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Abstract

Bregman distances play a key role in generalized versions of the
proximal algorithm. This paper proposes a new characterization of
Bregman distances in terms of their gradient and Hessian matrix.
Thanks to this characterization, we obtain two results: all the so called
self-proximal distances are Bregman, and all the induced proximal
distances, under some regularity assumptions, are Bregman functions.

1 Introduction

Given an open convex C ⊂ Rn, we consider the optimization problem

f∗ = inf
x∈C

f(x), (1)

where f : Rn → R ∪ {+∞} is a proper, closed and convex function,
and C stands for the closure of C in Rn. Auslender and Teboulle in
2006 [2] developed a complete study of the convergence of the Interior
Proximal Algorithm (IPA), which consists of generating a sequence
(xk)k satisfying, for all k ∈ N,

xk+1 ∈ Argmin{λkf(x) + d(x, xk) | x ∈ C}, k = 0, 1, 2, . . . , (2)

Here, (λk)k is a sequence of positive reals and d : Rn × Rn → R+ ∪
{+∞}, with R+ := [0,+∞), is a distance-like function which is called
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a proximal distance with respect to C. The proximal distance d is
required to have good properties, which force the iterates to stay in
C, the interior of the feasible set given by C (cf. [2, Definition 2.1]
and Definition 2.1 below).

The convergence analysis of this algorithm relies on the existence
of an induced proximal distance, that is a function H satisfying

∀a, b, c ∈ C , 〈c− b,∇1d(b, a)〉 ≤ H(c, a)−H(c, b), (3)

where ∇1 stands for the gradient with respect to the first variable
of d(·, ·). An important class of proximal distances is the family of
Bregman distances [3, 4, 5, 6, 9, 10]. The Bregman distances are self-
proximal, that is, the previous inequality holds with H = d. Another
popular class of proximal distances are the ϕ-divergence distances,
and their regularized versions [1, 6, 7, 8].

Our work is motivated by the observation that in the literature, the
only known self-proximal distances are Bregman distances. Therefore
we investigated whether all the self-proximal distances are Bregman.
To this end, we obtained a new characterization of the Bregman dis-
tances.

The paper is organized as follows. In section 2 we recall the defini-
tion of proximal distance and motivate the notions of induced proximal
and self-proximal distances. Then we obtain that under assumptions
of regularity, the induced proximal distance is uniquely determined
by the proximal distance. Section 3 is devoted to Bregman distances;
we obtain a characterization of these distances, and deduce that all
self-proximal distances are Bregman. Moreover, under an assump-
tion of suitable regularity, we prove that all the induced distances are
Bregman.

2 Induced proximal distances

Given a function f : Rn → R∪{+∞} we define the (effective) domain
of f by dom f := {x ∈ Rn | f(x) < +∞}. We say that f is proper
if dom f 6= ∅, and f is lower semi continuous (lsc) on Rn if for all
λ ∈ R the set Sλ = {x ∈ Rn | f(x) ≤ λ} is closed. Given ε ≥ 0, an
ε-subgradient of f at x ∈ dom f is an element x∗ ∈ Rn verifying

f(x′) + ε ≥ f(x) + 〈x∗, x′ − x〉, ∀x′ ∈ Rn,

where 〈·, ·〉 stands for the classical inner product of Rn. The set of all
ε-subgradients of f at x is the ε-subdifferential of f at x, it is denoted
by ∂εf(x), with the convention that ∂εf(x) = ∅ when x /∈ dom f .
When ε = 0, we simply write ∂f(x).
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Definition 2.1 [2, Definition 2.1] A function d : Rn × Rn → R+ ∪
{+∞} is called a proximal distance with respect to an open nonempty
convex set C ⊂ Rn if for each y ∈ C it satisfies the following proper-
ties:

(P1) d(·, y) is proper, lsc, convex on Rn and C1 on C;

(P2) dom d(·, y) ⊂ C and dom ∂d(·, y) ⊂ C.

(P3) d(·, y) is level bounded in Rn, i.e., lim‖u‖→∞ d(u, y) = +∞;

(P4) d(y, y) = 0.

We denote by D(C) the set of functions d satisfying these properties.

As we mentioned in the introduction, the IPA solves (1) by generating
a sequence (xk)k according to the iterative scheme (2), where d ∈
D(C). Due to (P2), under suitable assumptions on f and C, the
iterates generated by (2) stay in C, the interior of the constraints set
C, as the following proposition shows.

Proposition 2.1 [2, Proposition 2.1] Suppose that f∗ > −∞ and
dom f ∩ C 6= ∅, with f∗ defined by (1). Let d ∈ D(C), and for all
v ∈ C consider the optimization problem

(P (v)) f∗(v) = inf
u∈C

f(u) + d(u, v).

Then the optimal set of P (v) is nonempty and compact. For each ε ≥ 0
there exist u(v) ∈ C, g ∈ ∂εf(u(v)) such that g + ∇1d(u(v), v) = 0.
For such u(v) ∈ C, we have f(u(v)) + d(u(v), v) ≤ f∗(v) + ε.

We now turn to the definition of the induced proximal distance.

Definition 2.2 We say that a function H : Rn × Rn → R+ ∪ {+∞}
is an induced proximal distance to d ∈ D(C) if it satisfies the
following properties:

1. H is finite-valued on C × C.

2. ∀a ∈ C, H(a, a) = 0

3. ∀a, b, c ∈ C, 〈c− b,∇1d(b, a)〉 ≤ H(c, a)−H(c, b).

We denote by F(C) the set of all pairs (d,H) with d ∈ D(C) and H
an induced proximal distance to d.

We say that d is self-proximal when (d, d) ∈ F(C), that is when

∀a, b, c ∈ C, 〈c− b,∇1d(b, a)〉 ≤ d(c, a)− d(c, b). (4)
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Let us motivate the introduction of the induced proximal distance H
for the analysis of IPA. Let xk+1 be generated by the iterative scheme
given by (2). By Proposition 2.1, there exists gk+1 ∈ ∂f(xk+1) such
that λkg

k+1 +∇1d(xk+1, xk) = 0. If (d,H) ∈ F(C), we get

λk(f(xk+1)− f(x)) ≤ 〈−λkgk+1, x− xk+1〉
= 〈∇1d(xk+1, xk), x− xk+1〉
≤ H(x, xk)−H(x, xk+1),

for all x ∈ C. Next, suppose that the inequality can be extended to
every x ∈ C. Set S := ArgminC f , which is supposed to be nonempty,
and take any x∗ ∈ S. Then λk(f(xk+1) − f(x∗)) ≤ H(x∗, xk) −
H(x∗, xk+1). Since f(xk+1) ≥ f∗ = f(x∗), we deduce that

H(x∗, xk+1) ≤ H(x∗, xk), ∀x∗ ∈ S.

Thus the sequence (xk)k is H-Fejer monotone with respect to the op-
timal set S. This is a key property for the asymptotic convergence of
(xk)k towards an optimal solution of (1). See [2] for all details.

The previous argument motivates the introduction of the set of pairs
F(C) defined as follows: a pair (d,H) belongs to F(C) if (d,H) ∈
F(C) and satisfies the following properties:

1. H is finite-valued on C × C.

2. ∀a, b ∈ C, ∀c ∈ C, 〈c− b,∇1d(b, a)〉 ≤ H(c, a)−H(c, b).

3. ∀c ∈ C, the function H(c, ·) is level-bounded on Rn, i.e. for all
λ ∈ R, the set {y ∈ Rn | H(c, y) ≤ λ} is bounded.

Our first result is the uniqueness of the induced proximal distance
satisfying nice regularity assumptions.

Theorem 2.1 Let (d,H) ∈ F(C). Suppose that for every x ∈ C,
H(x, ·) is C1 on C. Then:

(a) If for each y ∈ C, d(·, y) is C2 on C, then

1. ∀x, y ∈ C , ∇2H(x, y) = −∇2
1,1d(y, y)(x− y),

2. H(x, y) =

∫ 1

0
t〈∇2

1,1d(zt, zt)(y − x), y − x〉dt,

where zt = x+ t(y − x).

(b) If for each x ∈ C, ∇1d(x, ·) is C1 on C, then

3. ∀x, y ∈ C , ∇2H(x, y) = ∇2
1,2d(y, y)(x− y),

4. H(x, y) = −
∫ 1

0
t〈∇2

1,2d(zt, zt)(y − x), y − x〉dt,
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where zt = x+ t(y − x).

Thus, under any of the above assumptions on d, there exists a unique
induced proximal distance H to d such that for all x ∈ C, H(x, ·) is
C1 on C.

Proof. We prove (a). We suppose that for all y ∈ C, d(·, y) is C2 on
C and for all x ∈ C, H(x, ·) is C1 on C. Let x, y ∈ C, and define
Φ : C → R by Φ(z) := H(x, y)−H(x, z)−〈x− z,∇1d(z, y)〉. Since H
is an induced proximal distance to d, for all z ∈ C, we have Φ(z) ≥ 0.
Since d(·, y) ≥ 0 on C and d(y, y) = 0, we have ∇1d(y, y) = 0. This
yields Φ(y) = 0, then y minimizes Φ on C. We deduce that ∇Φ(y) = 0
(because C is an open set), and computing this gradient, we have, for
all x, y ∈ C, ∇2H(x, y) = −∇2

1,1d(y, y)(x − y). Let x, y ∈ C. Since
H(x, x) = 0, we have:

H(x, y) =

∫ 1

0
〈∇2H(x, x+ t(y − x)), y − x〉dt

= −
∫ 1

0
〈∇2

1,1d(zt, zt)(x− zt), y − x〉dt

=

∫ 1

0
t〈∇2

1,1d(zt, zt))(y − x), y − x〉dt,

where zt = x+ t(y− x). Therefore H is uniquely determined by d, so
there exists a unique proximal distance H to d such that for all x ∈ C,
H(x, ·) is C1 on C. We have thus proven items 1. and 2.; items 3.
and 4. are obtained by similar arguments. �

As a direct consequence of Theorem 2.1, we get the following necessary
conditions on the proximal distance d to have that the corresponding
induced proximal distance is given by the Euclidean norm, an inter-
esting special case for practical computations.

Corollary 2.1 Let d ∈ D(C) be a proximal distance such that there
exists a real η > 0 satisfying (d, (x, y)→ η‖y − x‖2) ∈ F(C), that is

∀a, b, c ∈ C, 〈c− b,∇1d(b, a)〉 ≤ η(‖c− a‖2 − ‖c− b‖2). (5)

The following assertions hold:

(a) if for all y ∈ C, d(·, y) is C2 on C, then ∇2
1,1d(y, y) = 2ηI,

(b) if for all x ∈ C, ∇1d(x, ·) is C1 on C, then ∇2
1,2d(y, y) = −2ηI.

The notation I stands for the identity matrix on Rn.
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3 Bregman distances

Let us recall the definition of Bregman distance.

Definition 3.1 Let h : Rn → R ∪ {+∞} be proper, lsc and convex
on Rn, with dom h ⊂ C and dom ∇h = C. Suppose that h is strictly
convex and continuous on dom h, and C1 on int(dom h) = C. Set

Dh(x, y) := h(x)− h(y)− 〈∇h(y), x− y〉, x ∈ Rn, y ∈ C
:= +∞ otherwise.

(6)

The function Dh is the Bregman distance with kernel h.

It is easy to see that if the kernel h is level bounded, then the corre-
sponding Dh is a proximal distance in the sense of Definition 2.1.

Remark 3.1 Every Bregman distance Dh satisfies the following prop-
erty, which is referred to as the three point identity (see [5]): ∀a, b ∈
C, ∀c ∈ dom h

Dh(c, a) = Dh(c, b) +Dh(b, a) + 〈∇1Dh(b, a), c− b〉. (7)

It is straightforward that (7) implies (4) with d = Dh, so that every
Bregman distance is self-proximal. We will show that under fairly gen-
eral conditions, self-proximal distances are indeed Bregman distances.
To this end, we introduce new characterizations of Bregman functions.

Remark 3.2 When h is C2 on C, then ∇2
1,1Dh(x, y) = ∇2h(x) and

∇2Dh(x, y) = −∇2h(y)(x−y), therefore Dh enjoys the following prop-
erty:

∀x, y ∈ C , ∇2Dh(x, y) = −∇2
1,1Dh(y, y)(x− y). (8)

Thus (8) is a necessary condition for a proximal distance to be Breg-
man. An interesting question is to know whether this is also sufficient
for a proximal distance to be a Bregman distance.

Remark 3.3 If d = Dh is a Bregman distance, and h̃ : Rn → R ∪
{+∞} is a convex function, then Dh = Dh̃ if and only if dom h =

dom h̃ and h − h̃ is an affine function on dom h. Therefore, we can
easily establish that for all arbitrary y0 ∈ C, the function h̃(x) :=
d(x, y0) verifies the following properties: dom h̃ = dom h and h− h̃ is
an affine function on dom h. Thus we have d = Dd(·,y0). Moreover,
h is strictly convex if and only if there exists an element y ∈ C such
that d(·, y) is strictly convex.
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Since the three point identity (7) is stronger than inequality (4), we
first verify that every proximal distance satisfying the three point iden-
tity is indeed Bregman.

Proposition 3.1 Let d ∈ D(C) be a proximal distance satisfying the
three point identity, that is,

∀a, b ∈ C, ∀c ∈ Rn, d(c, a) = d(c, b)+d(b, a)+〈c−b,∇1d(b, a)〉. (9)

Then there exists a function h : Rn → R ∪ {+∞} lsc, proper and
convex on Rn, C1 on C, with dom ∇h = C, C ⊂ dom h ⊂ C and for
all (x, y) ∈ Rn × C, d(x, y) = Dh(x, y).

Proof. Let y0 ∈ C and h : Rn → R ∪ {+∞} be defined by h(x) :=
d(x, y0). Since d is a proximal distance, the function h is lsc, proper
and convex on Rn, C1 on C with dom ∇h = C and C ⊂ dom h ⊂ C.
Let x ∈ Rn and y ∈ C. Applying the equality (9), we obtain

d(x, y0) = d(x, y) + d(y, y0) + 〈x− y,∇1d(y, y0)〉,

which implies that

h(x) = d(x, y) + h(y) + 〈x− y,∇h(y)〉.

Therefore, for all x ∈ Rn and y ∈ C, we have d(x, y) = Dh(x, y). �

The following theorem gives us a necessary and sufficient condition for
a function defined on C × C to be written as a Bregman distance.

Theorem 3.1 Let a function F : Rn × Rn → R+ ∪ {+∞} be such
that C×C ⊂ dom F and for all x ∈ C, F (x, x) = 0. We suppose that
F is C1 on C ×C, and for all y ∈ C, F (·, y) is C2 on C. Then there
exists a function h : C → R convex and C2 on C, satisfying

∀x, y ∈ C, F (x, y) = h(x)− [h(y) + 〈∇h(y), x− y〉]
= Dh(x, y),

(10)

if and only if

∀x, y ∈ C, ∇2F (x, y) = −∇2
1,1F (y, y)(x− y), (11)

and in this case, for any y0 ∈ C, the function h : C → R defined by
h(x) = F (x, y0) satisfies the equality (10).
Additionally, if for all y ∈ C, F (·, y) is finite-valued and continuous
on C, then any C1 function h : C → R satisfying the equality (10)
can be extended in a continuous function h̄ on C, so that the equality
(10) holds with h̄ for all (x, y) ∈ C × C.
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Remark 3.4 The equality (10) mixed with the convexity of h on C
tells us that F (·, y) must be convex for all y ∈ C, so the above theorem
shows us that the first assumptions about F (namely F (·, ·) ≥ 0 on
C ×C and F (x, x) = 0 for all x ∈ C) mixed with the assumption (11)
imply that F (·, y) is convex on C for all y ∈ C.

Remark 3.5 The second part of the theorem shows that if for all
y ∈ C, the function F (·, y) is finite-valued and continuous on C, then
(11) implies the equality F = Dh̄ on C ×C with h̄ a function which is
C1 on C and continuous on C. That implies the continuity of F on
C × C.

Proof of Theorem 3.1. From (8), equality (10) implies equality (11).

We now prove the converse, more precisely we prove that equality
(11) implies that F = DF (·,y0) on C ×C for any arbitrary y0 ∈ C. We
suppose that (11) holds. Let y1, y2 ∈ C. We show that the function
F (·, y2)− F (·, y1) is an affine function on C: ∀x ∈ C,

F (x, y2)− F (x, y1) =

∫ 1

0
〈∇2F (x, y1 + t(y2 − y1)), y2 − y1〉dt

= −
∫ 1

0
〈∇2

1,1F (yt, yt)(x− yt), y2 − y1〉dt by (11)

= −
∫ 1

0
〈x− yt,∇2

1,1F (yt, yt)(y2 − y1)〉dt,

(12)
because the Hessian matrix ∇2

1,1F (yt, yt) is a symmetric matrix with
yt := y1 + t(y2 − y1). The last expression is an affine function with
respect to x, therefore, since the Hessian matrix of an affine function
is equal to zero, we deduce that

∀x, y1, y2 ∈ C , ∇2
1,1F (x, y1) = ∇2

1,1F (x, y2). (13)

We choose an element y0 ∈ C and define h : C → R by

∀x ∈ C , h(x) := F (x, y0). (14)

By assumption, h is C2 on C. We now define H : C × C → R by

∀x, y ∈ C H(x, y) := h(x)− [h(y) + 〈∇h(y), x− y〉]
= Dh(x, y).

(15)

We will show that F = H on C × C. Actually, we will show that
∇F = ∇H on C × C. We first compute ∇H:

∇1H(x, y) = ∇h(x)−∇h(y), ∇2H(x, y) = −∇2h(y)(x−y). (16)
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We now compute ∇F (x, y). For y ∈ C and t ∈ [0, 1], we set yt :=
y0 + t(y − y0), and obtain

∀x, y ∈ C , F (x, y) = F (x, y0)−
∫ 1

0
〈x− yt,∇2

1,1F (yt, yt)(y − y0)〉dt by (12)

= h(x)−
∫ 1

0
〈x,∇2

1,1F (yt, yt)(y − y0)〉dt

+

∫ 1

0
〈yt,∇2

1,1F (yt, yt)(y−y0)〉dt

= h(x)−
〈
x,

∫ 1

0
∇2

1,1F (yt, yt)(y − y0)dt

〉
+

∫ 1

0
〈yt,∇2

1,1F (yt, yt)(y − y0)〉dt

with

∫ 1

0
∇2

1,1F (yt, yt)(y− y0)dt a vectorial integral, that is an integral

component by component. Therefore we obtain:

∀x, y ∈ C , ∇1F (x, y) = ∇h(x)−
∫ 1

0
∇2

1,1F (yt, yt)(y − y0)dt

= ∇h(x)−
∫ 1

0
∇2

1,1F (yt, y0)(y − y0)dt by (13)

= ∇h(x)− (∇1F (y, y0)−∇1F (y0, y0))
= ∇h(x)−∇h(y).

(17)
In the last line we use the equality ∇1F (y0, y0) = 0 (this is due to
F (·, y0) ≥ 0 on C and F (y0, y0) = 0, so y0 is a minimizer of F (·, y0)
on the open set C).

We now compute ∇2F (x, y):

∀x, y ∈ C , ∇2F (x, y) = −∇2
1,1F (y, y)(x− y) by (11)

= −∇2
1,1F (y, y0)(x− y) by (13)

= −∇2h(y)(x− y).

(18)

From the equalities (16), (17) and (18), we deduce that ∇F = ∇H
on C × C, thus F = H + c on C × C, with c being a constant.
Since F (x, x) = H(x, x) = 0, for all x ∈ C, we deduce that c = 0,
then F = H on C × C. We conclude that for all (x, y) ∈ C × C,
F (x, y) = h(x)− h(y)− 〈∇h(y), x− y〉.

By the non-negativity of F , we have h(x) ≥ h(y) + 〈∇h(y), x− y〉, for
all (x, y) ∈ C, which implies the convexity of h on C.

We suppose that for all y ∈ C, F (·, y) is finite-valued and continuous
on C. Consider a C1 function h : C → R such that F = Dh on C×C.
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We choose an element y1 ∈ C and define F̃ := F (·, y1). By assumption
F̃ is finite-valued and continuous on C. An easy computation gives:

F̃ (x) = F (x, y1)

= Dh(x, y1)

= h(x)− h(y1)− 〈∇h(y1), x− y1〉.

Therefore F̃ − h = −[h(y1) + 〈∇h(y1), · − y1〉] is an affine function on
C, F̃ is continuous on C, so we deduce that h can be extended in a
continuous function on C. Denoting by h̄ its continuous extension on
C, we obtain that Dh̄ is continuous on C × C.

Let (x, y) ∈ C × C. Since F (·, y) = Dh̄(·, y) on C and both functions
are continuous on C, we deduce that F (·, y) = Dh̄(·, y) on C, thus
F (x, y) = Dh̄(x, y). �

From this theorem we deduce a characterization of Bregman distances.

Proposition 3.2 Let d ∈ D(C). We suppose that d is C1 on C ×C,
and for all y ∈ C, d(·, y) is C2 on C. Then there exists a function
h : Rn → R ∪ {+∞} lsc, proper and convex on Rn, C2 on C, with
dom ∇h = C, dom h ⊂ C and

∀x, y ∈ C d(x, y) = h(x)− [h(y) + 〈∇h(y), x− y〉]
= Dh(x, y),

(19)

if and only if

∀x, y ∈ C , ∇2d(x, y) = −∇2
1,1d(y, y)(x− y). (20)

In this case, if for all y ∈ C, d(·, y) is finite-valued and continuous on
C, then any function h : Rn → R ∪ {+∞} lsc, proper and convex on
Rn, C1 on C, with dom ∇h = C, dom h ⊂ C and d = Dh on C × C
satisfies the following items:

1. domh = C and h is continuous on C.

2. ∀x ∈ Rn, ∀y ∈ C, d(x, y) = h(x)− h(y)− 〈∇h(y), x− y〉.
Moreover, if there exists an element y ∈ C such that d(·, y) is strictly
convex on C, then h is also strictly convex on C.

Remark 3.6 In the second part of the proposition, the strict con-
vexity and the continuity of h on its domain mixed with the equality
d = Dh on Rn × C ensure that d is a Bregman distance in the sense
of Definition 3.1. Similar to Theorem 3.1, Proposition 3.2 shows that
under assumption (20), if for all y ∈ C, d(·, y) is finite-valued and
continuous on C, then d is continuous on C × C.
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Proof of Proposition 3.2. Suppose that the equality (20) holds. Take
an element y0 ∈ C and define h : Rn → R∪ {+∞} by h(x) = d(x, y0).
By Theorem 3.1 we have d = Dh on C × C. By definition of a
proximal distance, the function h is lsc, proper and convex on Rn,
dom∇h = C and domh ⊂ C. Moreover h is C2 on C by assumption
on d.

Suppose that for all y ∈ C, d(·, y) is finite-valued and continuous on
C. Consider an arbitrary function h : Rn → R∪{+∞} lsc and convex
on Rn, C1 on C with dom∇h = C, domh ⊂ C and d = Dh on C×C.
Let (x̄, y) ∈ C × C. Since d(·, y) is continuous on C and h is lsc on
Rn, we have:

d(x̄, y) = lim
x
x∈C−→x̄

d(x, y)

= lim
x
x∈C−→x̄

Dh(x, y)

= lim
x
x∈C−→x̄

h(x)− [h(y) + 〈∇h(y), x− y〉]

≥ h(x̄)− [h(y) + 〈∇h(y), x̄− y〉].

This inequality implies that h(x̄) < +∞, moreover x̄ is an arbitrary
element of C, so h is finite-valued on C. By assumption domh ⊂
C, then domh = C. We now prove that d(x̄, y) ≤ h(x̄) − [h(y) +
〈∇h(y), x̄ − y〉]. Take an arbitrary element x ∈ C, since h is convex
we have

∀t ∈ (0, 1) , h((1− t)x̄+ tx) ≤ (1− t)h(x̄) + th(x). (21)

Since C is a nonempty open convex set, x ∈ C and x̄ ∈ C, we have,
for all t ∈ (0, 1), (1− t)x̄+ tx ∈ C. This implies that

d((1− t)x̄+ tx, y) = Dh((1− t)x̄+ tx, y),

thus

h((1− t)x̄+ tx) = d((1− t)x̄+ tx, y)+h(y)+ 〈∇h(y), (1− t)x̄+ tx−y〉.
(22)

Finally, combining (21) with (22), we obtain, for all t ∈ (0, 1),

d((1−t)x̄+tx, y)+h(y)+〈∇h(y), (1−t)x̄+tx−y〉 ≤ (1−t)h(x̄)+th(x).

Letting t tend to zero and using the continuity of d(·, y) at x̄, we
deduce that

d(x̄, y) ≤ h(x̄)− [h(y) + 〈∇h(y), x̄− y〉],
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which proves that d(x̄, y) = h(x̄) − [h(y) + 〈∇h(y), x̄ − y〉]. We have
proven that d = Dh on C × C.

Let x ∈ Rn \ C and y ∈ C. By definition of a proximal distance
we have d(x, y) = +∞, since domh = C we have h(x) = +∞, so
Dh(x, y) = +∞ = d(x, y).

The continuity of h on C results from the equality, for an arbitrary
y0 ∈ C, d(·, y0) = Dh(·, y0) = h− [h(y0) + 〈∇h(y0), ·− y0〉 on C. Since
d(·, y0) is continuous on C, h is also continuous on C.

We now suppose that there exists an element y1 ∈ C such that d(·, y1)
is strictly convex on C. Since d(x, y1) = h(x)−[h(y1)+〈∇h(y1), x−y1〉]
for all (x, y) ∈ C × C, the function h − d(·, y1) is an affine function
on C, thus the function h is strictly convex on C because d(·, y1) is
strictly convex on C. �

The following corollary shows that the unique self-proximal distances
satisfying a regularity assumption are the Bregman distances.

Corollary 3.1 Let d ∈ D(C) be a self-proximal distance, that is d
satisfies the inequality (4). Moreover, we suppose that d is C1 on
C × C, and for all y ∈ C, d(·, y) is C2 on C. Then there exists a
function h : Rn → R∪{+∞} lsc, proper and convex on Rn, C2 on C,
with dom ∇h = C, dom h ⊂ C and

∀x, y ∈ C, d(x, y) = h(x)− [h(y) + 〈∇h(y), x− y〉]
= Dh(x, y).

(23)

Additionally, if for all y ∈ C, d(·, y) is finite-valued and continuous on
C, then any function h : Rn → R ∪ {+∞} lsc, proper and convex on
Rn, C1 on C, with dom ∇h = C, dom h ⊂ C and d = Dh on C × C
satisfies the following items:

1. domh = C and h is continuous on C.

2. ∀x ∈ Rn, ∀y ∈ C, d(x, y) = h(x)− h(y)− 〈∇h(y), x− y〉.
Moreover, if there exists an element y ∈ C such that d(·, y) is strictly
convex on C, then h is also strictly convex on C.

Proof of Corollary 3.1. Applying Theorem 2.1 with H = d, we have

∀x, y ∈ C , ∇2d(x, y) = −∇2
1,1d(y, y)(x− y).

Therefore, Corollary 3.1 is a direct consequence of Proposition 3.2. �

It is important to remark that the assumptions of regularity for the
function d in the above theorems are stronger than in the definition
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of a proximal distance. However, the actual functions that are used in
practice typically enjoy some regularity. The following theorem shows
that under a stronger assumption of regularity on d and H, for any
(d,H) ∈ F(C), H is a Bregman function on C.

Theorem 3.2 Let (d,H) ∈ F(C). Suppose that d is C4 on C × C,
and for all x ∈ C, H(x, ·) is C1 on C. Then there exists a function
h : C → R convex and C2 on C, with

∀x, y ∈ C, H(x, y) = h(x)− [h(y) + 〈∇h(y), x− y〉]
= Dh(x, y).

(24)

Additionally, if for all y ∈ C, H(·, y) is finite-valued and continuous
on C, then any C1 function h : C → R satisfying the equality (24)
can be extended in a continuous function h̄ on C, so that the equality
(24) holds with h̄ for all (x, y) ∈ C × C.

Remark 3.7 We observe that according to Theorem 3.2, if d is C4

on C × C and for all x ∈ C, H(x, ·) is C1 on C, then for all y ∈ C,
H(·, y) is convex on C, while the convexity of H(·, y) was not needed
in the definition of the induced proximal distance.

Proof of Theorem 3.2. From Theorem 2.1 we have, for all x, y ∈ C,

∇2H(x, y) = −∇2
1,1d(y, y)(x− y). (25)

In order to apply Theorem 3.1, we show that for all y ∈ C,

∇2
1,1d(y, y) = ∇2

1,1H(y, y).

We start with the following equality, proven in Proposition 2.1:

H(x, y) =

∫ 1

0
t〈∇2

1,1d(x+ t(y − x), x+ t(y − x))(y − x), y − x〉dt.

Let y ∈ C, and define Gy : C × [0, 1]→ R by

Gy(x, t) = t〈∇2
1,1d(x+ t(y − x), x+ t(y − x))(y − x), y − x〉.

We see that

H(x, y) =

∫ 1

0
Gy(x, t)dt.

Since d is C4 on C ×C, the function Gy is C2 on C × [0, 1], and [0, 1]
is a compact set, therefore, by theorem of derivation of a parametric
integral, H(·, y) is C2 on C and we have

∇2
1,1H(x, y) =

∫ 1

0
∇2

1,1Gy(x, t)dt,

13



this integral of matrix is component by component.

We need now to compute the quantity ∇2
1,1Gy(y, t). Define the func-

tion Fy : C × [0, 1]→ Rn by

Fy(x, t) = ∇2
1,1d(x+ t(y − x), x+ t(y − x))(x− y).

Since we have Gy(x, t) = t〈Fy(x, t), x− y〉, we deduce that

∇1Gy(x, t) = tD1Fy(x, t)(x− y) + tFy(x, t).

Therefore we have

∇2
1,1Gy(x, t) = tD2

1,1Fy(x, t)(x− y) + 2tD1Fy(x, t).

Then ∇2
1,1Gy(y, t) = 2tD1Fy(y, t). The last step consists of computing

D1Fy(y, t). We fix an arbitrary t ∈ [0, 1]. By continuity, we have

lim
x→y
∇2

1,1d(x+ t(y − x), x+ t(y − x)) = ∇2
1,1d(y, y),

thus, there exists a real r > 0 and a function εt,y : B(0, r) → Rn×n
satisfying, for all x ∈ B(y, r),

∇2
1,1d(x+ t(y − x), x+ t(y − x)) = ∇2

1,1d(y, y) + εt,y(x− y)

with εt,y(s)→ 0 whenever ‖s‖ → 0. It ensues that

Fy(x, t) = (∇2
1,1d(y, y) + εt,y(x− y))(x− y)

= ∇2
1,1d(y, y)(x− y) + εt,y(x− y)(x− y)

= Fy(y, t) +∇2
1,1d(y, y)(x− y) + εt,y(x− y)(x− y) since Fy(y, t) = 0.

Therefore D1Fy(y, t) = ∇2
1,1d(y, y) then ∇2

1,1Gy(y, t) = 2t∇2
1,1d(y, y),

which gives

∇2
1,1H(y, y) =

∫ 1

0
∇2

1,1Gy(y, t)dt

=

∫ 1

0
2t∇2

1,1d(y, y)dt = ∇2
1,1d(y, y).

This and (25) tell us that ∀x, y ∈ C, ∇2H(x, y) = −∇2
1,1H(y, y)(x−y).

Thus we can conclude by Theorem 3.1. Indeed, by Theorem 3.1, there
exists a function h : C → R convex and C2 on C, with

∀x, y ∈ C d(x, y) = h(x)− [h(y) + 〈∇h(y), x− y〉]
:= Dh(x, y).

14



Still by Theorem 3.1, if C×C ⊂ domH and H(·, y) is continuous on C
for all y ∈ C, then there exists a continuous extension of h satisfying
the equality on C × C. �

It is worth noticing that Corollary 3.1 is not a consequence of Theorem
3.2, because Theorem 3.2 needs the function to be C4, while Corollary
3.1 only needs d to be C2.
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