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ABSTRACT
In this paper, we study the calmness of a generalized Nash equilibrium
problem (GNEP) with non-differentiable data. The approach consists in
obtaining some error bound property for the KKT system associated with
the generalized Nash equilibrium problem, and returning to the primal
problem thanks to the Slater constraint qualification.
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1. Introduction

This paper deals with error bounds, metric regularity, metric subregularity and stability in the
generalized Nash equilibrium problem (GNEP) with non-smooth pay-off functions. Generalized
Nash equilibrium problems have many applications in economy and other areas (see e.g. [1] for
examples of applications). Many authors [2–4] have studied the error bound property for the KKT
system associated with GNEP when the pay-off functions for all players are differentiable; other
authors [5,6] have studied the error bound property for complementarity systems. In these articles,
the error bound property is used in order to derive some convergence results of an LP–Newton
algorithm which is a very well-adapted algorithm to solve equations with non-isolated solutions.
Rockafellar has written about a variational approach to stability in the Nash equilibrium problem
based onmonotonicity assumptions.[7] For this approach, it is necessary to have strong assumptions
of regularity about the pay-off function of all players.

In this paper, we provide results of metric (sub)regularity and error bounds about GNEPs when
the loss functions are not differentiable, under the assumption of strict complementarity. We apply
these results to the stability of perturbated GNEPs and to a special case of two-player game (which is
larger than Cournot duopoly games).
The article is organized as follows: Section 2 introduces the notation and the main assumptions
about GNEP. Section 3 gives the definition of the coderivative introduced by Mordukhovich [8–
10], and the results useful for our quantitative study of GNEP. Section 4 gives some results about
metric regularity and metric subregularity under the assumption of strict complementarity for the
KKT system associated with GNEP and Section 5 gives the main results about stability of GNEP
with respect to a parameter. Finally, Section 6 proposes the application of the results obtained in the
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previous sections to a class of two-player games which is larger than the Cournot duopoly games (see
e.g. [11–14]).

1.1. Some notations

Throughout the paper, ‖ · ‖ denotes the Euclidian norm on R
q, with q ∈ N

∗ := N \ {0}, and 〈·, ·〉 is
the classical inner product onR

q associated with the norm ‖ · ‖. Let (U , δ) be a metric space, for r > 0
and a given point x ∈ U , we set B(x, r) := {z ∈ U : δ(x, z) < r}. The distance from a point x ∈ R

q

to a set B ⊂ R
q is denoted by dist(x,B) and defined by dist(x,B) := inf

z∈B ‖x − z‖. Let q1, q2 ∈ N
∗; if

f : R
q1 → R

q2 is a differentiable function at a point x ∈ R
q1 , then its Jacobian matrix at this point is

denoted by Jf (x). LetA be an arbitrary matrix,A	 stands for its transpose.When B is a finite set, then
|B| denotes its cardinality. For an arbitrary set B, BN denotes all the sequences with elements in B.

2. The Generalized Nash Equilibrium Problem

The GNEP is a Nash game in which each player’s strategy depends on the other players’ strategies.
More precisely, assume that there are p players and each player ν controls the variable xν ∈ R

nν
as a

strategy. Let us denote by x the vector of strategies

x := (x1, . . . , xp) and n := n1 + n2 + · · · + np.

Let us denote by x−ν the vector formed by all players’ decision variables except player ν. So we can
also write x = (xν , x−ν), which is a shortcut (already used in many papers on the subject; see e.g.
[15,16]) to denote the vector x = (x1, . . . , xν−1, xν , xν+1, . . . , xp). We define the set-valued mapping
Xν : R

n−ν ⇒ R
nν
, where n−ν = n−nν , such that the strategy of player ν belongs to the set Xν(x−ν).

The aim of player ν is, given the strategy x−ν , to choose a strategy xν such that xν solves the following
optimization problem

(Pν) min
xν

θν(xν , x−ν), subject to xν ∈ Xν(x−ν),

where θν(xν , x−ν) denotes the loss that player ν suffers when the rival players have chosen the strategy
x−ν . The GNEP consists in finding x̄ ∈ R

n such that for all ν ∈ {1, ..., p}:

xν ∈ arg min
Xν (x−ν )

θν(·, x−ν).

Wemake the following assumptions:

(1) The setXν(x−ν) is definedbyXν(x−ν) = {xν ∈ R
nν : gν(xν , x−ν) ≤ 0}, with gν : R

n → R
mν

a C2 function such that for all x−ν ∈ R
n−ν

, gν(·, x−ν) is convex. This assumption implies that
each player ν controlling the variable xν solves the following problem

min
gν (xν ,x−ν )≤0

θν(xν , x−ν).

(2) For each x−ν ∈ R
n−ν

, we have

N(xν ,Xν(x−ν)) = {Jxν gν(xν , x−ν)	ξ | ξ ∈ N(gν(xν , x−ν), (R−)m
ν

)}

where when K is a closed convex set in R
q, q ∈ N

∗, and x ∈ K ,

N(x,K) = {x∗ ∈ R
q | ∀x′ ∈ K , 〈x∗, x′ − x〉 ≤ 0} (1)
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This assumption ensures the existence of Lagrangemultipliers at any solution for player ν and
it is implied by the standard qualification conditions like LICQ and MFCQ.

(3) The functions θν are not necessarily differentiable, but we suppose that for all x−ν ∈ R
n−ν

,
θν(·, x−ν) is convex on R

nν
and θν is locally Lipschitz-continuous on R

n.

Such a game will be denoted by G := ((θν)ν=1,...,p, (gν)ν=1,...,p). This notation will be used in
Proposition 5.4.

For every player ν ∈ {1, . . . , p}, we introduce the Lagrangian function
Lν : R

nν × R
n−ν × R

mν → R which is given by

Lν(xν , x−ν , λν) := θν(xν , x−ν) + 〈λν , gν(xν , x−ν)〉.

Therefore, x̄ := (x̄1, . . . , x̄p) is a generalized Nash equilibrium if and only if there exists a vector
λ̄ := (λ̄1, . . . , λ̄p) such that for all ν ∈ {1, . . . , p}, (xν , λ̄ν) is a solution of the KKT system

0 ∈ ∂xνLν(x̄ν , x̄−ν , λ̄ν) and 0 ≤ λ̄ν ⊥ ( − gν(x̄ν , x̄−ν)) ≥ 0 (2)

where ∂xνLν(xν , x−ν , λ̄ν) stands for the convex subdifferential of the function Lν with respect to the
variable xν . Recall that for a convex function f : R

q → R, the convex subdifferential of f at x is
defined by

∂f (x) := {
x∗ ∈ R

q | ∀x ∈ R
q , 〈x∗, x − x〉 ≤ f (x) − f (x)

}
.

For two vectors a, b ∈ R
q, with q ∈ N

∗, one has 0 ≤ a ⊥ b ≥ 0 if and only if min{a, b} = 0, where
min{a, b} := (min{ai, bi})i=1,...,q. Therefore, the above system becomes

0 ∈ ∂xνL(x̄ν , x̄−ν , λ̄ν) and min{λ̄ν ,−gν(x̄ν , x̄−ν)} = 0. (3)

We introduce the set-valued mapping � : R
n × R

m ⇒ R
n × R

m defined by

∀z := (x, λ) ∈ R
n × R

m , �(z) :=

⎛
⎜⎜⎜⎝

T(z)
min{λ1,−g1(x1, x−1)}

...

min{λp,−gp(xp, x−p)}

⎞
⎟⎟⎟⎠ (4)

where

T(z) := ∂x1L
1(x1, x−1, λ1) × · · · × ∂xpLp(xp, x−p, λp) andm :=

p∑
ν=1

mν . (5)

A vector x̄ := (x̄1, . . . , x̄p) ∈ R
n is a generalized Nash equilibrium if and only if there exists a

vector λ̄ := (λ̄1, . . . , λ̄p) ∈ R
m satisfying

0 ∈ �(z̄) with z̄ := (x̄, λ̄). (6)

We denote by 	 the set of solutions of the generalized system (6), that is

	 := {z ∈ R
n+m : 0 ∈ �(z)}.

The aim of this paper is to obtain the following local error bound property for an element z̄ ∈ 	

∃r, L > 0, ∀z ∈ B(z̄, r), dist(z,	) ≤ Ldist(0,�(z)), (7)
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and to use this error bound property in order to obtain some results of stability of the solution map
of the GNEP with respect to a parameter. Since the error bound property (7) is very closely related
to the metric subregularity of � at (z̄, 0) (Definition 1), Section 4 studies the metric regularity and
subregularity of �.

Since we don’t have differentiability, we introduce in the next section the coderivative, developed
by Boris Mordukhovich, and we will recall some important properties satisfied by the coderivative.

The function (a, b) �→ min{a, b} is called a NCP-function, which characterizes that min{a, b} =
0 ⇔ 0 ≤ a ⊥ b ≥ 0. There exist other NCP-functions, for example, the very classical Fischer–
Burmeister function which is defined by (a, b) �→ a + b − √

a2 + b2. The Fischer–Burmeister
function is strongly semi-smooth and has a continuously differentiable square; then, it is superior to
the NCP-function we use in this article, but for our purpose, the NCP-function we use provides the
same results as the Fischer–Burmeister function and the calculus are less complicated.

3. Coderivative and calmness

This section is directly inspired by the article of Mordukhovich [9] and his book.[10] We introduce
some notations: consider a set-valued mapping T : X ⇒ Y , where X and Y are two Euclidian
spaces. We define the domain of T by dom(T) := {x ∈ X : T(x) �= ∅}, the graph of T by
Gr(T) := {(x, y) ∈ X × Y : y ∈ T(x)} and the inverse map of T by T−1(y) := {x ∈ X : y ∈ T(x)}
for all y ∈ Y .

Let x ∈ dom(T). The limsup of T at x is given by:

Limsup
x→x

T(x) :=
{

lim
n→+∞ x∗

n

∣∣∣∣ (x∗
n)n converges and for all n ∈ N,

there exists xn ∈ X with xn → x and x∗
n ∈ T(xn)

}
.

Let K ⊂ X be a closed subset in X and x ∈ K , we define the Fréchet normal cone, also known as
the regular normal cone, by:

N̂(x,K) :=
⎧⎨
⎩x∗ ∈ X : lim sup

x′ K→x

〈x∗, x′ − x〉
‖x′ − x‖ ≤ 0

⎫⎬
⎭ .

The limiting normal cone, also known as the normal cone of Mordukhovich, is defined by:

NL(x,K) := Limsup
x K→x

N̂(x,K).

If K is a convex set, then NL(x,K) = N(x,K), where N(x,K) has been defined in (1).
Let T : X ⇒ Y be a set-valued mapping and (x, ȳ) ∈ Gr(T). The coderivative D∗T(x|ȳ) : Y ⇒ X

is given by:

∀y∗ ∈ Y , D∗T(x|ȳ)(y∗) := {x∗ ∈ X : (x∗,−y∗) ∈ NL((x, ȳ), Gr(T))}

The coderivative is related to the Jacobian of a strictly differentiable mapping, as the following
proposition shows us. For a single-valued map f , the notation D∗f (x)(y∗) means D∗f (x|f (x))(y∗).
Proposition 3.1: [9, Proposition 2.5] Let f : R

p → R
q, with p, q ∈ N

∗, be a strictly differentiable
single-valued mapping x ∈ R

p. Then, for all ξ ∈ R
q, we have

D∗f (x)(ξ) = Jf (x)	ξ ,

The following theorem gives a very important calculus rule for the coderivative.
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Theorem 3.2: [10, Theorem 1.62] Let f : R
p → R

q, with p, q ∈ N
∗, be a strictly differentiable

single-valued mapping at x ∈ R
p and let T : R

p ⇒ R
q be a multifunction. We then have:

∀ξ ∈ R
q, D∗(T + f )(x|ȳ + f (x))(ξ) = D∗T(x|ȳ)(ξ) + Jf (x)	ξ. (8)

The following defines the metric subregularity.
Definition 1: Let T : R

p ⇒ R
q with p, q ∈ N

∗, and (x̄, ȳ) ∈ Gr(T). We say that T is metrically
subregular at (x, ȳ) ∈ Gr(T) iff there exist constants r > 0, L ≥ 0 such that:

∀x ∈ B(x, r), dist(x,T−1(ȳ)) ≤ Ldist(ȳ,T(x))

Metric subregularity is closely related to the error bound property in the following sense: consider
z̄ ∈ 	, where 	 is the set of solutions of the equation (6), which means that 0 ∈ �(z̄), where � has
been defined in (4). The set-valued mapping � is metrically subregular at (z̄, 0) if and only if there
exist constants r > 0, L ≥ 0 such that:

∀z ∈ B(z̄, r), dist(z,�−1(0)) ≤ Ldist(0,�(z))

Since �−1(0) = 	, � is metrically subregular at (z̄, 0) if and only if the following local error bound
property

∀z ∈ B(z̄, r), dist(z,	) ≤ Ldist(0,�(z))

holds on.
The coderivative gives a criterion for metric regularity which is a stronger property than metric

subregularity. In order to use the full power of this criterion, in the next section, we obtain some
sufficient conditions for metric Regularity; then, we deduce the metric subregularity and an error
bound property. The following defines the metric regularity.
Definition 2: Let T : R

p ⇒ R
q with p, q ∈ N

∗, and (x̄, ȳ) ∈ Gr(T). We say that T is metrically
regular near (x, ȳ) ∈ Gr(T) iff there exist constants r > 0, L ≥ 0 such that:

∀y ∈ B(ȳ, r), ∀x ∈ B(x, r), dist(x,T−1(y)) ≤ Ldist(y,T(x))

Taking y = ȳ in Definition 2, we easily verify that metric regularity implies metric subregularity.
The coderivative criterion for metric regularity requires that the set-valued mapping has a local

closed graph at the reference point. The following lemma shows that the set-valued mapping � has
a closed graph.
Lemma 3.3: The set-valued mapping � has a closed graph.
Proof: Let (zn, dn)n ∈ (Gr(�))N be a convergence sequence to a limit (z̄, d).We show that d ∈ �(z̄).
We can write dn = (d1n, d2n), with d1n ∈ T(zn) and

d2n =
⎛
⎜⎝
min{λ1n,−g1(x1n, x−1

n )}
...

min{λpn,−gp(xpn, x
−p
n )}

⎞
⎟⎠ .

By continuity of g , we have

d
2 =

⎛
⎜⎝
min{λ̄1,−g1(x1, x−1)}

...

min{λ̄p,−gp(xp, x−p)}

⎞
⎟⎠ .
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Writing d1n = (d1,νn )ν=1,...,p, with d1,νn ∈ R
nν
, we have, for each player ν

d1,νn ∈ ∂xν θν(xν
n , x

−ν
n ) + Jxν gν(xν

n , x
−ν
n )	λν

n,

thus
d1,νn − Jxν gν(xν

n , x
−ν
n )	λν

n ∈ ∂xν θν(xν
n , x

−ν
n ).

In order to simplify the notation, let us denote

d̃1,νn = d1,νn − Jxν gν(xν
n , x

−ν
n )	λν

n.

For all yν ∈ R
nν
, for all n ∈ N, we have

〈d̃1,νn , yν − xν
n〉 ≤ θν(yν , x−ν

n ) − θν(xν
n , x

−ν
n ).

Passing to the limit when n → +∞, and denoting

d̃1,ν = d
1,ν − Jxν gν(xν , x−ν)	λ̄ν ,

we obtain that
d̃1,ν ∈ ∂xν θν(xν , x−ν).

Finally, we have d
1 ∈ T(z̄), which permits us to conclude that d ∈ �(z̄), thus � has a closed graph.

�
It is the local closedness of the graph of� at the reference point that is important for the application

of the coderivative criterion formetric regularity due toMordukhovich. Since it is a direct application
of a result in [9], we do not give the proof.
Theorem 3.4: [9, Corollary 3.8] Let z̄ ∈ 	. The set-valued mapping � defined by (4) is metrically
regular around (z̄, 0) if and only if for all ξ ∈ R

n+m, 0 ∈ D∗�(z̄|0)(ξ) implies ξ = 0.
In Section 5, we study the stability of the GNEP with respect to a parameter in terms of calmness,

which means we give some sufficient condition for the solution map of GNEP depending on a
parameter to be calm. The calmness is defined as follows.
Definition 3: Let T : U ⇒ R

q with q ∈ N
∗ and (U , δ) a metric space. Let (x̄, ȳ) ∈ Gr(T). We say

that T is calm at (x̄, ȳ) iff there exist r, L > 0 such that for all x ∈ B(x̄, r), we have

T(x) ∩ B(ȳ, r) ⊂ T(x) + B(0, Lδ(x, x)).

It is well known that the metric subregularity of a set-valued mapping T at (x, ȳ) ∈ Gr(T) is
equivalent to the calmness of T−1 at (ȳ, x) (see e.g. [17, Theorem 3H.3]). In the same way, the metric
regularity of a set-valued mapping T at (x, ȳ) ∈ Gr(T) is equivalent to the Aubin property of T−1

at (ȳ, x) (the Aubin property, which is also known as Lipschitz-like and pseudo-Lipschitz, is not
defined here because we do not use this notion in this paper; for the proof of equivalence, see e.g. [17,
Theorem 3E6]). We precise that the Aubin property is characterized by the Mordukhovich criterion
(see e.g. [10]).

4. Metric regularity properties for the Generalized Nash Equilibrium Problem under
assumption of strict complementarity

In this section, we provide some results about the metric regularity and the metric subregularity for
the set-valued mapping�, and deduce an error bound property for the GNEP. The proofs follow the
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path of the articles of Facchinei et al. (see e.g. [2,3]) and the article of Izmailov and Solodov [4]. First,
we define some sets of indices.

We define the two sets of indices I := {1, . . . ,m}, withm :=
p∑

ν=1

mν , and

J := {(ν, j) : ν ∈ {1, . . . , p} , j ∈ {1, . . . ,mν}}.

Let us define the mapping ϕ : J → I by

∀ν ∈ {1, . . . , p}, ∀j ∈ {1, . . . ,mν}, ϕ(ν, j) :=
∑
μ<ν

mμ + j (9)

with the convention ∑
μ<1

mμ := 0.

We observe that ϕ is a bijection from J to I , and it is strictly increasing for the lexicographic order,
that is for all (ν1, j1) ∈ J , for all (ν2, j2) ∈ J ,

ν1 < ν2 or [ν1 = ν2 and j1 < j2] =⇒ ϕ(ν1, j1) < ϕ(ν2, j2).

Therefore, we can define the family of functions (g̃i)i∈I with g̃i : R
n → R satisfying:

∀i ∈ I , g̃i := gν
j where (ν, j) := ϕ−1(i). (10)

We can observe that equality (10) implies that for all (ν, j) ∈ J , gν
j = g̃ϕ(ν,j).

This bijection allows us to write (gν)ν=1,...,p = (g̃i)i∈I .
Example 4.1: Consider the following Nash game:
Player 1:

min
x1

θ1(x1, x2) s. t. g11 (x) ≤ 0, g12 (x) ≤ 0

and
Player 2:

min
x2

θ2(x1, x2) s. t. g21 (x) ≤ 0, g22 (x) ≤ 0, g23 (x) ≤ 0

We have I = {1, 2, 3, 4, 5}, J = {(1, 1), (1, 2), (2, 1), (2, 2), (2, 3)} and, sincem1 = 2, we have:

ϕ(1, 1) = 1, ϕ(1, 2) = 2, ϕ(2, 1) = 3, ϕ(2, 2) = 4, ϕ(2, 3) = 5.

In this case:

g̃1(x) = g11 (x), g̃2(x) = g12 (x), g̃3(x) = g21 (x), g̃4(x) = g22 (x), g̃5(x) = g23 (x).

Let us define the sets of active indices, at x ∈ R
n,

A(x) := {i ∈ I : g̃i(x) = 0} (11)

and, for all ν ∈ {1, . . . , p},

Aν(x) := {j ∈ {1, . . . ,mν} : gν
j (x) = 0} = {j ∈ {1, . . . ,mν} : ϕ(ν, j) ∈ A(x)}.
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For every set of indices β ⊂ {1, . . . ,m} and every player ν, we define the set βν of indices corre-
sponding to ν which contribute to β :

βν := {j ∈ {1, . . . ,mν} : ϕ(ν, j) ∈ β} (12)

with ϕ defined in (9).
We introduce the notation C(A(x)) := I \ A(x), that is

C(A(x)) = {i ∈ I : g̃i(x) �= 0}. (13)

In what follows, when we fix an element z̄ = (x, λ̄), we use the notations A := A(x), C(A) :=
C(A(x)) and Aν := Aν(x). Moreover, for any vector Z ∈ R

q with q ∈ N
∗ and for any set of indices

J ⊂ {1, . . . , q}, the notation ZJ is defined as follows:

ZJ := (Zj)j∈J . (14)

The notation ZJ > 0 means Zj > 0, for all j ∈ J .
We say that the strict complementarity assumption holds at z̄ ∈ 	 if for all i ∈ I , λ̄i > 0 or

g̃i(x) < 0. Therefore, the function z → (min{λi,−g̃i(x)})i∈I is C2 in a neighbourhood of z̄, so it is
strictly differentiable.

Let us define the functions �1 : R
n+m ⇒ R

n+m and �2 : R
n+m → R

n+m by

�1(z) := F(x) × {0m} , �2(z) :=

⎛
⎜⎜⎜⎝

G(x, λ)

min{λ1,−g1(x)}
...

min{λp,−gp(x)}

⎞
⎟⎟⎟⎠ (15)

where min{a, b} := (min{ai, bi})i=1,...,q if a, b ∈ R
q and F, G is defined as follows:

F(x) := ∂x1θ
1(x1, x−1) × · · · × ∂xpθ

p(xp, x−p) (16)

and

G(x, λ) :=
⎛
⎜⎝
Jx1g1(x1, x−1)	λ1

...

Jxpgp(xp, x−p)	λp

⎞
⎟⎠ (17)

Observe that�(z) = �1(z) + �2(z). Under the strict complementarity assumption, the function
�2 is strictly differentiable at z̄; therefore,

D∗�(z̄|0)(ξ) = D∗�1(z̄| − �2(z̄))(ξ) + J�2(z̄)	ξ. (18)

Moreover, we can observe that

Gr(�1) = {(x, λ, y, 0) ∈ R
n × R

m × R
n × R

m : (x, y) ∈ Gr(F)}.

Therefore, for all x ∈ R
n, λ ∈ R

m and y ∈ F(x), we have:

NL((x, λ, y, 0), Gr(�1)) = {(x∗, 0, ξ1, ξ2)|(x∗, ξ1) ∈ NL((x, y), Gr(F)) , ξ2 ∈ R
m}

which implies that for any x ∈ R
n, λ ∈ R

m and y ∈ F(x), we have, for all ξ = (ξ1, ξ2) ∈ R
n × R

m:

D∗�1((x, λ)|(y, 0))(ξ) = D∗F(x|y)(ξ1) × {0m}. (19)
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Before giving the first result about the existence of an error bound for the GNEP, we provide a
technical lemma.
Lemma 4.2: Let z̄ ∈ 	 and β ⊂ A such that λ̄β > 0, where the meaning of λ̄β , when β is a set, is
given by (14).

Define the set-valued mapping �β : R
n+m ⇒ R

n+|β|+|C(A)| by

�β(z) :=
(

T(z)
(min{λi,−g̃i(x)})i∈β∪C(A)

)
.

We consider the set 	β := {z ∈ R
n+m : 0 ∈ �β(z)}. We assume that the following condition holds

0 ∈ D∗F(x| − G(x, λ̄))(ξ1) + JxG(x, λ̄)	ξ1 − J g̃β(x)	ξ2
∀ν ∈ {1, . . . , p} , Jxν gν

βν (x)ξν
1 = 0 if βν �= ∅

}
⇒ ξ = 0, (20)

with βν defined in (12), ξ1 = (ξν
1 )ν=1,...,p and ξν

1 ∈ R
nν .

Then, the set-valued mapping �β is metrically regular near (z̄, 0).
Proof: Let ξ := (ξ1, ξ2, ξ3) ∈ R

n × R
|β| × R

|C(A)|. We show that 0 ∈ D∗�β(z̄|0)(ξ) implies ξ = 0.
We first observe that λ̄β > 0 implies the existence of a real r > 0 such that after some permutations
of the coordinates of (g̃i)i∈I , for all z := (x, λ) ∈ B(z̄, r),

�β(z) =
⎛
⎝ T(x, λ)

−g̃β(x)
λC(A)

⎞
⎠ = �1(z) +

⎛
⎝G(x, λ)

−g̃β(x)
λC(A)

⎞
⎠

where �1 has been defined in (15). We introduce �2,β(z) :=
⎛
⎝G(x, λ)

−g̃β(x)
λC(A)

⎞
⎠.

Therefore, by the above equality, (19) and by [10, Theorem 1.62], we obtain the following
estimations of D∗�β(z̄|0)(ξ):

D∗�β(z̄|0)(ξ) = D∗�1(z̄| − �2,β(z̄))(ξ) + J�2,β(z̄)	ξ

= D∗F(x| − G(x, λ̄))(ξ1) × {0m}

+
(
JxG(x, λ)	 −J g̃β(x)	 0
JλG(x, λ̄)	 0 I	C(A)

)⎛
⎝ ξ1

ξ2
ξ3

⎞
⎠

= (D∗F(x| − G(x, λ̄))(ξ1) + JxG(x, λ̄)	ξ1 − J g̃β(x)	ξ2)

× {JλG(x, λ̄)	ξ1 + I	C(A)ξ3}.

with IC(A) ∈ R
m×|C(A)| the matrix satisfying, for all y ∈ R

m, IC(A)y = yC(A). This matrix satisfies the
following properties:

∀y ∈ R
|C(A)|, (I	C(A)y)A = 0 and (I	C(A)y)C(A) = y. (21)

Suppose that 0 ∈ D∗�β(z̄|0)(ξ). This implies that

0 ∈ D∗F(x| − G(x, λ̄))(ξ1) + JxG(x, λ̄)	ξ1 − J g̃β(x)	ξ2 (22)

and
JλG(x, λ̄)	ξ1 + I	C(A)ξ3 = 0. (23)
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Since (I	C(A)ξ )A = 0, we have (I	C(A)ξ )β = 0 because β ⊂ A. Therefore, we have (Jλ
G(x, λ̄)	ξ1)β = 0.

An easy calculus permits us to obtain that

(JλG(x, λ̄)	ξ1)β =

⎛
⎜⎜⎝
Jx1g1β1(x)ξ 11

...

Jxpg
p
βp(x)ξ

p
1

⎞
⎟⎟⎠ .

Finally, the condition (JλG(x, λ̄)ξ1)
	
β = 0 is reduced to

∀ν ∈ {1, . . . , p} , Jxν gν
βν (x)ξν

1 = 0. (24)

Therefore, from (22) and (24), assumption (25) implies that ξ1 = 0 and ξ2 = 0.
Since ξ1 = 0, we have I	C(A)ξ3 = 0 by (23); then, ξ3 = (I	C(A)ξ3)C(A) = 0 by (21). Finally, ξ = 0.
Therefore, by [9, Corollary 3.8], �β is metrically regular near (z̄, 0). �
We are now in a position to give a result for the metric regularity of �.

Theorem 4.3: Suppose that the strict complementarity assumption holds for a given z̄ ∈ 	, and that

∀ξ := (ξ1, ξ2) ∈ R
n × R

|A|,

0 ∈ D∗F(x| − G(x, λ̄))(ξ1) + JxG(x, λ̄)	ξ1 − J g̃A(x)	ξ2
∀ν ∈ {1, . . . , p}, Jxν gν

Aν (x)ξν
1 = 0 if Aν �= ∅

}
⇒ ξ = 0, (25)

with ξ1 = (ξν
1 )ν=1,...,p and ξν

1 ∈ R
nν .

Then, the set-valued mapping � is metrically regular near (z̄, 0).
Proof: We can observe that A ∪ C(A) = {1, . . . ,m} and λ̄A > 0 since the assumption of strict
complementarity holds. Therefore, the above theorem is a direct consequence of Lemma 4.2 with
β = A. �

Since metric regularity implies metric subregularity, the assumptions of Theorem 4.3 imply that
� is metrically subregular at (z̄, 0), which implies that the following error bound property holds at
the point z̄:

∃r, L > 0, ∀z ∈ B(z̄, r), dist(z,	) ≤ Ldist(0,�(z)).

In the case where the functions {θν : ν = 1, . . . , p} are C2 around x, we can observe that the
assumption (25) is equivalent to the non-singularity of the matrix(

JxL(x, λ) EA(x)
J g̃A(x) 0

)

with EA(x) := diagblock{∇xν gν
Aν (x) : ν = 1, . . . , p}, that is a standard assumption in the study of

stability of the GNEP (see e.g. [2–4]).
When two or more players share the same active constraint, then it is impossible that assumption

(25) holds because J g̃A(x)	 has two or more equal columns. This situation occurs when the players
have to share the same resource.

Consider z̄ = (x, λ̄) ∈ 	. As in [2], we can consider a family of functions (g̃i)i∈α with α ⊂ A
satisfying the following property: for all (i, j) ∈ α × α, if i �= j, then g̃i �= g̃j in any neighbourhood of
x, and for any i ∈ A \ α, there exists j ∈ α such that g̃i = g̃j in a neighbourhood of x.

What follows permits us to formally define sets of indices α satisfying the above property. We first
define J (x) as the sets of indices such that two active constraint functions cannot be equal in any
neighbourhood of x.
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J (x) := {β ⊂ A : ∀(i, j) ∈ β × β , i �= j , g̃i �= g̃j in any neighbourhood of x}.

The sets of indices that we wanted to define formally are the elements of J (z̄) maximizing the
cardinality; more precisely,

Q(x) := {α ∈ J (x) : |α| = max
β∈J (x)

|β|}. (26)

We can observe that for all α ∈ Q(x), if α �= A, then there exists r > 0 such that for all i ∈ A \ α,
there exists j ∈ α satisfying g̃i = g̃j on B(x, r).
Theorem 4.4: Let z̄ ∈ 	. Suppose there exists a set of indices α ∈ Q(x), with Q(x) defined in (26),
such that λ̄α > 0 and the following condition holds:

∀ξ = (ξ1, ξ2) ∈ R
n × R

|α|,

0 ∈ D∗F(x| − G(x, λ̄))(ξ1) + JxG(x, λ̄)	ξ1 − J g̃α(x)	ξ2
∀ν ∈ {1, . . . , p}, Jxν gν

αν (x)ξν
1 = 0 if αν �= ∅

}
⇒ ξ = 0, (27)

with ξ1 = (ξν
1 )ν=1,...,p, ξν

1 ∈ R
nν and αν defined by (12).

Then, the set-valued mapping � is metrically subregular at (z̄, 0).
Proof: Define �α : R

n+m ⇒ R
n+|α|+|C(A)| by

�α(x, λ) :=
⎛
⎝ T(x, λ)

−g̃α(x)
λC(A)

⎞
⎠

Consider the set of indices I ′ := α ∪ C(A). We can observe that, after some permutations of the
coordinates of (g̃i)i∈I , for all z ∈ R

n+m in some neighbourhood of z̄,

�α(z) =
(

T(z)
(min{λi,−g̃i(x)})i∈I ′

)

because the function g̃i is continuous at x for any i ∈ I and λ̄i > 0 for any i ∈ α. The strict
complementarity assumption holds for the set of indices I ′ at the point z̄ (i.e. for all i ∈ I ′, g̃i(x) < 0
or λ̄i > 0); then, the assumption (27) implies, by Lemma 4.2, that�α is metrically regular near (z̄, 0),
so �α is metrically subregular at (z̄, 0). Therefore, we can choose r1 > 0 small enough such that for
all z ∈ B(z̄, r1),

dist(z,	α) ≤ Ldist(0,�α(z))

where 	α := �−1
α (0). We can easily verify that dist(0,�α(z)) ≤ dist(0,�(z)); thus, for all z ∈

B(z̄, r1), the following inequality holds:

dist(z,	α) ≤ Ldist(0,�(z)). (28)

We now prove that there exists a real r2 > 0 such that for all z ∈ B(z̄, r2), dist(z,	α) = dist(z,	).
We first show that there exists a real r > 0 such that 	 ∩ B(z̄, r) = 	α ∩ B(z̄, r).

Let r > 0 be such that for all (x, λ) ∈ B(z̄, r), λα > 0 and g̃C(A)(x) < 0 (r exists since by
assumption, λ̄α > 0 and g̃ is continuous at x). For all z ∈ 	∩B(z̄, r), we have g̃α(x) = 0 since λα > 0,
and λC(A) = 0 since g̃C(A)(x) < 0. Therefore, 	 ∩ B(z̄, r) ⊂ 	α ∩ B(z̄, r). We must still show that
	α ∩ B(z̄, r) ⊂ 	 ∩ B(z̄, r) for r small enough.

Suppose r is small enough such that for all i ∈ A \ α, there exists j ∈ α such that g̃i(x) = g̃j(x), for
all (x, λ) ∈ B(z̄, r) (we can choose such a real r because α ∈ Q(x)).
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Let z ∈ 	α ∩ B(z̄, r). We know that 0 ∈ T(z), g̃α(x) = 0 and λC(A) = 0; thus, we have to prove
that g̃A\α(x) = 0. For all i ∈ A \ α, there exists j ∈ α such that g̃i(x) = g̃j(x) = 0, which shows that
z ∈ 	 ∩ B(z̄, r).

Take r2 < r/2 and z ∈ B(z̄, r2). Since z̄ ∈ 	α , dist(z,	α) ≤ r2. Let w ∈ 	α be such that
‖z − w‖ = dist(z,	α). We have ‖z − w‖ ≤ r2; thus, ‖w − z̄‖ ≤ ‖w − z‖ + ‖z − z̄‖ ≤ 2r2 < r and
then w ∈ 	α ∩ B(z̄, r). Therefore, we obtain

dist(z,	α) = min
w∈	α∩B(z̄,r)

‖z − w‖, ∀z ∈ B(z̄, r2).

In the same way, we have

dist(z,	) = min
w∈	∩B(z̄,r)

‖z − w‖, ∀z ∈ B(z̄, r2).

Since 	 ∩ B(z̄, r) = 	α ∩ B(z̄, r), for all z ∈ B(z̄, r2), dist(z,	α) = dist(z,	). Finally, from (28) we
obtain that

∀z ∈ B(z̄, min{r1, r2}) , dist(z,	) ≤ Ldist(0,�(z)),

which proves that � is metrically subregular at (z̄, 0) since 	 = �−1(0). �
Wecanobserve that the previous theoremdoes not imply themetric regularity of� at the reference

point, as shows the following example.
Example 4.5: Consider the following Nash game:
Player 1:

min
x1

x1 s. t. x1 + x2 ≥ 0

and
Player 2:

min
x2

0.5|x2| s. t. x1 + x2 ≥ 0

The set-valued mapping � is:

�(x, λ) =

⎛
⎜⎜⎝

1 − λ1
0.5∂| · |(x2) − λ2
min{−x1 − x2, λ1}
min{−x1 − x2, λ2}

⎞
⎟⎟⎠

We have 0 ∈ �(z̄) with z̄ = (0, 0, 1, 0). We first verify that the hypotheses of Theorem 4.4 are
satisfied at z̄. Since λ̄1 > 0, we choose α = {1}. Since α1 = {1} and α2 = ∅, where αν has been defined
in (12), the assumptions of Theorem 4.4 are reduced

∀ξ = (ξ1, ξ2) ∈ R
2 × R,

0 ∈ D∗F(0, 0|1, 0)(ξ1) +
(

ξ2
ξ2

)
ξ 11 = 0

⎫⎬
⎭ ⇒ ξ = 0,

where F(x1, x2) = {1} × ∂(| · |)(x2). We have:

D∗F(0, 0|1, 0)(ξ1) =
{ {0} × R if ξ 21 = 0

∅ otherwise

Therefore, ξ2 = 0 and ξ 21 = 0, which implies by Theorem 4.4 that � is metrically subregular at
(0, 0, 1, 0).
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We now prove that � is not metrically regular around (0, 0, 1, 0). Consider y = (0, 0, 0, ε), with
ε > 0, and z = (x, λ) ∈ �−1(y). We must have λ1 = 1. Since min{−x1 − x2, λ1} = 0 and λ1 > 0,
we have x1 + x2 = 0. But in this case ε = min{−x1 − x2, λ2} ≤ 0 which contradicts ε > 0, then
�−1(y) = ∅, which implies that dist(z,�−1(y)) = +∞, for all z ∈ R

4, which implies that the
inequality

dist(z,�−1(y)) ≤ Ldist(y,�(z))

cannot occur with any L > 0 and z ∈ R
4; therefore, � is not metrically regular around (0, 0, 1, 0).

5. Application to stability in the GNEP

In this section, we suppose that the functions θν and gν depend on a parameter u. More precisely,
let us consider a metric space (U , δ), and suppose that θν : R

n × U → R and gν : R
n × U → R

mν
.

Moreover, we make the assumption that θν is locally Lipschitz on R
n × U , gν(·, u) is C2 on R

n and
for all u ∈ U gν and ∇xν gν are continuous on R

n × U .
Define the set-valued mapping S : U ⇒ R

n by:

S(u) :=
{
x ∈ R

n

∣∣∣∣∣
∀ν ∈ {1, . . . , p} , xν ∈ Xν(x−ν , u) and
θν(xν , x−ν , u) = min

xν∈Xν (x−ν ,u)
θν(xν , x−ν , u)

}
(29)

with, for all ν ∈ {1, . . . , p},

Xν(x−ν , u) := {xν ∈ R
nν : gν(xν , x−ν , u) ≤ 0}. (30)

For every player ν ∈ {1, . . . , p}, we introduce the Lagrangian function
Lν : R

nν × R
n−ν × R

mν × U → R which is given by

Lν(xν , x−ν , λν , u) := θν(xν , x−ν , u) +t λνgν(xν , x−ν , u).

Therefore, x̄ = (x̄1, . . . , x̄p) ∈ S(u) if and only if there exists a vector
λ̄ = (λ̄1, . . . , λ̄p) ∈ R

m satisfying, for all ν ∈ {1, . . . , p},

0 ∈ ∂xνL(x̄ν , x̄−ν , λ̄ν , u) and 0 ≤ λ̄ν ⊥ ( − gν(x̄ν , x̄−ν , u)) ≥ 0 (31)

We introduce the set-valued mapping � : R
n × R

m × U ⇒ R
n × R

m defined by

∀z = (x, λ) ∈ R
n × R

m, �(z, u) :=

⎛
⎜⎜⎜⎝

T(z, u)
min{λ1,−g1(x1, x−1, u)}

...

min{λp,−gp(xp, x−p, u)}

⎞
⎟⎟⎟⎠ (32)

with
T(z, u) := ∂x1L

1(x1, x−1, λ1, u) × · · · × ∂xpLp(xp, x−p, λp, u). (33)

A vector x̄ = (x̄1, . . . , x̄p) ∈ S(u) if and only if there exists a vector
λ̄ = (λ̄1, . . . , λ̄p) ∈ R

m satisfying

0 ∈ �(z̄, u) with z̄ = (x̄, λ̄). (34)

We finally introduce the solution map 	 : U ⇒ R
n+m by

	(u) := {
z ∈ R

n+m : 0 ∈ �(z, u)
}
. (35)
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We introduce the set of Lagrange multipliers at any point (u, x) ∈ Gr(S):

∀(u, x) ∈ Gr(S), �(x, u) := {λ ∈ R
m : (x, λ) ∈ 	(u)}. (36)

The following lemma shows that 	 has a closed graph.
Lemma 5.1: The set-valued mapping 	 has a closed graph.
Proof: Let a sequence (un, zn)n ∈ (Gr(	))N converge to (ū, z̄). For all n ∈ N,
0 ∈ �(zn, un). In the same way, as in the proof of Lemma 3.3, using the continuity of the functions
θν , gν and ∇xν gν , we can prove that � has a closed graph. Since (zn, un, 0)n ∈ (Gr(�))N, we deduce
that (z̄, ū, 0) ∈ Gr(�), thus (ū, z̄) ∈ Gr(	), proving that 	 has a closed graph. �

The following proposition relates an error bound property around z̄ ∈ 	(ū) with the calmness of
	 at (ū, x):
Proposition 5.2: Let ū ∈ U and z̄ ∈ 	(ū). Suppose that there exist positive reals r, r1, r2, ε, L, L′
such that the following assumptions hold:

(1) For all z ∈ B(z̄, r),

dist(z,	(ū)) ≤ Ldist(0,�(z, ū)).

(2) For all z ∈ B(z̄, r1), for all u ∈ B(ū, r2),

�(z, u) ∩ B(0, ε) ⊂ �(z, ū) + B(0, L′δ(u, ū)). (37)

Then, for all u ∈ B(ū, r2),

	(u) ∩ B(z̄, min{r, r1}) ⊂ 	(ū) + B(0, LL′δ(u, ū)).

Proof: Let u ∈ B(ū, r2), and z ∈ 	(u)∩B(z̄, min{r, r1}). One has 0 ∈ �(z, u); then, by assumption
(37), one has 0 ∈ �(z, ū) + B(0, L′δ(u, ū)). There exists d ∈ B(0, L′δ(u, ū)) such that d ∈ �(z, ū).
Finally, dist(z,	(ū)) ≤ Ldist(0,�(z, ū)) ≤ L‖d‖ ≤ LL′δ(u, ū). That concludes the proof. �

The following proposition gives a family of pay-off functions θν such that assumption (37) holds.
Proposition 5.3: Let ū ∈ U and z̄ ∈ 	(ū). Suppose that there exists a constant r > 0 such that for
all players ν, there exist two functions θν,1 : B(x, r) → R and θν,2 : B(x, r) × B(ū, r) → R such that
θν,2(·, u) is differentiable on B(x, r) for all u ∈ B(ū, r) and for all x ∈ B(x, r), for all u ∈ B(ū, r), one
has

θν(x, u) = θν,1(x) + θν,2(x, u).

Assume ∇xν θν,2, gν and ∇xν gν are locally Lipschitz on B(x, r) × B(ū, r). Then, assumption (37) holds.
Proof: For a better understanding of this proof, we recall that T(z, u) has been defined in (33).

For all (x, λ, u) ∈ B(x, r) × R
m × B(ū, r), for all players ν, we have

Lν(x, λν , u) = θν,1(x) + θν,2(x, u) +t λνgν(x, u) = Lν,1(x) + Lν,2(x, λ, u)

where Lν,1(x) := θν,1(x) and Lν,2(x, λ, u) := θν,2(x, u) +t λνgν(x, u). By assumption, Lν,2 is C2 on
B(x, r) × R

m × B(ū, r); thus, we have, for all (z, u) = (x, λ, u) ∈ B(x, r) × R
m × B(ū, r):

T(z, u) = (∂x1L
1,1(x1, x−1) + ∇x1L

1,2(x1, x−1, λ1, u)) × · · · ×
(∂xpLp,1(xp, x−p) + ∇xpLp,2(xp, x−p, λp, u))

= T1(x) + T2(x, λ, u)
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with
T1(x) := ∂x1L

1,1(x1, x−1) × · · · × ∂xpLp,1(xp, x−p)

and

T2(x, λ, u) :=
⎛
⎜⎝

∇x1L1,2(x1, x−1, λ1, u)
...

∇xpLp,2(xp, x−p, λp, u

⎞
⎟⎠

Let the set-valued mapping�1 : B(x, r) × R
m ⇒ R

n+m and the single-valued map �2 : B(x, r) ×
R
m × B(ū, r) → R

n+m be defined, for all (z, u) = (x, λ, u) ∈ B(x, r) × R
m × B(ū, r), by:

�1(z) := T1(x) × {0m} and �2(z, u) :=

⎛
⎜⎜⎜⎝

T2(z, u)
min{λ1,−g1(x1, x−1, u)}

...

min{λp,−gp(xp, x−p, u)}

⎞
⎟⎟⎟⎠

We observe that
�(z, u) = �1(z) + �2(z, u).

Since ∇xν θν,2, gν and ∇xν gν are locally Lipschitz on B(x, r) × B(ū, r), we deduce that �2 is locally
Lipschitz around (z̄, ū).

Therefore, there exist r′, L > 0 such that r′ < r and for all z ∈ B(z̄, r′), for all u ∈ B(ū, r′),
�2(z, u) ∈ �2(z, ū) + B(0, Lδ(u, ū)). Adding �1(z), we finally obtain that

�(z, u) ⊂ �(z, ū) + B(0, Lδ(u, ū)).

�
We can directly deduce a result of calmness for the KKT system associated with the GNEP.

Proposition 5.4: Let ū ∈ U and z̄ ∈ 	(ū). Suppose that the assumptions of Theorem 4.3 or the as-
sumptions ofTheorem4.4are satisfiedat z̄ for theunperturbated gameG(ū) = ((θν(·, ū))ν , (gν(·, ū))ν).
Suppose moreover that assumption (37) is satisfied at (ū, z̄). Then, there exist constants ε, r, L > 0 such
that, for all u ∈ B(ū, ε), one has:

	(u) ∩ B(z̄, r) ⊂ 	(ū) + B(0, Lδ(u, ū)). (38)

Proof: From Theorems 4.3 and 4.4, � is metrically subregular at (z̄, 0); then, Assumption 1 in
Proposition 5.2 holds. Since Assumption (37) is satisfied at (ū, z̄), we deduce from Proposition 5.2
that 	 is calm at (ū, z̄). �

A natural question is to ask if the result of calmness of the KKT system implies the calmness of the
primal problem. The next proposition gives an answer to this question under the assumption that
Slater condition is satisfied.
Proposition 5.5: Let ū ∈ U and x ∈ S(ū) be such that for any λ̄ ∈ �(x, ū), there exist constants
r, ε > 0, L ≥ 0 such that, for all u ∈ B(ū, ε),

	(u) ∩ B(z̄, r) ⊂ 	(ū) + B(0, Lδ(u, ū)),

with z̄ = (x, λ̄). Moreover, we suppose that the functions θν are locally Lipschitz on R
n × U and for

every player ν ∈ {1, . . . , p}, there exists an element yν such that

gν(yν , x−ν , ū) < 0.
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Then, there exist constants r′, ε′ > 0, L′ ≥ 0 such that, for all u ∈ B(ū, ε′),

S(u) ∩ B(x, r′) ⊂ S(ū) + B(0, L′δ(u, ū)).

Proof: Wefirst observe that if S is not calm at the point (ū, x), then there exists a sequence (un, xn)n ∈
Gr(S)N such that (un, xn) → (ū, x), un �= ū for any integer n and limn→+∞

dist(xn, S(ū))
δ(un, ū)

= +∞.

Therefore, if we show that for any sequence (un, xn)n ∈ Gr(S)N such that (un, xn) → (ū, x) and un �=
ū for any integer n, there exists a subsequence (unk , xnk )k such that the sequence

(
dist(xnk , S(ū))

δ(unk , ū)

)
k

is bounded; then, S is calm at (ū, x). That is the idea of the proof.
Let (un, xn)n ∈ Gr(S)N be such that (un, xn) → (ū, x) and un �= ū for any integer n. For every

n ∈ N, let λn ∈ �(xn, un). We show that the sequence (λn)n is bounded. Suppose that (λn)n is not
a bounded sequence. Then, there exists a subsequence (λnk)k and a player ν ∈ {1, . . . , p} such that
limk→+∞‖λν

nk‖ = +∞.

Since (xnk , λnk ) ∈ 	(unk ), one has

0 ∈ ∂xν θν(xν
nk , x

−ν
nk , unk ) + Jxν gν(xν

nk , x
−ν
nk , unk )

	λν
nk ,

and there exists an element vν
nk ∈ ∂xν θν(xν

nk , x
−ν
nk , unk ) such that

vν
nk + Jxν gν(xν

nk , x
−ν
nk , unk )

	λν
nk = 0.

Since the function θν is locally Lipschitz by assumption, the sequence (vν
nk)k is bounded; thus,

limk→+∞
vν
nk

‖λν
nk‖

= 0. Dividing by ‖λν
nk‖ in the above equality, and taking a subsequence such that

the sequence

(
λν
nkl

‖λν
nkl

‖

)
l

converges to an element λ̄ν , we obtain

Jxν gν(xν , x−ν , ū)	λ̄ν = 0. (39)

Let i /∈ Aν(x) since gν
i (x, ū) < 0 and gν

i is continuous at x; for all l large enough, onehas g
ν
i (xnkl , unkl ) <

0; thus, λν
i,nkl

= 0, and by passing at the limit, λ̄ν
i = 0. Therefore, equality (39) becomes

∑
i∈Aν (x)

λ̄ν
i ∇gν

i (x, ū) = 0,

with λ̄ν
i ≥ 0, for all i ∈ Aν(x), since λν

i,nkl
≥ 0 for all i ∈ Aν(x) and l ∈ N.

By assumption, the Slater constraint qualification holds for player ν; thus, the Mangasarian–
Fromovitz constraint qualification holds at xν for player ν because gν(·, x−ν , ū) is a convex function
(see e.g. [18]). Therefore, the above equality implies that λ̄ν

i = 0, for all i ∈ Aν(x), which implies that
λ̄ν = 0. That is a contradiction with the equality ‖λ̄ν‖ = 1. We conclude that the sequence (λn)n is
bounded.

Take a subsequence (λnk )k converging to an element λ̄. Since by Lemma 5.1 	 has a closed graph
and (unk , xnk , λnk ) ∈ Gr(	), we deduce that (x, λ̄) ∈ 	(ū). By assumption, there exist constants
r, ε > 0, L ≥ 0 such that, for all u ∈ B(ū, ε),

	(u) ∩ B((x, λ̄), r) ⊂ 	(ū) + B(0, Lδ(u, ū)).
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Since unk ∈ B(ū, ε) and (xnk , λnk ) ∈ B((x, λ̄), r) for all k large enough, we have

dist((xnk , λnk ),	(ū))
δ(unk , ū)

≤ L.

Let (x, λ) ∈ R
n × R

m and (p1, p2) ∈ 	(ū) be such that

dist((x, λ),	(ū)) = ‖(x, λ) − (p1, p2)‖.

Since p1 ∈ S(ū), we have:

dist(x, S(ū)) ≤ ‖x − p1‖

=
√√√√ n∑

k=1

(xk − p1,k)2

≤
√√√√ n∑

k=1

(xk − p1,k)2 +
m∑
k=1

(λk − p2,k)2

= ‖(x, λ) − (p1, p2)‖
= dist((x, λ),	(ū)).

Therefore, for all k large enough, we have

dist(xnk , S(ū))
δ(unk , ū)

≤ L,

which proves that the sequence
(
dist(xnk ,S(ū))

δ(unk ,ū)

)
k
is bounded, and implies the calmness of S at

(ū, x). �

6. A generic example with a family of two-player games

In this section, we consider a two-player game. We suppose that the players 1 and 2 manage loss
functions θ1 : R

2 → R and θ2 : R
2 → R which have the following form:

θ1(x1, x2) = θ1,1(x1) + θ1,2(x1, x2), θ2(x1, x2) = θ2,1(x1) + θ2,2(x1, x2)

where for each player ν ∈ {1, 2}, θν,1 : R → R is a convex and piecewise C2 function and θν,2 :
R
2 → R is a convex and C2 function.
We suppose that the constraint set-valued mappings of the players are given by

X1(x2) = {x1 ∈ R | 0 ≤ x1 ≤ M1 , g(x1, x2) ≤ 0}

X2(x1) = {x2 ∈ R | 0 ≤ x2 ≤ M2 , g(x1, x2) ≤ 0},
which implies that each player solves the optimization problem:

Player 1: min
x1

θ1,1(x1) + θ1,2(x1, x2) subject to 0 ≤ x1 ≤ M1 and g(x1, x2) ≤ 0

Player 2: min
x2

θ2,1(x2) + θ2,2(x1, x2) subject to 0 ≤ x2 ≤ M2 and g(x1, x2) ≤ 0.
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This family of two-player games covers the Cournot duopoly games (which is a Cournot oligopoly
game with two firms). Actually, if θν,1(xν) = Cν(xν), where Cν is the cost function of firm ν, and
θν,2(xν , x−ν) = −xνp

(∑2
μ=1 x

μ
)
, where p is the unit price function, then we obtain an Cournot

duopoly game. The function g can represent a limitation of resources to which each firm is subjected.
For more information about the Cournot oligopoly games, see e.g. [11–13]. In [14], the authors use
the same tools of variational analysis and generalized differentiation as us in order to derive optimality
conditions for some related problems on Cournot–Nash equilibrium.

We suppose that g is a symmetric function in the following sense: for all (x1, x2) ∈ R
2, g(x1, x2) =

g(x2, x1). This means that in the case of Cournot duopoly games, each firm is affected in the same
way by the limitation of resources and implies that

∂g
∂x1

(
x1, x2

) = ∂g
∂x2

(
x1, x2

)
. (40)

We suppose that for each player ν ∈ {1, 2}, there exists a finite set D(ν) such that θν,1 is C2 on
R \ D(ν). For more clarity in what follows, we introduce the notation D(ν) = {aν

i | i = 1, . . . , qν},
bν,−
i = (θν,1)′(aν−

i ) and bν,+
i = (θν,1)′(aν+

i ), where for a convex function f : R → R, f ′(x+) (resp.
f ′(x−)) means limh→0+ f ′(x + h) (resp. limh→0− f ′(x + h)). We can observe that if xν ∈ D(ν), then
∂θν,1(xν) = [bν,−

i , bν,+
i ] where i ∈ {1, . . . , qν} satisfies xν = aν

i .
For each player ν ∈ {1, 2}, for each i ∈ {1, . . . , qν}, we introduce the notation dν+

i (resp. dν−
i )

defined as follows

dν+
i = lim

h→0+ (θν)′′(aν
i + h) (resp. dν−

i = lim
h→0− (θν)′′(aν

i + h))

We define the functions

g1(x) =
⎛
⎝ −x1
x1 − M1

g(x)

⎞
⎠ , g2(x) =

⎛
⎝ −x2
x2 − M2

g(x)

⎞
⎠ ,

and

g̃1(x) = −x1, g̃2(x) = x1 − M1, g̃3(x) = g(x), g̃4(x) = −x2, g̃5(x) = x2 − M2, g̃6(x) = g(x).

Each player solves the following optimization program

Player 1: min
x1

θ1,1(x1) + θ1,2(x1, x2) subject to g1(x) ≤ 0

Player 2: min
x2

θ2,1(x2) + θ2,2(x1, x2) subject to g2(x) ≤ 0

We define F : R
2 ⇒ R

2 as in (16), G : R
2 × R

6 → R
2 as in (17), � : R

2 × R
6 ⇒ R

2 × R
6 as

in (4).
Let us define the set-valued mapping F1 : R

2 ⇒ R
2 by

F1(x) = ∂θ1,1(x1) × ∂θ2,1(x2)

and the function F2 : R
2 → R

2 by

F2(x) =
(

∂θ1,2

∂x1 (x1, x2)
∂θ2,2

∂x2 (x1, x2)

)
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Observe that F = F1 + F2. The following lemma gives a calculus rule for D∗F1(x|ȳ)(y∗) for an
arbitrary x.
Lemma 6.1: Let x ∈ R

2 and ȳ ∈ F1(x). We have

D∗F1(x|ȳ)(y∗) = c1(x1, ȳ1, y∗,1) × c2(x2, ȳ2, y∗,2)

where for any ν ∈ {1, 2}, cν(xν , ȳν , y∗,ν) is defined as follows: suppose xν ∈ D(ν), let i ∈ {1, . . . , qν}
such that xν = aν

i ; then,

cν(xν , ȳν , y∗,ν) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∅ if bν−
i < ȳν < bν+

i and y∗,ν �= 0
R if y∗,ν = 0

[dν−
i y∗,ν ,+∞[ if ȳν = bν−

i and yν,∗ > 0
{dν−

i y∗,ν} if ȳν = bν−
i and yν,∗ < 0

] − ∞, dν+
i y∗,ν] if ȳν = bν+

i and yν,∗ < 0
{dν+

i y∗,ν} if ȳν = bν+
i and yν,∗ > 0

If xν /∈ D(ν), then cν(xν , ȳν , y∗,ν) = {(θν,1)′′(xν)y∗,ν}.
Proof: See Appendix 1. �

The following proposition gives sufficient conditions for the metric regularity of � for this two-
player game when the constraint g(x) ≤ 0 is not active. First, we introduce the following notations:
for an arbitrary x ∈ R

2 feasible point for GNEP, we write the matrix JF2(x)	 as

JF2(x)	 := E =
(
E11 E12
E21 E22

)

and also define E1 = (E11,E12) and E2 = (E21,E22).
Observe that if 0 < x1 < M1, 0 < x2 < M2 and g(x) < 0, then x is a solution of GNEP if and only if

0 ∈ F1(x)+F2(x), whichmeans that−∇x1θ
1,2(x1, x2) ∈ ∂θ1,1(x1) and−∇x2θ

2,2(x1, x2) ∈ ∂θ2,1(x2).
In the case where x1 = a1i with i ∈ {1, . . . , q1} (resp. x2 = a2j with j ∈ {1, . . . , q2}), this implies that
b1−i ≤ −∇x1θ

1,2(x1, x2) ≤ b1+i (resp. b2−j ≤ −∇x2θ
2,2(x1, x2) ≤ b2+j ). For each player ν, we define

dν as follows:

∗ If xν /∈ D(ν), then dν = (θν)′′(xν)

∗ If xν ∈ D(ν), xν = a1ν with i ∈ {1, . . . , qν} and bν−
i < −∇x1θ

1,2(xν , xν) < bν+
i , then

dν = +∞.
∗ If xν ∈ D(ν), xν = a1ν with i ∈ {1, . . . , qν} and bν−

i = −∇x1θ
1,2(xν , xν), then dν = dν−

i .
∗ If xν ∈ D(ν), xν = a1ν with i ∈ {1, . . . , qν} and −∇x1θ

1,2(xν , xν) = bν+
i , then dν = dν+

i .

Proposition 6.2: Let x be a solution of GNEP with 0 < x1 < M1 and 0 < x2 < M2 and g(x) < 0.
Suppose that x1 /∈ D(1) or x2 /∈ D(2). If E11 + d1 �= 0, E22 + d2 �= 0, (E11 + d1)(E22 + d2) > E12E21,
then � is metrically regular at (x, 06).
Proof: It is a direct consequence of Proposition A.1 given in the Appendix 1. �

The following proposition gives a sufficient condition in the case where g(x) = 0. For (x, λ̄) ∈
R
2 × R

6, we use the notations B = ∂g
∂x1 (x) = ∂g

∂x2 (x), and

E = JF2(x)	 + JxG(x, λ̄)	 =
(
E11 E12
E21 E22

)
.

For a better understanding, in the following proposition when (x, λ̄) is a solution of the KKT
system associated with GNEP and 0 < x1 < M1, 0 < x2 < M2, g(x) = 0, we denote by λ̄1 the
Lagrange multiplier associated with the constraint g̃3(x) = 0, and by λ̄2 the Lagrange multiplier
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associated with the constraint g̃6(x) = 0. Therefore, since the other constraints are not active, we
have λ̄ = (0, 0, λ̄1, 0, 0, λ̄2), −∇x1θ

1,2(x) − Bλ̄1 ∈ ∂θ1,1(x) and −∇x2θ
2,2(x) − Bλ̄2 ∈ ∂θ2,1(x). For

each player ν, we define dν as follows:

∗ If xν /∈ D(ν), then dν = (θν)′′(xν)

∗ If xν ∈ D(ν), xν = a1ν with i ∈ {1, . . . , qν} and bν−
i < −∇x1θ

1,2(xν , xν) − Bλ̄ν < bν+
i , then

dν = +∞.
∗ If xν ∈ D(ν), xν = a1ν with i ∈ {1, . . . , qν} and bν−

i = −∇x1θ
1,2(xν , xν)−Bλ̄ν , then dν = dν−

i .
∗ If xν ∈ D(ν), xν = a1ν with i ∈ {1, . . . , qν} and−∇x1θ

1,2(xν , xν)−Bλ̄ν = bν+
i , then dν = dν+

i .

The next proposition gives a sufficient condition for metric subregularity of � at z̄ = (x, λ̄); just
to precise, when (x, λ) is in a neighbourhood of (x, λ̄), we have:

�(x, λ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x1θ
1(x) × ∂x2θ

2(x) + G(x, λ)

λ1
λ2

min{−g(x), λ3}
λ4
λ5

min{−g(x), λ6}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Proposition 6.3: Let x be a solution of GNEP with 0 < x1 < M1 and 0 < x2 < M2 and g(x) = 0.
Let (0, 0, λ̄1, 0, 0, λ̄2) ∈ �(x) be Lagrange multipliers associated with the solution x of GNEP. We
suppose that B �= 0. If one of the following assumptions holds, then � is metrically subregular at
(x, 0, 0, λ̄1, 0, 0, λ̄2, 0).

(1) x1 /∈ D(1), λ̄1 > 0 and E22 + d2 > E12.
(2) x2 /∈ D(2), λ̄2 > 0 and E11 + d1 > E21

Proof: It is a direct consequence of Proposition A.2 given in Appendix 1. �
We apply these results to a Cournot game with two firms. In this Cournot game, each firm solves

the following GNEP:

Firm 1: min
x1

c1(x1) − x1p(x1 + x2) subject to 0 ≤ x1 ≤ M1 and g(x1, x2) ≤ 0

Firm 2: min
x2

c2(x2) − x2p(x1 + x2) subject to 0 ≤ x2 ≤ M2 and g(x1, x2) ≤ 0.

We suppose that the price function p is defined as the inverse of a linear demand curve:

p(y) = max (α − βy, 0)

and the function g(x1, x2) is the restriction of resources defined as

g(x1, x2) = μ(x1 + x2) − M

whereM is the quantity of available resources andμy is the quantity of resources needed for producing
quantity y. Naturally, we suppose that α,β ,μ,M > 0. Moreover, we suppose that M

μ
< α

β
, which

ensures that p is differentiable at x1 + x2 if g(x1 + x2) ≤ 0.
Using the same notation as before, we have

F(x1, x2) =
(

∂c1(x1) − x1p′(x1 + x2) − p(x1 + x2)
∂c2(x1) − x2p′(x1 + x2) − p(x1 + x2)

)
.
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We suppose that the functions ci are convex, which implies that the functions xi �→ ci(xi)−xip(x1 +
x2), i ∈ {1, 2}, are convex.
Theorem 6.4: Let x be a solution of the Cournot game which satisfies 0 < x1 < M1 and 0 < x2 < M2

and λ̄ := (λ̄i)i∈{1,...,6} a vector of associated Lagrange multipliers. Suppose that p′(x1 + x2) < 0 and
p′′(x1 + x2) < 0. If x1 /∈ D(1) and −g(x) + λ̄3 > 0, or x2 /∈ D(2) and −g(x) + λ̄6 > 0, then � is
metrically subregular at (0, z̄), where z̄ = (x, λ̄).
Proof: We first prove the case where g(x) < 0. We write F(x1, x2) = F1(x1, x2) + F2(x1, x2) where
F1(x1, x2) = ∂c1(x1) × ∂c2(x2) and

F2(x1, x2) =
(−x1p′(x1 + x2) − p(x1 + x2)

−x2p′(x1 + x2) − p(x1 + x2)

)
.

Let E = JF	
2 (x) and (d1, d2) are defined in the same way than it has been defined before Proposition

6.2. Observe that d1 ≥ 0 and d2 ≥ 0 because c1 and c2 are convex functions. By Proposition 6.2, if
(d1 + E11)(d2 + E22) > E12E21, then � is metrically subregular at (0, z̄). Actually, we have

E =
(
2β β

β 2β

)

then

(d1 + E11)(d2 + E22) − E12E21 = (d1 + 2β)(d2 + 2β) − β2

= d1d2 + 2β(d1 + d2) + 3β2

> 0

We now consider the case where g(x) = 0. In this case, we suppose without loss of generality that
x1 /∈ D(1) and λ̄3 > 0. By Proposition 6.3, it is sufficient to prove that E22 + d2 > E21, where E is
given by E = JF2(x)	 + JxG(x, λ̄)	 and (d1, d2) is defined as before Proposition 6.3. Since

G(x, λ̄) =
(

∂g
∂x1 (x)λ̄3
∂g
∂x2 (x)λ̄6

)
=

(
μλ̄3
μλ̄6

)

one has
JxG(x, λ̄) = 0.

Finally:

E =
(
2β β

β 2β

)
Then, we have

E22 + d2 − E21 = β + d2 > 0

Therefore, � is metrically subregular at (x, 0, 0, λ̄3, 0, 0, λ̄6). �
We can observe that these propositions do not consider the case where x1 ∈ D(1) and x2 ∈ D(2).

Actually, in this case, the sufficient conditions of Theorems 4.3 and 4.4 are not satisfied.

7. Conclusion

In this article, we have studied the metric subregularity and the stability in GNEP with non-smooth
loss functions. In order to achieve this goal, we have used the coderivative criterion ofMordukhovich
which characterizes the metric regularity of set-valued mapping. Nevertheless, the conclusion of
Theorem 4.4 is that � is metrically subregular and not metrically regular (in Example 4.5, we show
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that the hypotheses of Theorem 4.4 do not ensure the metric regularity of �). This illustrates that
the assumptions of Theorem 4.4 are not so strong. Moreover, despite the fact that the adapted tool
for metric subregularity is the outer-coderivative (see e.g. [19]), we can prove that if one or more
constraints are not active, the coderivative of � is equal to the outer-coderivative of �, which proves
that making the assumptions of Theorems 4.3 and 4.4 weaker will not be easy.

At the same time, in Section 6, we could not apply Theorems 4.3 or 4.4 when x1 ∈ D(1) and
x2 ∈ D(2), while in many of these cases, � is metrically regular or subregular. This is a limit in the
potential application of these theorems, thus replacing the coderivative D∗F with another tool of
nonsmooth analysis in order that Theorems 4.3 and 4.4 can be applied in the case when x1 ∈ D(1)
and x2 ∈ D(2) could be a possible extension of this work. Another natural extension of this work
would be to consider the case where the strict complementarity assumption is violated.
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Appendix 1.
In this Appendix 1, we use the same notation as in Section 6.
Proof of Lemma 6.1: We first observe that Gr(F1) = {(x1, x2, y1, y2) | (x1, y1, x2, y2) ∈ Gr(∂θ1,1) × Gr(∂θ2,1)} and
deduce that D∗F1(x|ȳ)(y∗) = D∗(∂θ1,1)(x1|ȳ1)(y∗,1) × D∗(∂θ2,1)(x2|ȳ2)(y∗,2). We only compute D∗(∂θ1,1)(x1|ȳ1)
(y∗,1) since D∗(∂θ2,1)(x2|ȳ2)(y∗,2) can be computed in the same way.
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If x1 /∈ D(1), θ1,1 is C2 at x1, then D∗(∂θ1,1)(x1|ȳ1)(y∗,1) = {(θ1,1)′′(x1)y∗,1} by Proposition 3.1. We now suppose
that x1 ∈ D(1). Let i ∈ {1, . . . , qν} such that xν = aν

i .
Since ∂θ1,1(xν) = [bν−

i , bν+
i ], we have bν−

i ≤ ȳν
i ≤ bν+

i . We consider three cases.
Case 1: bν−

i < ȳν < bν+
i . In this case, NL((x1, ȳ1), Gr(∂θ1,1)) = R × {0}, then D∗(∂θ1,1)(x1|ȳ1)(y∗,1) = ∅ if y∗,1 �= 0

and D∗(∂θ1,1)(x1|ȳ1)(y∗,1) = R if y∗,1 = 0.
Case 2: ȳν = bν−

i . We can observe that

NL((x1, ȳ1), Gr(∂θ1,1)) = R × {0} ∪ R(d1−i ,−1) ∪
(
R+(1, 0) + R+(d1−i ,−1)

)
.

From this description of NL((x1, ȳ1), Gr(∂θ1,1)), we can deduce the expression of D∗(∂θ1,1)(x1|ȳ1)(y∗,1).
Case 3: ȳν = bν+

i . This case can be treated the same way as case 2. �
Proposition A.1: Let x a solution of GNEP with 0 < x1 < M1 and 0 < x2 < M2 and g(x) < 0. If one of the

following assumptions holds, with E =
(
E11 E12
E21 E22

)
:= JF2(x)	, then � is metrically regular around (x, 06, 0), where

06 = (0, 0, 0, 0, 0, 0).

(1) x1 /∈ D(1), x2 /∈ D(2) and the matrix E +
(

(θ1,1)′′(x1) 0
0 (θ2,1)′′(x2)

)
is nonsingular.

(2) x1 = a1i , with i ∈ {1, . . . , q1}, x2 /∈ D(2), b1−i < −∇x1θ
1,2(x1, x2) < b1+i and (θ21)′′(x2) + E22 �= 0.

(3) x1 = a1i , with i ∈ {1, . . . , q1}, x2 /∈ D(2), b1−i = −∇x1θ
1,2(x1, x2), (θ21)′′(x2) + E22 �= 0 and

E11 + d1−i >
E12E21

E22 + (θ21)′′(x2)

(4) x1 = a1i , with i ∈ {1, . . . , q1}, x2 /∈ D(2), b1+i = −∇x1θ
1,2(x1, x2), (θ21)′′(x2) + E22 �= 0 and

E11 + d1+i >
E12E21

E22 + (θ21)′′(x2)

(5) x1 /∈ D(1), x2 = a2i , with i ∈ {1, . . . , q2}, b2−i < −∇x2θ
2,2(x1, x2) < b2+i and (θ11)′′(x1) + E11 �= 0.

(6) x1 /∈ D(1), x2 = a2i , with i ∈ {1, . . . , q2}, b2−i = −∇x2θ
2,2(x1, x2), (θ11)′′(x1) + E11 �= 0 and

E22 + d2−i >
E12E21

E11 + (θ11)′′(x1)

(7) x1 /∈ D(1), x2 = a2i , with i ∈ {1, . . . , q2}, b2+i = −∇x2θ
2,2(x1, x2), (θ11)′′(x1) + E11 �= 0 and

E22 + d2+i >
E12E21

E11 + (θ11)′′(x1)

(8) x1 = a1i1 , x
2 = a2i2 , with i1 ∈ {1, . . . , q1}and i2 ∈ {1, . . . , q2}, b1+i = −∇x1θ

1,2(x1, x2), b2+i = −∇x2θ
2,2(x1, x2),

d1+i1 + E11 �= 0, d2+i2 + E22 �= 0 and

(d1+i1 + E11)(d2+i2 + E22) > E12E21

Proof: We will prove items 1–3; the other items can be proved the same way. We use the sufficient condition of
Theorem 4.3. We can observe that A = ∅, where A = A(x) has been defined in (11). Since λ̄ = 06, the assumption of
Theorem 4.3 can be written as

{
0 ∈ c1(x1,−∇x1θ

1,2(x1, x2), y∗,1) + E1y∗
0 ∈ c2(x2,−∇x2θ

2,2(x1, x2), y∗,2) + E2y∗ =⇒ y∗ = 0

Then, we consider a vector y∗ which satisfies

0 ∈ c1(x1,−∇x1θ
1,2(x1, x2), y∗,1) + E1y∗ , 0 ∈ c2(x2,−∇x2θ

2,2(x1, x2), y∗,2) + E2y∗

and prove that y∗ = 0 in each case.
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Case where assumption 1 is satisfied: In this case, using Lemma 6.1, we obtain that

(
E +

(
(θ1,1)′′(x1) 0

0 (θ2,1)′′(x2)

))(
y∗,1
y∗,2

)
=

(
0
0

)
.

By assumption, the above matrix is non-singular, which implies that y∗ = 0.
Case where assumption 2 is satisfied: Since c1(x1,−∇x1θ

1,2(x), y∗,1) �= ∅ and b1−i < −∇x1θ
1,2(x1, x2) < b1+i , by

Lemma 6.1, we have , y∗,1 = 0; then, the second equation becomes ((θ2,1)′′(x2) + E22)y∗,2 = 0 which implies that
y∗,2 = 0 since (θ2,1)′′(x2) + E22 �= 0.
Case where assumption 3 is satisfied: In the same way as the previous case, y∗,1 = 0 ⇒ y∗,2 = 0. We suppose that
y∗,1 < 0; then, by Lemma 6.1, we have c1(x1,−∇x1θ

1,2(x), y∗,1) = {d1−i y∗,1}; thus, we obtain
(
E +

(
d1−i 0
0 (θ2,1)′′(x2)

))
y∗ =

(
0
0

)

This matrix, which can be written as
(
E11 + d1−i E12

E21 E22 + (θ21)′′(x2)

)
, is non-singular by the assumption E11 + d1−i >

E12E21
E22 + (θ21)′′(x2)

, which contradicts y∗,1 < 0.

We now suppose that y∗,1 > 0. In this case, by Lemma 6.1, we have c1(x1,−∇x1θ
1,2(x), y∗,1) = [d1−i y∗,1,+∞[.

Thus, the system {
0 ∈ c1(x1,−∇x1θ

1,2(x), y∗,1) + E1y∗
(θ2,1)′′(x2)y∗,2 + E2y∗ = 0

can be written as {
d1−i y∗,1 + E1y∗ ≤ 0
(θ2,1)′′(x2)y∗,2 + E2y∗ = 0

Considerm = E11 + d1−i − E12E21
E22 + (θ21)′′(x2)

> 0. We have

(E11 + d1−i ,E12) = E12
E22 + (θ21)′′(x2)

(E21,E22 + (θ21)′′(x2)) + (m, 0)

which implies that

d1−i y∗,1 + E1y∗ = (E11 + d1−i ,E12)
(
y∗,1
y∗,2

)

= E12
E22 + (θ21)′′(x2)

(E21,E22 + (θ21)′′(x2))
(
y∗,1
y∗,2

)
+ (m, 0)

(
y∗,1
y∗,2

)

= E12
E22 + (θ21)′′(x2)

((θ21)′′(x2)y∗,2 + E2y∗) + my∗,1

= my∗,1

> 0

becausem > 0 and y∗,1 > 0. That contradicts d1−i y∗,1 + E1y∗ ≤ 0. Finally, we have y∗,1 = 0; then, y∗,2 = 0.
The cases where assumptions 4–7 are satisfied can be treated the same way. By Theorem 4.3,� is metrically regular

around (x, 06, 0). �
Proposition A.2: Let x be a solution of GNEP with 0 < x1 < M1 and 0 < x2 < M2 and g(x) = 0. Let
(0, 0, λ̄1, 0, 0, λ̄2) ∈ �(x) be Lagrange multipliers associated with the solution x of GNEP. We suppose that B �= 0.

If one of the following assumptions holds, with E =
(
E11 E12
E21 E22

)
= JF2(x)	 + JxG(x, λ̄)	 then� is metrically subregular

at (x, 0, 0, λ̄1, 0, 0, λ̄2, 0).

(1) x1 /∈ D(1), x2 /∈ D(2), λ̄1 > 0 and E11 + (θ11)′′(x2) �= E21, or, λ̄2 > 0 and E22 + (θ21)′′(x2) �= E12.
(2) x1 = a1i , with i ∈ {1, . . . , q1}, x2 /∈ D(2), λ̄2 > 0 and b1−i < −∇x1θ

1,2(x1, x2) − Bλ̄1 < b1+i .
(3) x1 /∈ D(1), x2 = a2i , with i ∈ {1, . . . , q2}, λ̄1 > 0 and b2−i < −∇x2θ

2,2(x1, x2) − Bλ̄2 < b2+i .
(4) x1 = a1i , with i ∈ {1, . . . , q1}, x2 /∈ D(2), λ̄2 > 0, b1−i = −∇x1θ

1,2(x1, x2) − λ̄1B and

E11 + d1−i > E21
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(5) x1 = a1i , with i ∈ {1, . . . , q1}, x2 /∈ D(2), λ̄2 > 0, b1+i = −∇x1θ
1,2(x1, x2) − λ̄1B and

E11 + d1+i > E21

(6) x1 /∈ D(1), x2 = a2i , with i ∈ {1, . . . , q2}, λ̄1 > 0, b2−i = −∇x2θ
2,2(x1, x2) − λ̄2B and

E22 + d2−i > E12

(7) x1 /∈ D(1), x2 = a2i , with i ∈ {1, . . . , q2}, λ̄1 > 0, b2+i = −∇x2θ
2,2(x1, x2) − λ̄2B and

E22 + d2+i > E12

Proof: We use Theorem 5.2. The set Q(x) defined in (26) is equal to

Q(x) = {{3}, {6}};

then, the assumption of Theorem 4.4 can be written as

⎧⎨
⎩
0 ∈ c1(x1,−∇x1θ

1,2(x) − λ̄1B, y∗,1) + E1y∗ + Bz∗
0 ∈ c2(x2,−∇x2θ

2,2(x) − λ̄2B, y∗,2) + E2y∗ + Bz∗
By∗,β(α) = 0

=⇒ y∗ = 0 , z∗ = 0 (A1)

where α ∈ Q(x) satisfies λ̄α > 0, and β(α) = 1 if α = {3}, β(α) = 2 if α = {6}. We now prove items 1, 2 and 4.

(1) If E11 + (θ11)′′(x2) �= E21 and λ̄2 > 0, then we choose α = {6}. The equality By∗,2 = 0 implies y∗,2 = 0 since
B �= 0. The system in (A1) can be written as

(
E11 + (θ1,1)′′(x1) B

E21 B

)(
y∗,1
z∗

)
=

(
0
0

)

The assumption E11 + (θ11)′′(x2) �= E21 implies that the above matrix is non-singular, so y∗,1 = z∗ = 0.

If E11 + (θ11)′′(x2) = E21, then E22 + (θ21)′′(x2) �= E12 and λ̄1 > 0; then, we can prove item 1 the same way
as before considering α = {4}.

(2) In this case, we consider α = {6}. Since By∗,2 = 0, we have y∗,2 = 0. Since c1(x1,−∇x1θ
1,2(x)−λ1B, y∗,1) �= ∅

and b1−i < −∇x1θ
1,2(x) − λ1B < b1+i , we deduce by Lemma 6.1 that y∗,1 = 0. Finally, we have Bz∗ = 0 which

implies that z∗ = 0.
(3) This case can be proved the same way as the previous case.
(4) In this case, we take α = {6}. Since By∗,2 = 0, we have y∗,2 = 0. Since −∇x1θ

1,2(x) − λ1B = b1−i , by (A1), we
have {

0 ∈ c1(x1, b1−i , y∗,1) + E11y∗,1 + Bz∗
E21y∗,1 + Bz∗ = 0

(A2)

If y∗,1 = 0, then z∗ = 0 since B �= 0. If y∗,1 < 0, by Lemma 6.1, the system (A2) can be written as

(
E11 + d1−i B

E21 B

)(
y∗,1
z∗

)
=

(
0
0

)

The assumption E11 + d1−i > E21 implies that the above matrix is non-singular; then, y∗,1 = 0, which is a
contradiction with y∗,1 < 0. We now suppose that y∗,1 > 0. In this case, by Lemma 6.1, the system (A2) can be
written as {

0 ∈ [d1−i y∗,1,+∞[+E12y∗,1 + Bz∗
E21y∗,1 + Bz∗ = 0

which implies that {
d1−i y∗,1 + E11y∗,1 + Bz∗ ≤ 0
E21y∗,1 + Bz∗ = 0
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Definem = E11 + d1−i − E21 > 0; we have (E11 + d1−i ,B) = (E21,B) + (m, 0); then,

d1−i y∗,1 + E11y∗,1 + Bz∗ = (E11 + d1−i ,B)

(
y∗,1
z∗

)

= (E21,B)

(
y∗,1
z∗

)
+ my∗,1

> E21y∗,1 + Bz∗ sincem > 0 and y∗,1 > 0
= 0.

We deduce a contradiction with d1−i y∗,1 + E11y∗,1 + Bz∗ ≤ 0, which implies that y∗,1 = 0.

Cases 5, 6 and 7 can be deduced the sameway; then, by Theorem 4.4,� is metrically subregular at (x, 0, 0, λ̄1, 0, 0, λ̄2, 0).
�
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