dom} h=$ dom \tilde{h} and $h-\tilde{h}$ is an affine function on dom h. Therefore, we can easily establish that for all arbitrary $y_{0} \in C$, the function $\tilde{h}(x):=$ $d\left(x, y_{0}\right)$ verifies the following properties: $\operatorname{dom} \tilde{h}=\operatorname{dom} h$ and $h-\tilde{h}$ is an affine function on dom h. Thus we have $d=D_{d\left(\cdot, y_{0}\right)}$. Moreover, h is strictly convex if and only if there exists an element $y \in C$ such that $d(\cdot, y)$ is strictly convex.

Since the three point identity (7) is stronger than inequality (4), we first verify that every proximal distance satisfying the three point identity is indeed Bregman.

Proposition 3.1 Let $d \in \mathcal{D}(C)$ be a proximal distance satisfying the three point identity, that is,

$$
\begin{equation*}
\forall a, b \in C, \forall c \in \mathbb{R}^{n}, \quad d(c, a)=d(c, b)+d(b, a)+\left\langle c-b, \nabla_{1} d(b, a)\right\rangle \tag{9}
\end{equation*}
$$

Then there exists a function $h: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ lsc, proper and convex on \mathbb{R}^{n}, C^{1} on C, with dom $\nabla h=C, C \subset \operatorname{dom} h \subset \bar{C}$ and for all $(x, y) \in \mathbb{R}^{n} \times C, d(x, y)=D_{h}(x, y)$.

Proof. Let $y_{0} \in C$ and $h: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ be defined by $h(x):=$ $d\left(x, y_{0}\right)$. Since d is a proximal distance, the function h is lsc, proper and convex on \mathbb{R}^{n}, C^{1} on C with dom $\nabla h=C$ and $C \subset \operatorname{dom} h \subset \bar{C}$. Let $x \in \mathbb{R}^{n}$ and $y \in C$. Applying the equality (9), we obtain

$$
d\left(x, y_{0}\right)=d(x, y)+d\left(y, y_{0}\right)+\left\langle x-y, \nabla_{1} d\left(y, y_{0}\right)\right\rangle
$$

which implies that

$$
h(x)=d(x, y)+h(y)+\langle x-y, \nabla h(y)\rangle .
$$

Therefore, for all $x \in \mathbb{R}^{n}$ and $y \in C$, we have $d(x, y)=D_{h}(x, y)$.
The following theorem gives us a necessary and sufficient condition for a function defined on $C \times C$ to be written as a Bregman distance.

Theorem 3.1 Let a function $F: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}_{+} \cup\{+\infty\}$ be such that $C \times C \subset$ dom F and for all $x \in C, F(x, x)=0$. We suppose that F is C^{1} on $C \times C$, and for all $y \in C, F(\cdot, y)$ is C^{2} on C. Then there exists a function $h: C \rightarrow \mathbb{R}$ convex and C^{2} on C, satisfying

$$
\begin{align*}
\forall x, y \in C, \quad F(x, y) & =h(x)-[h(y)+\langle\nabla h(y), x-y\rangle] \\
& =D_{h}(x, y) \tag{10}
\end{align*}
$$

if and only if

$$
\begin{equation*}
\forall x, y \in C, \nabla_{2} F(x, y)=-\nabla_{1,1}^{2} F(y, y)(x-y) \tag{11}
\end{equation*}
$$

and in this case, for any $y_{0} \in C$, the function $h: C \rightarrow \mathbb{R}$ defined by $h(x)=F\left(x, y_{0}\right)$ satisfies the equality (10).
Additionally, if for all $y \in C, F(\cdot, y)$ is finite-valued and continuous on \bar{C}, then any C^{1} function $h: C \rightarrow \mathbb{R}$ satisfying the equality (10) can be extended in a continuous function \bar{h} on \bar{C}, so that the equality (10) holds with \bar{h} for all $(x, y) \in \bar{C} \times C$.

Remark 3.4 The equality (10) mixed with the convexity of h on C tells us that $F(\cdot, y)$ must be convex for all $y \in C$, so the above theorem shows us that the first assumptions about F (namely $F(\cdot, \cdot) \geq 0$ on $C \times C$ and $F(x, x)=0$ for all $x \in C$) mixed with the assumption (11) imply that $F(\cdot, y)$ is convex on C for all $y \in C$.

Remark 3.5 The second part of the theorem shows that if for all $y \in C$, the function $F(\cdot, y)$ is finite-valued and continuous on \bar{C}, then (11) implies the equality $F=D_{\bar{h}}$ on $\bar{C} \times C$ with \bar{h} a function which is C^{1} on C and continuous on \bar{C}. That implies the continuity of F on $\bar{C} \times C$.

Proof of Theorem 3.1. From (8), equality (10) implies equality (11).
We now prove the converse, more precisely we prove that equality (11) implies that $F=D_{F\left(\cdot, y_{0}\right)}$ on $C \times C$ for any arbitrary $y_{0} \in C$. We suppose that (11) holds. Let $y_{1}, y_{2} \in C$. We show that the function $F\left(\cdot, y_{2}\right)-F\left(\cdot, y_{1}\right)$ is an affine function on $C: \forall x \in C$,

$$
\begin{align*}
F\left(x, y_{2}\right)-F\left(x, y_{1}\right) & =\int_{0}^{1}\left\langle\nabla_{2} F\left(x, y_{1}+t\left(y_{2}-y_{1}\right)\right), y_{2}-y_{1}\right\rangle d t \\
& =-\int_{0}^{1}\left\langle\nabla_{1,1}^{2} F\left(y_{t}, y_{t}\right)\left(x-y_{t}\right), y_{2}-y_{1}\right\rangle d t \text { by (11) } \\
& =-\int_{0}^{1}\left\langle x-y_{t}, \nabla_{1,1}^{2} F\left(y_{t}, y_{t}\right)\left(y_{2}-y_{1}\right)\right\rangle d t, \tag{12}
\end{align*}
$$

because the Hessian matrix $\nabla_{1,1}^{2} F\left(y_{t}, y_{t}\right)$ is a symmetric matrix with $y_{t}:=y_{1}+t\left(y_{2}-y_{1}\right)$. The last expression is an affine function with respect to x, therefore, since the Hessian matrix of an affine function is equal to zero, we deduce that

$$
\begin{equation*}
\forall x, y_{1}, y_{2} \in C, \nabla_{1,1}^{2} F\left(x, y_{1}\right)=\nabla_{1,1}^{2} F\left(x, y_{2}\right) . \tag{13}
\end{equation*}
$$

We choose an element $y_{0} \in C$ and define $h: C \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
\forall x \in C, h(x):=F\left(x, y_{0}\right) . \tag{14}
\end{equation*}
$$

By assumption, h is C^{2} on C. We now define $H: C \times C \rightarrow \mathbb{R}$ by

$$
\begin{align*}
\forall x, y \in C \quad H(x, y) & :=h(x)-[h(y)+\langle\nabla h(y), x-y\rangle] \tag{15}\\
& =D_{h}(x, y) .
\end{align*}
$$

We will show that $F=H$ on $C \times C$. Actually, we will show that $\nabla F=\nabla H$ on $C \times C$. We first compute ∇H :

$$
\begin{equation*}
\nabla_{1} H(x, y)=\nabla h(x)-\nabla h(y), \quad \nabla_{2} H(x, y)=-\nabla^{2} h(y)(x-y) . \tag{16}
\end{equation*}
$$

We now compute $\nabla F(x, y)$. For $y \in C$ and $t \in[0,1]$, we set $y_{t}:=$ $y_{0}+t\left(y-y_{0}\right)$, and obtain

$$
\begin{aligned}
\forall x, y \in C, F(x, y) & =F\left(x, y_{0}\right)-\int_{0}^{1}\left\langle x-y_{t}, \nabla_{1,1}^{2} F\left(y_{t}, y_{t}\right)\left(y-y_{0}\right)\right\rangle d t \text { by } \\
& =h(x)-\int_{0}^{1}\left\langle x, \nabla_{1,1}^{2} F\left(y_{t}, y_{t}\right)\left(y-y_{0}\right)\right\rangle d t \\
& +\int_{0}^{1}\left\langle y_{t}, \nabla_{1,1}^{2} F\left(y_{t}, y_{t}\right)\left(y_{-} y_{0}\right)\right\rangle d t \\
& =h(x)-\left\langle x, \int_{0}^{1} \nabla_{1,1}^{2} F\left(y_{t}, y_{t}\right)\left(y-y_{0}\right) d t\right\rangle \\
& +\int_{0}^{1}\left\langle y_{t}, \nabla_{1,1}^{2} F\left(y_{t}, y_{t}\right)\left(y-y_{0}\right)\right\rangle d t
\end{aligned}
$$

with $\int_{0}^{1} \nabla_{1,1}^{2} F\left(y_{t}, y_{t}\right)\left(y-y_{0}\right) d t$ a vectorial integral, that is an integral component by component. Therefore we obtain:

$$
\begin{align*}
\forall x, y \in C, \nabla_{1} F(x, y) & =\nabla h(x)-\int_{0}^{1} \nabla_{1,1}^{2} F\left(y_{t}, y_{t}\right)\left(y-y_{0}\right) d t \\
& =\nabla h(x)-\int_{0}^{1} \nabla_{1,1}^{2} F\left(y_{t}, y_{0}\right)\left(y-y_{0}\right) d t \text { by } \tag{13}\\
& =\nabla h(x)-\left(\nabla_{1} F\left(y, y_{0}\right)-\nabla_{1} F\left(y_{0}, y_{0}\right)\right) \\
& =\nabla h(x)-\nabla h(y) \tag{17}
\end{align*}
$$

In the last line we use the equality $\nabla_{1} F\left(y_{0}, y_{0}\right)=0$ (this is due to $F\left(\cdot, y_{0}\right) \geq 0$ on C and $F\left(y_{0}, y_{0}\right)=0$, so y_{0} is a minimizer of $F\left(\cdot, y_{0}\right)$ on the open set C).

We now compute $\nabla_{2} F(x, y)$:

$$
\begin{align*}
\forall x, y \in C, \nabla_{2} F(x, y) & =-\nabla_{1,1}^{2} F(y, y)(x-y) \text { by }(11) \\
& =-\nabla_{1,1}^{2} F\left(y, y_{0}\right)(x-y) \text { by }(13) \tag{18}\\
& =-\nabla^{2} h(y)(x-y)
\end{align*}
$$

From the equalities (16), (17) and (18), we deduce that $\nabla F=\nabla H$ on $C \times C$, thus $F=H+c$ on $C \times C$, with c being a constant. Since $F(x, x)=H(x, x)=0$, for all $x \in C$, we deduce that $c=0$, then $F=H$ on $C \times C$. We conclude that for all $(x, y) \in C \times C$, $F(x, y)=h(x)-h(y)-\langle\nabla h(y), x-y\rangle$.

By the non-negativity of F, we have $h(x) \geq h(y)+\langle\nabla h(y), x-y\rangle$, for all $(x, y) \in C$, which implies the convexity of h on C.

We suppose that for all $y \in C, F(\cdot, y)$ is finite-valued and continuous on \bar{C}. Consider a C^{1} function $h: C \rightarrow \mathbb{R}$ such that $F=D_{h}$ on $C \times C$.

We choose an element $y_{1} \in C$ and define $\tilde{F}:=F\left(\cdot, y_{1}\right)$. By assumption \tilde{F} is finite-valued and continuous on \bar{C}. An easy computation gives:

$$
\begin{aligned}
\tilde{F}(x) & =F\left(x, y_{1}\right) \\
& =D_{h}\left(x, y_{1}\right) \\
& =h(x)-h\left(y_{1}\right)-\left\langle\nabla h\left(y_{1}\right), x-y_{1}\right\rangle .
\end{aligned}
$$

Therefore $\tilde{F}-h=-\left[h\left(y_{1}\right)+\left\langle\nabla h\left(y_{1}\right), \cdot-y_{1}\right\rangle\right]$ is an affine function on C, \tilde{F} is continuous on \bar{C}, so we deduce that h can be extended in a continuous function on \bar{C}. Denoting by \bar{h} its continuous extension on \bar{C}, we obtain that $D_{\bar{h}}$ is continuous on $\bar{C} \times C$.

Let $(x, y) \in \bar{C} \times C$. Since $F(\cdot, y)=D_{\bar{h}}(\cdot, y)$ on C and both functions are continuous on \bar{C}, we deduce that $F(\cdot, y)=D_{\bar{h}}(\cdot, y)$ on \bar{C}, thus $F(x, y)=D_{\bar{h}}(x, y)$.

From this theorem we deduce a characterization of Bregman distances.

Proposition 3.2 Let $d \in \mathcal{D}(C)$. We suppose that d is C^{1} on $C \times C$, and for all $y \in C, d(\cdot, y)$ is C^{2} on C. Then there exists a function $h: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ lsc, proper and convex on \mathbb{R}^{n}, C^{2} on C, with $\operatorname{dom} \nabla h=C, \operatorname{dom} h \subset \bar{C}$ and

$$
\begin{align*}
\forall x, y \in C \quad d(x, y) & =h(x)-[h(y)+\langle\nabla h(y), x-y\rangle] \tag{19}\\
& =D_{h}(x, y),
\end{align*}
$$

if and only if

$$
\begin{equation*}
\forall x, y \in C, \nabla_{2} d(x, y)=-\nabla_{1,1}^{2} d(y, y)(x-y) . \tag{20}
\end{equation*}
$$

In this case, if for all $y \in C, d(\cdot, y)$ is finite-valued and continuous on \bar{C}, then any function $h: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ lsc, proper and convex on \mathbb{R}^{n}, C^{1} on C, with dom $\nabla h=C$, dom $h \subset \bar{C}$ and $d=D_{h}$ on $C \times C$ satisfies the following items:

1. $\operatorname{dom} h=\bar{C}$ and h is continuous on \bar{C}.
2. $\forall x \in \mathbb{R}^{n}, \forall y \in C, d(x, y)=h(x)-h(y)-\langle\nabla h(y), x-y\rangle$.

Moreover, if there exists an element $y \in C$ such that $d(\cdot, y)$ is strictly convex on \bar{C}, then h is also strictly convex on \bar{C}.

Remark 3.6 In the second part of the proposition, the strict convexity and the continuity of h on its domain mixed with the equality $d=D_{h}$ on $\mathbb{R}^{n} \times C$ ensure that d is a Bregman distance in the sense of Definition 3.1. Similar to Theorem 3.1, Proposition 3.2 shows that under assumption (20), if for all $y \in C, d(\cdot, y)$ is finite-valued and continuous on \bar{C}, then d is continuous on $\bar{C} \times C$.

Proof of Proposition 3.2. Suppose that the equality (20) holds. Take an element $y_{0} \in C$ and define $h: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ by $h(x)=d\left(x, y_{0}\right)$. By Theorem 3.1 we have $d=D_{h}$ on $C \times C$. By definition of a proximal distance, the function h is lsc, proper and convex on \mathbb{R}^{n}, dom $\nabla h=C$ and $\operatorname{dom} h \subset \bar{C}$. Moreover h is C^{2} on C by assumption on d.

Suppose that for all $y \in C, d(\cdot, y)$ is finite-valued and continuous on \bar{C}. Consider an arbitrary function $h: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ lsc and convex on \mathbb{R}^{n}, C^{1} on C with $\operatorname{dom} \nabla h=C, \operatorname{dom} h \subset \bar{C}$ and $d=D_{h}$ on $C \times C$. Let $(\bar{x}, y) \in \bar{C} \times C$. Since $d(\cdot, y)$ is continuous on \bar{C} and h is lsc on \mathbb{R}^{n}, we have:

$$
\begin{aligned}
& d(\bar{x}, y)=\lim _{x \rightarrow C} d(x, y) \\
&=\lim _{x \rightarrow C}^{x \in C} \\
& \bar{x} \\
& \\
& D_{h}(x, y) \\
&=\lim _{x \in C} \bar{x} \\
& \geq h(x)-[h(y)+\langle\nabla h(y), x-y\rangle] \\
& \geq h(\bar{x})-[h(y)+\langle\nabla h(y), \bar{x}-y\rangle]
\end{aligned}
$$

This inequality implies that $h(\bar{x})<+\infty$, moreover \bar{x} is an arbitrary element of \bar{C}, so h is finite-valued on \bar{C}. By assumption $\operatorname{dom} h \subset$ \bar{C}, then dom $h=\bar{C}$. We now prove that $d(\bar{x}, y) \leq h(\bar{x})-[h(y)+$ $\langle\nabla h(y), \bar{x}-y\rangle]$. Take an arbitrary element $x \in C$, since h is convex we have

$$
\begin{equation*}
\forall t \in(0,1), h((1-t) \bar{x}+t x) \leq(1-t) h(\bar{x})+t h(x) \tag{21}
\end{equation*}
$$

Since C is a nonempty open convex set, $x \in C$ and $\bar{x} \in \bar{C}$, we have, for all $t \in(0,1),(1-t) \bar{x}+t x \in C$. This implies that

$$
d((1-t) \bar{x}+t x, y)=D_{h}((1-t) \bar{x}+t x, y)
$$

thus
$h((1-t) \bar{x}+t x)=d((1-t) \bar{x}+t x, y)+h(y)+\langle\nabla h(y),(1-t) \bar{x}+t x-y\rangle$.
Finally, combining (21) with (22), we obtain, for all $t \in(0,1)$,
$d((1-t) \bar{x}+t x, y)+h(y)+\langle\nabla h(y),(1-t) \bar{x}+t x-y\rangle \leq(1-t) h(\bar{x})+t h(x)$.
Letting t tend to zero and using the continuity of $d(\cdot, y)$ at \bar{x}, we deduce that

$$
d(\bar{x}, y) \leq h(\bar{x})-[h(y)+\langle\nabla h(y), \bar{x}-y\rangle]
$$

which proves that $d(\bar{x}, y)=h(\bar{x})-[h(y)+\langle\nabla h(y), \bar{x}-y\rangle]$. We have proven that $d=D_{h}$ on $\bar{C} \times C$.

Let $x \in \mathbb{R}^{n} \backslash \bar{C}$ and $y \in C$. By definition of a proximal distance we have $d(x, y)=+\infty$, since dom $h=\bar{C}$ we have $h(x)=+\infty$, so $D_{h}(x, y)=+\infty=d(x, y)$.

The continuity of h on \bar{C} results from the equality, for an arbitrary $y_{0} \in C, d\left(\cdot, y_{0}\right)=D_{h}\left(\cdot, y_{0}\right)=h-\left[h\left(y_{0}\right)+\left\langle\nabla h\left(y_{0}\right), \cdot-y_{0}\right\rangle\right.$ on \bar{C}. Since $d\left(\cdot, y_{0}\right)$ is continuous on \bar{C}, h is also continuous on \bar{C}.

We now suppose that there exists an element $y_{1} \in C$ such that $d\left(\cdot, y_{1}\right)$ is strictly convex on \bar{C}. Since $d\left(x, y_{1}\right)=h(x)-\left[h\left(y_{1}\right)+\left\langle\nabla h\left(y_{1}\right), x-y_{1}\right\rangle\right]$ for all $(x, y) \in \bar{C} \times C$, the function $h-d\left(\cdot, y_{1}\right)$ is an affine function on \bar{C}, thus the function h is strictly convex on \bar{C} because $d\left(\cdot, y_{1}\right)$ is strictly convex on \bar{C}.

The following corollary shows that the unique self-proximal distances satisfying a regularity assumption are the Bregman distances.

Corollary 3.1 Let $d \in \mathcal{D}(C)$ be a self-proximal distance, that is d satisfies the inequality (4). Moreover, we suppose that d is C^{1} on $C \times C$, and for all $y \in C, d(\cdot, y)$ is C^{2} on C. Then there exists a function $h: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ lsc, proper and convex on \mathbb{R}^{n}, C^{2} on C, with dom $\nabla h=C$, dom $h \subset \bar{C}$ and

$$
\begin{align*}
\forall x, y \in C, \quad d(x, y) & =h(x)-[h(y)+\langle\nabla h(y), x-y\rangle] \tag{23}\\
& =D_{h}(x, y) .
\end{align*}
$$

Additionally, if for all $y \in C, d(\cdot, y)$ is finite-valued and continuous on \bar{C}, then any function $h: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ lsc, proper and convex on \mathbb{R}^{n}, C^{1} on C, with $\operatorname{dom} \nabla h=C$, dom $h \subset \bar{C}$ and $d=D_{h}$ on $C \times C$ satisfies the following items:

1. $\operatorname{dom} h=\bar{C}$ and h is continuous on \bar{C}.
2. $\forall x \in \mathbb{R}^{n}, \forall y \in C, d(x, y)=h(x)-h(y)-\langle\nabla h(y), x-y\rangle$.

Moreover, if there exists an element $y \in C$ such that $d(\cdot, y)$ is strictly convex on \bar{C}, then h is also strictly convex on \bar{C}.

Proof of Corollary 3.1. Applying Theorem 2.1 with $H=d$, we have

$$
\forall x, y \in C, \nabla_{2} d(x, y)=-\nabla_{1,1}^{2} d(y, y)(x-y) .
$$

Therefore, Corollary 3.1 is a direct consequence of Proposition 3.2.
It is important to remark that the assumptions of regularity for the function d in the above theorems are stronger than in the definition
of a proximal distance. However, the actual functions that are used in practice typically enjoy some regularity. The following theorem shows that under a stronger assumption of regularity on d and H, for any $(d, H) \in \mathcal{F}(C), H$ is a Bregman function on C.

Theorem 3.2 Let $(d, H) \in \mathcal{F}(C)$. Suppose that d is C^{4} on $C \times C$, and for all $x \in C, H(x, \cdot)$ is C^{1} on C. Then there exists a function $h: C \rightarrow \mathbb{R}$ convex and C^{2} on C, with

$$
\begin{align*}
\forall x, y \in C, \quad H(x, y) & =h(x)-[h(y)+\langle\nabla h(y), x-y\rangle] \tag{24}\\
& =D_{h}(x, y) .
\end{align*}
$$

Additionally, if for all $y \in C, H(\cdot, y)$ is finite-valued and continuous on \bar{C}, then any C^{1} function $h: C \rightarrow \mathbb{R}$ satisfying the equality (24) can be extended in a continuous function \bar{h} on \bar{C}, so that the equality (24) holds with \bar{h} for all $(x, y) \in \bar{C} \times C$.

Remark 3.7 We observe that according to Theorem 3.2, if d is C^{4} on $C \times C$ and for all $x \in C, H(x, \cdot)$ is C^{1} on C, then for all $y \in C$, $H(\cdot, y)$ is convex on C, while the convexity of $H(\cdot, y)$ was not needed in the definition of the induced proximal distance.

Proof of Theorem 3.2. From Theorem 2.1 we have, for all $x, y \in C$,

$$
\begin{equation*}
\nabla_{2} H(x, y)=-\nabla_{1,1}^{2} d(y, y)(x-y) \tag{25}
\end{equation*}
$$

In order to apply Theorem 3.1, we show that for all $y \in C$,

$$
\nabla_{1,1}^{2} d(y, y)=\nabla_{1,1}^{2} H(y, y)
$$

We start with the following equality, proven in Proposition 2.1:

$$
H(x, y)=\int_{0}^{1} t\left\langle\nabla_{1,1}^{2} d(x+t(y-x), x+t(y-x))(y-x), y-x\right\rangle d t
$$

Let $y \in C$, and define $G_{y}: C \times[0,1] \rightarrow \mathbb{R}$ by

$$
G_{y}(x, t)=t\left\langle\nabla_{1,1}^{2} d(x+t(y-x), x+t(y-x))(y-x), y-x\right\rangle
$$

We see that

$$
H(x, y)=\int_{0}^{1} G_{y}(x, t) d t
$$

Since d is C^{4} on $C \times C$, the function G_{y} is C^{2} on $C \times[0,1]$, and $[0,1]$ is a compact set, therefore, by theorem of derivation of a parametric integral, $H(\cdot, y)$ is C^{2} on C and we have

$$
\nabla_{1,1}^{2} H(x, y)=\int_{0}^{1} \nabla_{1,1}^{2} G_{y}(x, t) d t
$$

this integral of matrix is component by component.

We need now to compute the quantity $\nabla_{1,1}^{2} G_{y}(y, t)$. Define the function $F_{y}: C \times[0,1] \rightarrow \mathbb{R}^{n}$ by

$$
F_{y}(x, t)=\nabla_{1,1}^{2} d(x+t(y-x), x+t(y-x))(x-y)
$$

Since we have $G_{y}(x, t)=t\left\langle F_{y}(x, t), x-y\right\rangle$, we deduce that

$$
\nabla_{1} G_{y}(x, t)=t D_{1} F_{y}(x, t)(x-y)+t F_{y}(x, t)
$$

Therefore we have

$$
\nabla_{1,1}^{2} G_{y}(x, t)=t D_{1,1}^{2} F_{y}(x, t)(x-y)+2 t D_{1} F_{y}(x, t)
$$

Then $\nabla_{1,1}^{2} G_{y}(y, t)=2 t D_{1} F_{y}(y, t)$. The last step consists of computing $D_{1} F_{y}(y, t)$. We fix an arbitrary $t \in[0,1]$. By continuity, we have

$$
\lim _{x \rightarrow y} \nabla_{1,1}^{2} d(x+t(y-x), x+t(y-x))=\nabla_{1,1}^{2} d(y, y)
$$

thus, there exists a real $r>0$ and a function $\varepsilon_{t, y}: B(0, r) \rightarrow \mathbb{R}^{n \times n}$ satisfying, for all $x \in B(y, r)$,

$$
\nabla_{1,1}^{2} d(x+t(y-x), x+t(y-x))=\nabla_{1,1}^{2} d(y, y)+\varepsilon_{t, y}(x-y)
$$

with $\varepsilon_{t, y}(s) \rightarrow 0$ whenever $\|s\| \rightarrow 0$. It ensues that

$$
\begin{aligned}
F_{y}(x, t) & =\left(\nabla_{1,1}^{2} d(y, y)+\varepsilon_{t, y}(x-y)\right)(x-y) \\
& =\nabla_{1,1}^{2} d(y, y)(x-y)+\varepsilon_{t, y}(x-y)(x-y) \\
& =F_{y}(y, t)+\nabla_{1,1}^{2} d(y, y)(x-y)+\varepsilon_{t, y}(x-y)(x-y) \text { since } F_{y}(y, t)=0
\end{aligned}
$$

Therefore $D_{1} F_{y}(y, t)=\nabla_{1,1}^{2} d(y, y)$ then $\nabla_{1,1}^{2} G_{y}(y, t)=2 t \nabla_{1,1}^{2} d(y, y)$, which gives

$$
\begin{aligned}
\nabla_{1,1}^{2} H(y, y) & =\int_{0}^{1} \nabla_{1,1}^{2} G_{y}(y, t) d t \\
& =\int_{0}^{1} 2 t \nabla_{1,1}^{2} d(y, y) d t=\nabla_{1,1}^{2} d(y, y)
\end{aligned}
$$

This and (25) tell us that $\forall x, y \in C, \nabla_{2} H(x, y)=-\nabla_{1,1}^{2} H(y, y)(x-y)$. Thus we can conclude by Theorem 3.1. Indeed, by Theorem 3.1, there exists a function $h: C \rightarrow \mathbb{R}$ convex and C^{2} on C, with

$$
\begin{aligned}
\forall x, y \in C \quad d(x, y) & =h(x)-[h(y)+\langle\nabla h(y), x-y\rangle] \\
& :=D_{h}(x, y) .
\end{aligned}
$$

Still by Theorem 3.1, if $\bar{C} \times C \subset \operatorname{dom} H$ and $H(\cdot, y)$ is continuous on \bar{C} for all $y \in C$, then there exists a continuous extension of h satisfying the equality on $\bar{C} \times C$.

It is worth noticing that Corollary 3.1 is not a consequence of Theorem 3.2, because Theorem 3.2 needs the function to be C^{4}, while Corollary 3.1 only needs d to be C^{2}.

References

[1] Auslender A, Teboulle M (2005). Interior projection-like methods for monotone variational inequalities. Mathematical programming, 104(1):39-68.
[2] Auslender A, Teboulle M (2006) Interior gradient and proximal methods for convex and conic optimization. SIAM J. Optim., 16:697-725.
[3] Bauschke H, Borwein J, Combettes P (2003) Bregman monotone optimization algorithms. SIAM J. Control Optim., 42:596-636.
[4] Burachick R, Iusem A (1998) A generalized proximal point algorithm for the variational inequality problem in a Hilbert Space. SIAM J. Optim., 8:197-216.
[5] Chen G, Teboulle M (1993) Convergence analysis of a proximallike minimization algorithm using Bregman functions. SIAM J. Optimization, 3:538-543.
[6] Iusem A (1995) Some properties of generalized proximal points methods for quadratic and linear programming. Journal of Optimization Theory and Applications, 85:593-612.
[7] Iusem A, Teboulle M (1995). Convergence rate analysis of nonquadratic proximal methods for convex and linear programming. Mathematics of Operations Research, 20(3):657-677.
[8] Iusem A, Svaiter B, Teboulle M (1994). Entropy-like proximal methods in convex programming. Mathematics of Operations Research, 19(4):790-814.
[9] Kiwiel K (1997) Proximal minimization methods with generalized Bregman functions. SIAM J. Control Optim. 35:1142-1168.
[10] Solodov M, Svaiter B (2000) An inexact hybrid generalized proximal point algorithm and some new results on the theory of Bregman functions. Mathematics of Operations Research 25:214-230.
[11] Teboulle M (1997). Convergence of proximal-like algorithms. SIAM Journal on Optimization, 7(4):1069-1083.
[12] Xu H , Ori R (2001). An implicit iteration process for nonexpansive mappings. Numerical functional analysis and optimization, 22(5):767-773.

The authors are grateful to the referee by numerous observatipns that significantly improved this work.

[^0]: *Centro de Modelamiento Matemático (CNRS UMI 2807), Departamento de Ingeniería Matemática, Universidad de Chile, Beauchef 851 , Santiago, Chile. Partially supported by the Institute on Complex Engineering Systems (ICM: P-05-004-F, CONICYT: FBO16) and FONDECYT 1130176.
 ${ }^{\dagger}$ Centro de Modelamiento Matemático, Departamento de Ingenería Matemática, U de Chile, Partially Supported by ICM; P-05-004-F; CONICYT: FB016, PFP03, FB0003; FONDECYT 1110019
 ${ }^{\ddagger}$ Instituto de ciencias basicas, Facultad de Ingenería, Universidad Diego Portales, Ejército 441, Santiago, Chile, Partially supported by Centro de Modelamiento Matematico, U de Chile and FONDECYT 3130596.

