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Didier Aussel1, Michal Červinka 2, 3 and Matthieu
Marechal4

Abstract. A multi-leader-common-follower game formulation has been
recently used by many authors to model deregulated electricity mar-
kets. In our work, we first propose a model for the case of electric-
ity market with thermal losses on transmission and with production
bounds, a situation for which we emphasize several formulations based
on different types of revenue functions of producers. Focusing on a
problem of one particular producer, we provide and justify an MPCC
reformulation of the producer’s problem. Applying the generalized dif-
ferential calculus, the so-called M-stationarity conditions are derived
for the reformulated electricity market model. Finally, verification of
suitable constraint qualification that can be used to obtain first or-
der necessary optimality conditions for the respective MPCCs are dis-
cussed.

Keywords: deregulated electricity market, production bounds, Math-
ematical Program with Complementarity Constraints, M-stationarity,
calmness

Mathematics Subject Classification. 91B26, 90C30, 49J53

.

∗ This research was partially supported by the French government and the Grant Agency of
the Czech Republic, projects P201/09/1957 and P402/12/1309.
∗∗ This research was Partially Supported by grant 3130596-Fondecyt-Chile.

1 University of Perpignan, Lab. PROMES, UPR CNRS 8521, Rambla de la Thermody-

namique, Technosud, 66100 Perpignan, France, email : aussel@univ-perp.fr
2 The Czech Academy of Sciences, Institute of Information Theory and Automation, Pod

Vodarenskou vezi 4, 182 08 Prague, Czech Republic, email : cervinka@utia.cas.cz
3 Institute of Economic Studies, Faculty of Social Sciences, Charles University in Prague,
Opletalova 26, 110 00 Prague, Czech Republic, email : cervinka@fsv.cuni.cz
4 Centro de Modelamiento Matematico, Santiago, Chile, email : mmarechal@dim.uchile.cl

c© EDP Sciences 2001



2

1. Introduction

With the liberalization of the electricity markets in the previous decades, var-
ious models for this specific type of market have been proposed. One of the first
models is described in [18] and applied to the market of England and Wales in [11].
Motivated by deregulated electricity markets, a new class of models constructed
around the concept of generalized Nash game have been introduced. Such mod-
els thus incorporate specific features of electricity markets, such as transmission
network and biding mechanism of each producer in the network, and correspond
to noncooperative games, in which each producer aims to maximize his benefit by
means of announcing a bid on the energy production. The market is controlled
by a central operator, frequently called the Independent System Operator (ISO),
who computes the best response to the producers’ bids in order to minimize the
global cost of energy, thus aiming at effective electricity production, while taking
into account technical parameters of the transmission grid and that the demand
at each node of the transmission network must be satisfied. This leads to the
so-called multi-leader-common-follower game, cf. e.g. [19], in which each producer
is in the role of a leader and ISO is the single follower, common to all leaders.

There are several reasons to include production bounds in a model of electricity
market. Consider, e.g., some special geographic configuration with extreme nodes
of networks such as distant islands. In such a case, either the high thermal loss
due to transmission to such nodes and/or a relatively low production capacity at
these nodes can result to market equilibrium in which the production capacity is
reached. Another situation, in which the capacity of production at a given node
is reached, arises on the so-called adjustment markets of some countries where
the total production capacity of every producer has to be offered to the ISO (see
e.g. [24, 32]).

Our aim in this paper is to study variational equilibria of the electricity market
model in which losses due to transmission and bounds on production and trans-
mission are present. Such variational equilibria correspond to solutions of the
so-called EPCCs (Equilibrium Problems with Complementarity Constraints), a
coupled system of MPCCs (Mathematical Programs with Complementarity Con-
straints). We refer to monographs [21, 27] and [23, Chapter 5.2] for MPCCs and
to [28] and [3] for EPCCs. In particular, this paper complements and extends re-
sults of [1] on electricity markets with transmission losses and results of [13] where
M-stationarity conditions (M- stands for Mordukhovich) for the electricity market
model were derived.

The paper is organized as follows. The general formulation of problems of
producers and ISO are introduced in Subsection 2.1. In Subsection 2.2 we discuss
an MPCC reformulation of producer’s problem and show that the corresponding
variational equilibrium, under weak assumptions, it is equivalent to the generalized
Nash equilibrium of the electricity market model. In Subsection 2.3, we discuss
conditions ensuring the so-called single-valued case and compare it with another
one used in the literature. Finally, Section 3 is devoted to the first order necessary
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optimality conditions for the reformulated electricity market model along with
discussion on verification of required qualification conditions.

Our notation is basically standard. B denotes the unit ball. We use R+ to
denote nonnegative reals. For a matrix A, Ai denotes the ith row of A. For an
index set I ⊂ {1, . . . , s} and a vector d ∈ Rs, dI denotes a subvector composed
of the components di, i ∈ I and diag d denotes a diagonal s × s matrix with
(diag d)ii = di, i = 1, . . . , s. Analogously, for a matrix A with s rows, AI is the
submatrix composed of the rows Ai, i ∈ I. For a set Ω, Ω denotes its closure,
and for a closed cone D with vertex at the origin, D◦ denotes its negative polar

cone. By x
Ω−→ x̄ we mean that x → x̄ with x ∈ Ω. TΩ(x) signifies the contingent

(Bouligand-Severi, tangent) cone to Ω at x.
For the readers’ convenience we now state the definitions of several basic notions

from modern variational analysis. For a closed set Ω and a point x̄ ∈ Ω, the Fréchet
normal cone to Ω at x̄ is defined by

N̂Ω(x̄) :=

{
x∗ ∈ Rn

∣∣∣∣∣ limsup

x
Ω−→x̄

〈x∗, x− x̄〉
‖ x− x̄ ‖

≤ 0

}
= (TΩ(x̄))

◦
.

The limiting normal cone to Ω at x̄ is given by

NΩ(x̄) = Lim sup

x
Ω−→x̄

N̂Ω(x),

where the “Lim sup” stands for the Painlevé-Kuratowski upper (or outer) limit.
This limit is defined for a set-valued mapping M [Rn ⇒ Rm] at a point x̄ by

Lim sup
x→x̄

M(x) := {y ∈ Rm | ∃xk → x̄, ∃yk → y with yk ∈M(xk)}.

For a convex set Ω, both normal cones NΩ and N̂Ω amount to the normal cone of
convex analysis, for which we use simply the notation NΩ.

Given a set-valued mapping M [Rn ⇒ Rm] and a point (x̄, ȳ) from its graph

GphM := {(x, y) ∈ Rn × Rm|y ∈M(x)},

the limiting (Mordukhovich) coderivative D∗M(x̄, ȳ)[Rm ⇒ Rn] of M at (x̄, ȳ) is
defined by

D∗M(x̄, ȳ)(y∗) := {x∗ ∈ Rn|(x∗,−y∗) ∈ NGphM (x̄, ȳ)}.

In this paper, we also employ some notions of stability of multifunctions, namely
the Aubin property and calmness.

A set-valued mapping M [Rn ⇒ Rm] is said to have the Aubin (pseudo-Lipschitz,
Lipschitz-like) property around (x̄, ȳ) ∈ Gph M with modulus ` ≥ 0 if there are
neighborhoods U of x̄ and V of ȳ such that

M(x) ∩ V ⊂M(u) + `||x− u||B
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for all x, u ∈ U , where B is closed unit ball. The Mordukhovich criterion [22]
provides a characterization of the Aubin property through knowledge of the re-
spective coderivative: a set-valued mapping M has Aubin property around (x̄, ȳ)
if and only if

D∗M(x̄, ȳ)(0) = {0}.
A set-valued mapping M [Rn ⇒ Rm] is said to be calm (pseudo upper Lipschitz)

at (x̄, ȳ) ∈ Gph M with modulus L ≥ 0 if there are neighborhoods U of x̄ and V
of ȳ such that

M(x) ∩ V ⊂M(x̄) + L‖x− x̄‖B for all x ∈ U .

Clearly, the Aubin property implies calmness, whereas the converse is not true.
In the sequel, calmness will be utilized as a suitable qualification condition in the
used rules of generalized differential calculus, cf. [12, 17].

2. Towards an adapted model for electricity market
with transmission losses and production bounds

In this section we provide first a general formulation of the problem and intro-
duce notation of the electricity market model. Using the KKT reformulation of
the ISO problem, we provide variational equilibrium reformulation of the problem
in Subsection 2.2 and discuss sufficient conditions for equivalence with the original
electricity market problem. We comment on several possible choices of producers’
revenue functions. In Subsection 2.3 we comment on the so-called single-valued
case which arises whenever the primal and dual solutions of the ISO problem are
unique.

2.1. General electricity market model and notation

In this work we assume that the electricity market is represented by a network
where at each node i = 1, . . . , N, there is exactly one producer and the local
electricity energy demand Di is known. Therefore, we do not consider consumers
as acting agents in our model, i.e. the total amount of electricity demanded by
consumers at each node is supposed to match the local demand at that node. Thus,
the general model from a class of multi-leaders-common-follower games considered
in this work takes into account only two types of players, producers and ISO.

Each producer (leader) i, i = 1, . . . , N, aiming at maximizing his or her profit,
bids a cost function ϕi(qi) to the ISO (a follower common to all leaders), where qi
denotes the electricity energy production of producer i (e.g. in GWhs). The market
regulator, ISO, taking into account all bids of producers, aims at maximizing the
so-called social welfare, or alternatively, minimizing the social costs. In here, we
consider minimization of the total cost of production while taking into account the
requirement that the local demand Di is satisfied at each node. Later on, we will
introduce additional constraints which take into account bounds on transmission
and production.



TITLE WILL BE SET BY THE PUBLISHER 5

Denoting by Ri and Ci, i = 1, . . . , N, the revenue function and the real cost
function of producer i, respectively, the multi-leaders-common-follower game can
be formulated as the following general equilibrium problem composed of N pro-
ducer’s optimization problems denoted as Pi, i = 1, . . . , N, solved simultaneously

Pi maxϕi Ri(ϕi(qi), qi)− Ci(qi)

s.t.

{
q solves ISO(ϕ),
ϕi admissible bid function,

where the ISO problem is considered in the form

ISO(ϕ) minq
∑
i ϕi(qi)

s.t. demand Di is satisfied at each node i = 1, . . . , N.

In order to distinguish between the components associated with producer i
and components linked to the other producers, we employ the following notation
for vector of electricity production q = (qi, q−i) and vector-valued bid function
ϕ = (ϕi, ϕ−i). Later on, we employ this notation also to bid coefficients etc.

In the following, we introduce additional elements of the market model. Through-
out this paper, let

* N be the set of nodes (with N elements).
* L be the set of electricity lines (with M elements).
* e = ij be the line from node i to node j.
* t be the vector of energy flows where components te = tij , e ∈ L denote

the energy flow along the line e = ij with tij > 0 whenever the electricity
energy flows in the direction from i to j, and tij < 0 if the energy flow is
in the opposite direction.

* Le ≥ 0 be the coefficient of a thermal loss on line e ∈ L. Following the
classical technical specifications, thermal loss on the line e is assumed to
be a quadratic function of the energy flow along this line, i.e. Let

2
e.

* T e and T e be the lower and upper transmission bounds on the line e ∈ L,
respectively (T e ≤ 0 and T e ≥ 0).

* Qi be the upper bounds on production at node i ∈ N .
* D = (D1, . . . , DN ) be the vector of electricity energy demand.

For better representation of the oriented network, δie denotes the coefficient of
the incidence matrix defined as ∆ := (δie)i∈N ,e∈L ∈ RN×M , where

δie :=


1 if line e enters node i

−1 if line e leaves node i

0 otherwise.

Clearly the chosen orientation of the network doesn’t correspond to physical con-
straints but simply allows to consider signed flows.

All along the paper we assume that the network (N ,L) is connected in the
following sense:
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∀i, j ∈ N , if i 6= j , ∃(i0, · · · , ip) ∈ N p+1 such that i0 = i , ip = j
and ∀k ∈ {0, · · · , p− 1} , ikik+1 ∈ L or ik+1ik ∈ L.

(1)

For each line e = ij ∈ L and any flow te along this line, the cost Let
2
e of thermal

losses is covered equally by both producer i and producer j. This is summarized
in the thermal loss mapping

L(t) =

(
1

2

∑
e∈L
|δ1e|Let2e, . . . ,

1

2

∑
e∈L
|δNe|Let2e

)
.

This choice of distribution of the thermal losses costs has also been used in, e.g.,
[8, 13].

In the real markets, bid functions are composed of an increasing and non-
continuous sum of box bids and hourly orders. In here, we consider their quadratic
approximations which have been suggested by several authors, cf. e.g. [16]. The
same holds true for the cost function. In particular, we will consider the (real)
cost functions Ci, i = 1, . . . , N, in the form Ci(qi) = Aiqi +Biq

2
i with Bi ≥ 0 and

the bid functions ϕi, i = 1, . . . , N, given by ϕi(qi) = aiqi + biq
2
i with bi ≥ 0.

Clearly, both the real cost function and bid function can be characterized just
by their linear and quadratic coefficients, respectively. Therefore, instead of as-
suming that producers are bidding a function, one can consider bidding respective
linear and quadratic coefficients. In the sequel, the bid functions ϕi, i = 1, . . . , N,
are substituted by couples (ai, bi). The quantities Ai, Ai, Bi, Bi stand for the cor-
responding bounds on the respective bid coefficients. In the sequel the notation A
and B will be used to describe sets of admissible bid coefficients A =

∏N
i=1[Ai, Ai]

and B =
∏N
i=1[Bi, Bi].

Taking into account the notation introduced above, the producer i’s problem
Pi can be restated as the following optimization problem

Pi(a−i, b−i) max
ai,bi,q,t

Ri(a, b, q, t)− (Aiqi +Biq
2
i )

s.t.


Ai ≤ ai ≤ Ai,

Bi ≤ bi ≤ Bi,
(q, t) solves ISO(a, b),

(2)

where ISO(a, b) stands for the following ISO’s problem



TITLE WILL BE SET BY THE PUBLISHER 7

ISO(a, b) min
q,t

∑
i∈N

(aiqi + biq
2
i )

s.t.



qi ≥ 0, ∀i ∈ N

qi ≤ Qi, ∀ i ∈ N

qi +
∑
e∈L

(
δiete −

Le|δie|
2

t2e

)
≥ Di,∀ i ∈ N

te ≥ T e, ∀ e ∈ L

te ≤ T e,∀ e ∈ L

(3)

This leads us to the following definition of a solution to the electricity market
model.

Definition 2.1. A generalized Nash equilibrium of the electricity market is a
vector (a∗, b∗, q∗, t∗) ∈ A× B × RN × RL such that

(a∗i , b
∗
i , q
∗, t∗) solves Pi(a

∗
−i, b

∗
−i) ∀i = 1, . . . , N. (4)

We would like to point out that since the maximum in Pi(a−i, b−i) is considered
with respect to (ai, bi) and also (q, t), the present formulation of the producer’s
problem is usually called the optimistic formulation of the problem and its solu-
tions are referred to as optimistic. Indeed if, for a given bid couple (a, b), there
exist several solutions (q, t) of ISO(a, b), considering the maximum of the objec-
tive (profit) function with respect to (q, t) is a clearly “favorable” for producer i.
However, using the terminology from [3], the electricity market model (4) is re-
ferred to as multioptimistic. Problems of this type are frequently ill-posed, see [3]
for details and [33] for sufficient condition for well-posedness.

Let us end this subsection with the following technical lemma, precising that
some natural bounds exists for the network. The proof is left to the reader.

Lemma 2.2. Suppose that for all nodes i ∈ N , one has ai > 0 or bi > 0 and let
(q, t) be the solution of ISO(a, b). Then for all e ∈ L one has |te| ≤ 1

Le
provided

Le > 0.

Taking into account these natural bounds we assume, for the rest of the paper,
that the lower and upper transmission bounds satisfy

T̄e ≤
1

Le
and T e ≥

−1

Le
(5)

2.2. Variational equilibrium reformulation

Even if the revenue function Ri is not yet specified, in this subsection we shall
concern an alternative formulation of electricity market problem. We shall start
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with few remarks about the ISO problem (3). It can be easily verified that when-
ever a + b > 0, problem (3) admits at least one solution. Moreover, invoking [1,
Lemma 3.1], whenever a + b > 0, for every i ∈ N , the demand satisfaction con-
straint

qi +
∑
e∈L

(
δiete −

Le|δie|
2

t2e

)
≥ Di (6)

in the ISO problem (3) is active at any solution (q, t) of ISO(a, b).
The following KKT conditions will play a central role in the sequel.

KKT (a, b)



0 = ai + 2biqi − µi + µ̄i − λi ∀i ∈ N ,
0 ≤ µi ⊥ qi ≥ 0 ∀i ∈ N ,
0 ≤ µ̄i ⊥ Q̄i − qi ≥ 0 ∀i ∈ N ,
0 ≤ λi ⊥ qi +

∑
e∈L

(
δiete − Le|δie|

2 t2e

)
−Di ≥ 0 ∀i ∈ N ,

0 = −βe + β̄e +
∑
i∈N λi(δie + |δie|Lete) ∀e ∈ L,

0 ≤ βe ⊥ (te − T e) ≥ 0 ∀e ∈ L,
0 ≤ β̄e ⊥ T e − te ≥ 0 ∀e ∈ L,

(7)

where µ, µ̄, λ, β and β̄ denote the Lagrange multipliers associated to the inequality
constraints of ISO(a, b), respectively.

Since for bi ≥ 0, i = 1, . . . , N the objective function of (3) is convex, the corre-
sponding optimal solutions of ISO(a, b) coincide with solutions of the KKT system
associated to the ISO’s problem if classical qualification conditions holds at this
solution. It is important to notice that actually this equivalence of solution sets
can fail even for very simple electricity markets. Indeed, let us consider for example
a two nodes market with only one line connecting node 1 to node 2. Assume that
Q̄1 = 1, Q̄2 = 6, D1 = D2 = 2, L12 = 1/2, T̄12 = 2 and T 12 = −2. The unique
solution of the ISO problem is (q1, q2, t) = (1, 5, 2) but actually the associated
KKT system admits no solution, that is no Lagrange multipliers exists for this
point. Clearly no Slater qualification condition holds since, due to the structure
of the network, the constraint set of the ISO problem has an empty interior. The
situation occuring in the above simple example can actually be encountered for
networks in which a part of the network is linked to the rest by a single line.

Now, substituting in problem Pi(a−i, b−i) the constraint “(q, t) solves ISO(a, b)”
by “(q, t, ξ) solves KKT (a, b)”, where ξ := (µ, µ̄, λ, β, β̄), we obtain the desired re-
formulation which belongs to a class of EPCCs.

Let us denote by H the twice continuously differentiable mapping specifying
constraints of the ISO problem (3):

H(q, t) =


−q
q − Q̄

−q −∆t+ L(t) +D
T − t
t− T

 .
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Then, by convexity, the KKT conditions (7) can be written down as the following
generalized equation

0 ∈ F (a, b, q, t, ξ) +Q(q, t, ξ), (8)

where

F (a, b, q, t, ξ) =

 a+ 2(diag b)q + (∇qH(q, t))>ξ
(∇tH(q, t))>ξ
−H(q, t)

 , Q(q, t, ξ) =

 {0}N
{0}M
NRs

+
(ξ)

 ,

and s = 3N + 2M .
Therefore the MPCC(a−i, b−i) associated with Pi(a−i, b−i) can be written as

MPCCi(a−i, b−i) max
ai,bi,q,t,ξ

Ri(a, b, q, t)− Ci(qi)

subject to

{
0 ∈ F (a, b, q, t, ξ) +Q(q, t, ξ)
(ai, bi) ∈ Ai × Bi.

(9)

Definition 2.3. A variational equilibrium of the electricity market is a vector
(a∗, b∗, q∗, t∗, ξ∗) ∈ A× B × RN × RL × Rs such that

(a∗i , b
∗
i , q
∗, t∗, ξ∗) solves MPCCi(a

∗
−i, b

∗
−i) ∀i = 1, · · · , N. (10)

Now, let us inspect the link between generalized Nash equilibrium and varia-
tional equilibrium of the electricity market. It is the aim of the following theorem
which invokes recent results [7]. Let us first denote by Λ the set of Lagrange
multipliers associated to the solutions of the KKT conditions (7)

Λ(a, b, q, t) = {ξ ∈ Rs : (q, t, ξ) solves KKT (a, b)}.

Theorem 2.4. Assume that the condition

there exists an element (q, t) ∈ RN × RL such that{
0 < qi < Q̄i and qi +

∑
e∈L

(
δiete − Le|δie|

2 t2e

)
> Di ∀i ∈ N ,

T e < te < T̄e ∀e ∈ L,

(11)

is satisfied for the data of the electricity market. Then the following hold:

i) If (a∗, b∗, q∗, t∗) is a generalized Nash equilibrium of the electricity market
then, for any ξ ∈ Λ(a∗, b∗, q∗, t∗), (a∗, b∗, q∗, t∗, ξ) is a variational equilib-
rium of the electricity market.

ii) Conversely, if (a∗, b∗, q∗, t∗, ξ∗) is a variational equilibrium of the electric-
ity market, then (a∗, b∗, q∗, t∗) is a generalized Nash equilibrium of the
electricity market.

Proof. The statement is a direct consequence of [7, Theorem 2.1] and [7, Theorem
2.2], taking into account that the Slater-type qualification condition (11) does not
depend on (a, b) which follows from the fact that the constraints of ISO(a, b) are
only in terms of q and t. �
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A direct way to guarantee that the qualification condition (11) holds is to find
a solution (ε, q, t) of the nonlinear system of equations

qi +
∑
e∈L

(
δiete −

Le|δie|
2

t2e

)
= Di + ε ∀i ∈ N

such that ε > 0 and

0 ≤ qi ≤ Q̄i and T e ≤ te ≤ T̄e ∀i ∈ N , ∀e ∈ L.

We close this subsection with examples of revenue function Ri(a, b, q, t). Rev-
enue is income that producer i receives from selling the electricity energy produced.
In perfect competition, it is the product of the unit price of electricity and the
quantity of electricity energy produced, where the unit price of electricity energy
at node i is the marginal price, which is given by the Lagrange multiplier (shadow
price) λi associated to demand satisfaction constraint (6). However, there is a pri-
ori no reason for the Lagrange multiplier λi to be uniquely determined for a given
(q, t). Thus, we can define different variants of Ri thus providing different special
cases of the producer i problem Pi(a−i, b−i) and its corresponding reformulation
MPCCi(a−i, b−i). In particular, one can consider the following two cases:
The optimistic-pessimistic case defined by the revenue function Ri

Ri(a, b, q, t) = inf{λiqi : (µ, µ̄, λ, β, β̄) ∈ Λ(a, b, q, t)}. (12)

The optimistic-optimistic case defined by the revenue function Ri

Ri(a, b, q, t) = sup{λiqi : (µ, µ̄, λ, β, β̄) ∈ Λ(a, b, q, t)}. (13)

In the above denominations, the first “optimistic” term concerns the primal vari-
ables of the ISO while for the second term (pessimistic or optimistic) it is the dual
variable λi which is in scope.

Alternatively, one can also consider a selection of the set Λ(a, b, q, t) of Lagrange
multipliers, see Escobar-Jofre [9]. This approach is close to the one implemented
in the Cosmos software used to determine the clearing price in some European
markets (EPEX, APX-ENDEX, Belpex), see [5].

Nevertheless, none of revenue functions Ri described above make sense at any
(q, t) such that the set of admissible Lagrange multipliers λi is unbounded. This
unfavourable situation typically occurs whenever the Mangasarian Fromowitz con-
straint qualification is not satisfied for the constraints of ISO(a, b). Since the con-
straints of ISO(a, b) are described by convex differentiable functions, condition
(11) implies that for any feasible (a, b, q, t) the set Λ(a, b, q, t) of Lagrange multi-
pliers is convex and compact, cf. e.g. [2, 14]. Additionally, this set is nonempty if
and only if (q, t) is a solution of ISO(a, b). Thus, both types of revenue function
Ri defined above are well defined on the constraint set of the producer i problem
Pi(a−i, b−i).
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2.3. Single-valued case

Assume that data of the considered network are such that condition (11) is sat-
isfied. The single valued case corresponds to the situation when for every (a, b) ∈
A×B problem ISO(a, b) admits unique primal and dual solutions. In such case the
solution of the generalized equation (8) shall be denoted by (q(a, b), t(a, b), ξ(a, b))
and the revenue function of producer i by Ri(a, b) := Ri(a, b, q(a, b), t(a, b)). Suf-
ficient conditions for the uniqueness of the couple (q, t) of production and flow
as well as associated Lagrange multipliers are stated in Propositions 2.5 and 2.6
below.

Proposition 2.5. Assume that for all producers i ∈ N , one has ai 6= 0 or bi 6= 0,
and, for all lines e ∈ L, Le > 0. Then ISO(a, b) admits a unique solution (q∗, t∗).

Proof. Let (qI , tI) and (qII , tII) be two solutions of the ISO’s problem such that
tI 6= tII , and let λ ∈ (0, 1). By convexity of K and the objective function of the
ISO’s problem, (qλ, tλ) := (λqI + (1− λ)qII , λtI + (1− λ)tII) is also a solution of
the ISO’s problem.

Since tI 6= tII there exists e ∈ L such that tIe 6= tIIe . Let i ∈ N be such that
δie 6= 0. Therefore, the convexity of the functions ϕf [x −→ |δif |Lfx2] for all f ∈ L
and the strict convexity of the function x→ |δie|Lex2 imply

qλi −
∑
f∈L

(
δif t

λ
f +

Lf |δif |
2

(tλf )2

)
> Di,

which contradicts [1, Lemma 3.2]. Thus we have tI = tII and, again by Lemma [1,

Lemma 3.2], for any i ∈ N , qIi = qIIi = Di −
∑
e∈L

(
δiet

λ
e −

Le|δie|
2 (tλe )2

)
. �

Proposition 2.6. Let (a, b) ∈ A × B be such that for all producers i ∈ N , one
has ai 6= 0 or bi 6= 0 and there exists a unique (q∗, t∗) solving ISO(a, b). Further,
suppose that for all e ∈ L, T e < t∗e < T e and that there exists a node i0 ∈
N satisfying q∗i0 ∈ (0, Qi0) . Then for each i ∈ N there exist unique Lagrange
multipliers λ∗i , µ∗i , µ̄∗i and for each e ∈ L there exist unique Lagrange multipliers
β∗e and β̄∗e .

Proof. Let µ, β, β̄ and λ be the vectors of Lagrange multipliers associated with the
solution (q∗, t∗) of ISO(a, b). Clearly, from system (7), the Lagrange multiplier
λi0 is uniquely given by λ∗i0 = ai0 + 2bi0q

∗
i0

.

Let e ∈ L. Since T e < t∗e < T e, one has∑
i∈N

λi(δie − |δieLe|t∗e) = 0. (14)

Consider two nodes i and j such that δie = −1 and δje = 1, i.e. e = ij. For all
k ∈ N \{i, j}, we have δke = 0, then the formula (14) gives the following relations:

λi = λj
1− Let∗e
1 + Let∗e

and λj = λi
1 + Let

∗
e

1− Let∗e
.



12 TITLE WILL BE SET BY THE PUBLISHER

Observe that in both equations above the fractions are well defined due to the
general assumption (5) and the hypothesis of the proposition, indeed − 1

Le
≤ T e <

t∗e < T e ≤ 1
Le

, therefore −1 < Let
∗
e < 1.

Thus, the value of λj is uniquely determined by the value of λi and vice versa.
In general way if e = ij or e = ji, then the two above equalities can be resumed
into the following equality:

λj = λi
1 + δjeLet

∗
e

1 + δieLet∗e
(15)

Now, take any i ∈ N \{i0}. Due to the fact that the graph (N ,L) is connected, by
(1) there exist nodes i1, · · · , ip ∈ N such that ip := i and for all k ∈ {0, · · · , p−1},
ikik+1 ∈ L or ik+1ik ∈ L. Since λi0 is unique, λi1 is unique because it is uniquely
determined by λi0 . By recursion, λi := λip is unique. Thus, for each i ∈ N , λi is
unique.

It remains to observe, that for each i ∈ N one of the Lagrange multipliers µi and
µ̄i is always vanishing and the other is uniquely determined by the KKT system
(7). Also, for each e ∈ L either βe or β̄e vanishes and the other nonvanishing
multiplier is also determined uniquely by the KKT system (7). This concludes the
proof. �

Remark 2.7. In Proposition 2.6, one can observe that at the unique solution
(q∗, t∗) of ISO(a, b), the optimal marginal prices are given by λi0 = ai0 + 2bi0q

∗
i0

and
∀i ∈ N , λi = λi0h

i0
i (t∗).

The vector hi0(t∗) is defined by hi0i0(t∗) = 1 and:

∀i ∈ N \ i0 , hi0i (t∗) =

pi∏
k=1

1 + δikekLekt
∗
ek

1 + δik−1ekLekt
∗
ek

with {i0, · · · , ipi} ⊂ N which satisfies ipi = i and for all k ∈ {1, · · · , pi}, ik−1ik ∈
L or ikik−1 ∈ L, ek = ik−1ik if ik−1ik ∈ L, ek = ikik−1 otherwise. This expression
of hi0i (t∗) results by recursion from the equality (15) and does not depend on the
choice of the path between i0 and i, because otherwise we obtain a contradiction
with the uniqueness of the marginal price at each node and the positiveness of λi0 .

In the single-valued case, there is no reason to distinguish between optimistic
and pessimistic formulations of the problem. Nevertheless, two possible choices of
revenue function Ri(a, b) can still be discussed.

a) Whenever for any (a, b) ∈ A×B there is no i such that at solution ISO(a, b)
one has qi(a, b) = 0 or qi(a, b) = Qi or Qi = +∞, the Lagrange multiplier
λi is simply the derivative of the bid function of player i at qi(a, b), i.e.
λi(a, b) = ai + 2biqi(a, b). This well known fact can be easily seen from
the first equation of the KKT system (7). Thus, the revenue function is
given by

R̃i(a, b) = (ai + 2biqi(a, b))qi(a, b)
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and each producer i aims at solving

max
ai,bi

(ai + 2biqi(a, b))qi(a, b)− (Aiqi(a, b) +Biqi(a, b)
2)

s.t.

{
Ai ≤ ai ≤ Āi
Bi ≤ bi ≤ B̄i

We shall denote the associated Nash equilibrium problem as (NEP1).

b) In any other case the revenue function Ri is defined as

Ri(a, b) := λi(a, b)qi(a, b)

and the producer i solves

max
ai,bi

λi(a, b)qi(a, b)− (Aiqi(a, b) +Biqi(a, b)
2)

s.t.

{
Ai ≤ ai ≤ Āi
Bi ≤ bi ≤ B̄i

We denote the associated Nash equilibrium problem as (NEP2).

From the above discussion it follows that even in the single-valued case, considering
production bounds in electricity market model one needs to define the revenue
function with caution. We would like to point out that some authors (see e.g. [13])
use the derivative of the bid function as the unit price of electricity energy even in
the case where the production bounds are considered in the model. Nevertheless,
in [13] the main result is derived under the assumption that no (lower and upper)
production bound is reached.

Observe that in this special single-valued case, electricity market model turns
out to belong to a class of classical Nash Equilibrium problems. This interesting
fact has been exploited in [1] to provide explicit formulae of the solution vectors q
and t.

Clearly, if for all i ∈ N and for all (a, b) ∈ A×B the upper bound of production is
not reached, then both problems (NEP1) and (NEP2) admit the same solution.
By means of a simple academic example of electricity market we show that a
solution of the market model with production bounds (NEP2) need not be a
solution of the model without production bounds (NEP1).

Example 2.8. Consider a network composed of only two nodes (and thus of two
producers) connected by a single line, i.e. N = {1, 2} and L = {12}. Suppose
the demands and capacity constraints are D1 = 5, D2 = 1.9, Q1 = 565/98 and
Q2 = 10, respectively, whereas the thermal loss coefficient of line {12} is L = 0.2.
Further suppose that there are no transmission bounds on flow along the line, i.e.
T 12 = +∞ and T 12 = −∞.
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Figure 1: The network with data.

For the sake of computational simplicity, we consider the following bidding process:
the producers will bid only the linear costs, hence b1 = b2 = 0 and A = [1, 3]×[2, 4].
We assume that the true costs of production are also linear, with A1 = 1, A2 = 2
and B1 = B2 = 0.

First, observe that for all (a1, a2) ∈ A, q2(a1, a2) < Q2. Indeed, one has
t12(a1, a2) ≥ −1/L = −5, cf. Lemma 2.2, and thus q2(a1, a2) = D2− t12(a1, a2) +
(L/2)t212(a1, a2) ≤ 9.4 < Q̄2. According to Proposition 2.6, this observation en-
sures uniqueness of both Lagrange multipliers λ1 and λ2 for all (a1, a2) ∈ A. We
denote these multipliers by λ1(a1, a2) and λ2(a1, a2), respectively. Moreover, since
the production bound Q2 is never reached, we have λ2(a1, a2) = a2. Using the
KKT conditions (7), this implies

t12(a1, a2) =
a2 − λ1(a1, a2)

L(a2 + λ1(a1, a2))
. (16)

Thanks to this equality, we can compute q1(a1, a2) and q2(a1, a2) and show that
the bid couple (a∗1, a

∗
2) = (2, 4) is not a solution of (NEP1) while it is a solution

of (NEP2) (see Appendix for details).

3. First order analysis of equilibrium of the electricity
market

In this section, using previous results concerning properties of problem ISO(a, b)
and its solutions, we will derive the first order necessary optimality conditions for
the variational equilibrium problem (10). Similarly to [13], we restrict our analy-
sis to the so-called M-stationarity conditions, where M- stands for Mordukhovich.
Our goal is to provide explicit necessary optimality conditions formulated in the
problem data, similar to [13, conditions (6.2) - (6.13)] derived for a special case
of the problem, however, in our case for a general problem including losses due
to transmission and bounds on production and flow. Further, we discuss several
possibilities how to ensure the required calmness qualification condition. We will
illustrate the application of derived M-stationarity conditions on an academic ex-
ample with two settlements, i.e. example of an network of two nodes connected
via single transmission line.
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3.1. Explicit M-stationarity condition

Recall the reformulation of the KKT conditions (7) of problem ISO(a, b) in the
form of a generalized equation (8) and reformulation of Pi(a−i, b−i) toMPCC(a−i, b−i)
(9). The generalized equation (8) is sometimes called enhanced generalized equa-
tion, enhanced by the KKT multipliers. Note that as opposed to [13], we are
forced to work with the enhanced generalized equations, due to the fact that the
producer’s objectives depend on ISO’s KKT multipliers λ.

Setting x := (a, b) and z := (q, t, ξ), we can reformulate the optimistic-optimistic
optimization problem of producer i (9) with revenue given by (12) into the follow-
ing parameterized MPCC where the bidding coefficients of other producers play
the role of parameters.

minimize
xi,z

fi(xi, x−i, z)

subject to

0 ∈ F (xi, x−i, z) +Q(z)

xi ∈ Ai × Bi,

(17)

where the producer i’s objective fi(x, z) = −λiqi +Aiqi +Biq
2
i .

According to definition 2.3, (x∗, z∗) solves the variational equilibrium of the
electricity market whenever (x∗i , z) solves (17) for every i = 1, . . . , N .

For the reader’s convenience we state a modification of the M-stationarity condi-
tions by Outrata [25] for variational equilibria of electricity market model with the
producer i’s problem given by (17). These conditions are based on M-stationarity
conditions for solutions to MPECs by Ye and Ye [34] and Outrata [26].

Proposition 3.1. [25, Theorem 3.1]
Let for every i = 1, . . . , N , fi and F be continuously differentiable, Ai × Bi be
nonempty and closed and for a fixed x̄−i let (x∗i , z

∗) be a local solution of an
MPEC (17). Further assume that for all i = 1, . . . , N , the multifunctions

Ψi(p) := {(xi, z)|p ∈ F (xi, x
∗
−i, z) +Q(z)}

are calm at (0, x∗i , z
∗). Then for all i = 1, . . . , N , there exists vectors vi such that

0 ∈ ∇xi
f(x∗i , x

∗
−i, z

∗) + (∇xi
F (x∗i , x

∗
−i, z

∗))>vi +NAi×Bi
(x∗i )

0 ∈ ∇zf(x∗i , x
∗
−i, z

∗) + (∇zF (x∗i , x
∗
−i, z

∗))>vi +D∗Q(z∗,−F (x∗i , x
∗
−i, z

∗))(vi)

(18)

Recall that D∗Q refers to the coderivative of a multivalued mapping Q.
In the following theorem we provide the explicit version of the M-stationarity

conditions for variational equilibria of the electricity market (10).

Theorem 3.2. Let for every i = 1, . . . , N , (a∗i , b
∗
i , q
∗, t∗, µ∗, µ̄∗, λ∗, β∗, β̄∗) be the

solution to the problem MPCC(a−i, b−i) for a fixed vector (a∗−i, b
∗
−i) and suppose
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that the multifunction

Ψi(p) := {(ai, bi, q, t, ξ)|p ∈ F (ai, a
∗
−i, bi, b

∗
−i, q, t, ξ) +Q(q, t, ξ)}

is calm at (0, a∗i , b
∗
i , q
∗, t∗, ξ∗). Then for all i = 1, . . . , N , there exist vectors viq ∈

RN , vit ∈ RM , viµ ∈ RN , viµ̄ ∈ RN , viλ ∈ RN , viβ ∈ RM , and vi
β̄
∈ RM such that the

following conditions are satisfied

0 ∈ (viq)i +NAi
(a∗i ) (19)

0 ∈ 2q∗i (viq)i +NBi
(b∗i ) (20)

0 = (−λ∗i +Ai + 2Biq
∗
i )ei + 2(diag (b∗i , b̄−i))v

i
q + viµ − viµ̄ + viλ (21)

0 = diag

{
L1

N∑
i=1

λ∗i |δi1|, . . . , LM
N∑
i=1

λ∗i |δiM |

}
vit (22)

+ (∆−∇tL(t∗))>viλ + viβ − viβ̄ (23)

0 ∈ −viq +D∗NRN
+

(µ∗,−q∗)(viµ) (24)

0 ∈ viq +D∗NRN
+

(µ̄∗, q∗ − Q̄)(viµ̄) (25)

0 ∈ −q∗i ei − viq + (∇tL(t∗)−∆)vit +D∗NRN
+

(λ̄∗,−q∗ −∆t∗ + L(t∗) +D)(viλ)

(26)

0 ∈ −vit +D∗NRM
+

(β∗, T − t∗)(viβ) (27)

0 ∈ vit +D∗NRM
+

(β̄∗, t∗ − T )(viβ̄) (28)

Proof. Taking into account the formulas for the Jacobian of F , coderivative of Q,
normal cone to Ai × Bi, and gradient of fi

∇fi(a, b, q, t, µ, µ̄, λ, β, β̄) =



0
0

(−λi +Ai + 2Biqi)ei
0
0
0

(−qi)ei
0
0


,

the statement follows directly from Proposition 3.1. �

Points (a∗, b∗, q∗, t∗, µ∗, µ̄∗, λ∗, β∗, β̄∗), such that for all i = 1, . . . , N, the condi-
tions (19)-(28) are satisfied, are called M(ordukhovich)-stationary.

In the statement of the above theorem, for simplicity of notation, we use
coderivatives D∗NRN and D∗NRM , which, in fact, can be easily calculated. In
particular, for any (x, y) ∈ Gph NRn

+
and y∗ ∈ Rn let us introduce the following
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three index sets

I1 := {i ∈ {1, . . . , n}|xi > 0, yi ≤ 0} ∪ {i ∈ {1, . . . , n}|xi ≥ 0, yi = 0, y∗i > 0}
I2 := {i ∈ {1, . . . , n}|xi = 0, yi = 0, y∗i < 0}
I3 := {i ∈ {1, . . . , n}|xi = 0, yi < 0, y∗i = 0} ∪ {i ∈ {1, . . . , n}|xi = 0, yi = 0, y∗i = 0}

Note that for (x, y) ∈ Gph NRn
+

these three index sets form a complete disjunct

decomposition of {1, . . . , n}.
Then

D∗NRn
+

(x, y)(y∗) =


∅ if ∃i : yiy

∗
i 6= 0x∗ ∈ Rn

∣∣∣∣∣∣∣
x∗i = 0 for i ∈ I1
x∗i ≤ 0 for i ∈ I2
x∗i ∈ R for i ∈ I3

 else

3.2. Verification of the calmness qualification condition

In order to be able to rely on necessary optimality conditions (19-28), a principle
question concerns the constraint qualifications in the form of calmness conditions
on multifunctions Ψi.

Since the graph of Q is a finite union of polyhedra, in case of linear single-valued
mapping F it suffices to invoke a classical result of Robinson [29]. Then, indeed,
graph of every multifunction Ψi is also a finite union of polyhedra. This implies
calmness of Ψi at every point of its graph and thus also at (0, x∗i , z

∗). However,
mapping F is not linear due to bilinear terms biqi and quadratic L(t). Under
assumption of partial bidding (in particular the so-called bid-a-only scenario), cf.
e.g. [16], when b is not considered as the decision variable but rather as parameter
known to every producer and ISO, and in the loss-free case (Le = 0 for every
e ∈ L), F becomes linear and calmness of multifunctions Ψi follow. Another case
for which calmness of Ψi can be obtained is when the bids ai and bi are positive for
all producers and the thermal losses are equal to zero. Indeed, in [13, Proposition
5.2] calmness of Φi has been proved without a direct use neither of Aubin property
nor of Robinson’s Theorem. Nevertheless, taking into account that bidding in both
a and b and positive loss coefficients Le played important role in our analysis of
structural properties of solutions to problem ISO(a, b), both of these cases are
restrictive.

We thus provide alternative ways of verifying calmness by checking the stronger
Aubin property of Ψi. One possibility to check Aubin property of mappings Ψi

follows from [26, Proposition 3.2].
Suppose that for (a∗, b∗, q∗, t∗, ξ∗), I ⊂ {1, . . . , s} be the index set of active com-

ponents of H. Then calmness of mapping Ψi at (0, a∗i , b
∗
i , q
∗, t∗, ξ∗) is equivalent

to calmness of

Ψ̃i(p) := {(ai, bi, q, t, ξ)|p ∈ F̃ (ai, a
∗
−i, bi, b

∗
−i, q, t, ξ) + Q̃(q, t, ξ)}
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at (0, a∗i , b
∗
i , q
∗, t∗, ξ∗), where

F̃ (a, b, q, t, ξ) =

 a+ 2(diag b)q + (∇qHI(q, t))
>ξI

(∇tHI(q, t))
>ξI

−HI(q, t)

 , Q̃(q, t, ξ) =

 {0}N
{0}M

NR|I|+
(ξI)

 .

Recall that the problem ISO(a, b) with fixed parameters (a∗, b∗) satisfies the
strong second-order sufficient conditions (SSOSC) at one of its solutions (q∗, t∗) if〈

d,∇2
(q,t)L(q∗, t∗, ξ∗)d

〉
> 0 ∀d 6= 0 : ξ∗i∇Hi(q

∗, t∗)d = 0 i ∈ I

holds for all ξ∗ such that ∇(q,t)L(q∗, t∗, ξ∗) = 0, where

L(q, t, ξ) =

n∑
i=1

(a∗i qi + b∗i q
2
i ) + (HI(q, t))

>ξI

is the Lagrangian associated with problem ISO(a∗, b∗).

The sufficient criteria for the Aubin property of mappings Ψ̃i, i = 1, . . . , N, is
given in the following result.

Proposition 3.3. For every i = 1, . . . , N , let (a∗i , b
∗
i , q
∗, t∗, ξ∗) be the solution

to the problem of MPCC(a−i, b−i) for a fixed vector (a∗−i, b
∗
−i). Assume that

∇HI(q
∗, t∗) be surjective and that the problem ISO(a, b) with fixed parameters

(a∗, b∗) satisfies SSOSC at (q∗, t∗, ξ∗). Then the multifunctions Ψ̃i have the Aubin
property.

Proof. Under assumptions on surjectivity of ∇HI(q
∗, t∗) and SSOSC of the ISO

problem, [30, Theorem 4.1] implies that the generalized equation

0 ∈ F̃ (a, b, q, t, ξ) + Q̃(q, t, ξ)

is strongly regular at (a∗, b∗, q∗, t∗, ξ∗). This means that for every i = 1, . . . , N ,
the generalized equations

0 ∈ F̃ (ai, a
∗
−i, bi, b

∗
−i, q, t, ξ) + Q̃(q, t, ξ)

are strongly regular at (a∗i , b
∗
i , q
∗, t∗, ξ∗).

Then, by [26, Proposition 3.2], the mappings

(u1, u2, u3, u4)→ {(ai, bi, q, t, ξ)|u4 ∈ F̃ (ai, a
∗
−i, bi, b

∗
−i, q, t, ξ)+Q̃(u1+q, u2+t, u3+ξ)}

have the Aubin property around (0, a∗i , b
∗
i , q
∗, t∗, ξ∗). Setting u1 = 0, u2 = 0,

u3 = 0, it follows that the restricted mappings

(0, 0, 0, u4)→ {(ai, bi, q, t, ξ)|u4 ∈ F̃ (ai, a
∗
−i, bi, b

∗
−i, q, t, ξ) + Q̃(q, t, ξ)},
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which are in fact mappings Ψ̃i have the Aubin property around (0, a∗i , b
∗
i , q
∗, t∗, ξ∗).

�

Alternatively, instead of relying on the surjectivity of ∇HI(q
∗, t∗) and SSOSC

of the problem ISO(a, b), one can check the Aubin property of mappings Ψi via
Mordukhovich criterion. The constraint qualification ensuring calmness of the mul-
tifunction Ψi is then replaced by a generalized Mangasarian-Fromowitz constraint
qualification condition (GMFCQ), cf. [26]: for wi ∈ RN+M+s we have

0 ∈(∇xiF (xi, x̄−i, z))
>wi +NAi×Bi(xi)

0 ∈(∇zF (xi, x̄−i, z))
>wi +D∗Q(z,−F (xi, x̄−i, z))(w

i)

}
⇒ wi = 0.

The GMFCQ ensures the Aubin property of multifunction Ψi around (0, x∗i , z
∗)

which, in turn, implies its calmness at that point.
In the following, we derive the GMFCQ in the data of the electricity market

model. We thus have to derive the Jacobian of F and coderivative of Q.
It is not difficult to see that

∇F (a, b, q, t, ξ) =

=



I 2(diag q) 2(diag b) 0 −I I −I 0 0
0 0 0 C 0 0 (∇tL(t)−∆)> −I I
0 0 I 0 0 0 0 0 0
0 0 −I 0 0 0 0 0 0
0 0 I ∆−∇tL(t) 0 0 0 0 0
0 0 0 I 0 0 0 0 0
0 0 0 −I 0 0 0 0 0


where columns represent partial gradients of F with respect to a, b, q, t, µ, µ̄, λ, β

and β̄, respectively, and C =
(

diag
{
L1

∑N
i=1 λi|δi1|, . . . , LM

∑N
i=1 λi|δiM |

})
.

Taking wi = (wiq, w
i
t, w

i
µ, w

i
µ̄, w

i
λ, w

i
β , w

i
β̄
) and invoking [31, Proposition 6.41]

together with the definition of a coderivative,

D∗Q((q, t, µ, µ̄, λ, β, β̄),− F (a, b, q, t, µ, µ̄, λ, β, β̄))(viq, v
i
t, v

i
µ, v

i
µ̄, v

i
λ, v

i
β , v

i
β̄) =

=



{0}N
{0}M

D∗NRN
+

(µ,−q)(viµ)

D∗NRN
+

(µ̄, q − Q̄)(viµ̄)

D∗NRN
+

(λ̄,−q −∆t+ L(t) +D)(viλ)

D∗NRM
+

(β, T − t)(viβ)

D∗NRM
+

(β̄, t− T )(vi
β̄
)


and

NAi×Bi
(ai, bi) = NAi

(ai)×NBi
(bi).
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Now, using simple linear algebra, we obtain the following explicit version of
GMFCQ ensuring Aubin property of Ψi around (0, x∗i , z

∗): For wiq ∈ RN , wit ∈
RM , wiµ ∈ RN , wiµ̄ ∈ RN , wiλ ∈ RN , wiβ ∈ RM and wi

β̄
∈ RM , the conditions

0 ∈ (wiq)i +NAi
(a∗i ) (29)

0 ∈ 2q∗i (wiq)i +NBi
(b∗i ) (30)

0 = 2(diag (b∗i , b
∗
−i))w

i
q + wiµ − wiµ̄ + wiλ (31)

0 = diag

{
L1

N∑
i=1

λ∗i |δi1|, . . . , LM
N∑
i=1

λ∗i |δiM |

}
wit + (∆−∇tL(t∗))>wiλ + wiβ − wiβ̄

(32)

0 ∈ −wiq +D∗NRN
+

(µ∗,−q∗)(wiµ) (33)

0 ∈ wiq +D∗NRN
+

(µ̄∗, q∗ − Q̄)(wiµ̄) (34)

0 ∈ −wiq + (∇tL(t∗)−∆)wit +D∗NRN
+

(λ̄∗,−q∗ −∆t∗ + L(t∗) +D)(wiλ) (35)

0 ∈ −wit +D∗NRM
+

(β∗, T − t∗)(wiβ) (36)

0 ∈ wit +D∗NRM
+

(β̄∗, t∗ − T )(wiβ̄) (37)

imply wiq = 0, wit = 0, wiµ = 0, wiµ̄ = 0, wiλ = 0, wiβ = 0 and wi
β̄

= 0.

3.3. Application to a simple electricity market

We conclude this section on first order necessary optimality conditions for vari-
ational equilibria of the electricity market with the following illustrative academic
example.

Example 3.4. Consider a network of two nodes 1 and 2 connected by a single
transmission line e, thus N = 2 and M = 1. Suppose that Q̄1 = 5, Q̄2 = 1, D1 =
2, D2 = 1.9, T e = −2, T e = 2 and Le = 0.2 and set A1 = A2 = B1 = 1, B2 = 5
and Ai = Bi = 1, Ai = Bi = 2, i = 1, 2.

Clearly, in order to satisfy the demand in both nodes, there needs to be a
transmission directed from node 1 to node 2. Taking into account the parame-
ters of both producers, clearly, both of them will be producing in their respect-
ful optimal solutions. It is thus not difficult to see that the variational equi-
libria of this electricity market model are points (a∗, b∗, q∗, t∗, µ∗, µ̄∗, λ∗, β∗, β̄∗)
= (2, a∗2, 2, b

∗
2, 3.1, 1, 1, 0, 0, 0, 15.6, 14.4, 21.6, 0, 0), for a∗2 ∈ [1, 2] and b∗2 ∈ [1, 2].

The non-uniqueness of solutions for producer 2 is due to the fact that producer 2
is forced to produce on maximum capacity, and due to transmission from node 1,
the price at node 2 depends on price at node 1, i.e. the solution of the problem
ISO(a, b) thus depends just on bid of producer 1.
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Let us choose, say, a∗2 = 2, b∗2 = 2. In the following, we shall verify the calm-
ness constraint qualification and conditions (19)-(28) at point (2, 2, 2, 2, 3.1, 1, 1,
0, 0, 0, 15.6, 14.4, 21.6, 0, 0).

First, notice that the restrictions on values of coderivatives are common for
both producers and remain the same in both GMFCQ conditions and necessary
optimality conditions. Denote for i = 1, 2(

wi1
wi2

)
∈ D∗NR2

+
(µ∗,−q∗)(viµ)(

wi3
wi4

)
∈ D∗NR2

+
(µ̄∗, q∗ − Q̄)(viµ̄)(

wi5
wi6

)
∈ D∗NR2

+
(λ̄∗,−q∗ −∆t∗ + L(t∗) +D)(viλ)

wi7 ∈ D∗NR+(β∗, T − t∗)(viβ)

wi8 ∈ D∗NR+(β̄∗, t∗ − T )(viβ̄)

We can see that I1 = {4, 5, 6}, I2 = ∅ and I3 = {1, 2, 3, 7, 8}, thus (v1
µ)1 =

(v1
µ)2 = (v1

µ̄)1 = v1
β = v1

β̄
= 0, w1

4 = w1
5 = w1

6 = 0 and remaining variables are

arbitrary reals.
To verify the GMFCQ for i = 1, conditions (29)-(37) can be reduced to

0 ≥ (w1
q)1, (38)

0 ≥ 6.2(w1
q)1, (39)

0 = 4(w1
q)1 + (w1

λ)1, (40)

0 = 4(w1
q)2 − (wµ̄)2 + (w1

λ)2, (41)

0 = 7.2w1
t − 1.2(w1

λ)1 + 0.8(w1
λ)2, (42)

0 = −(w1
q)1 + w1

1, (43)

0 = −(w1
q)2 + w1

2, (44)

0 = (w1
q)1 + w1

3, (45)

0 = (w1
q)2, (46)

0 = −(w1
q)1 + 1.2w1

t , (47)

0 = −(w1
q)2 − 0.8w1

t , (48)

0 = −w1
t + w1

7, (49)

0 = w1
t + w1

8. (50)

Starting with equation (46), it follows from (48, 47, 40, 42, 41), that all variables
vanish. Thus GMFCQ is satisfied which implies calmness of Ψi at the required
point. Analogously for i = 2.
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The necessary optimality conditions (19)-(28) for producer 1 reduce to

0 ≥ (v1
q )1,

0 ≥ 6.2(v1
q )1,

0 = −7.2 + 4(v1
q )1 + (v1

λ)1,

0 = 4(v1
q )2 − (vµ̄)2 + (v1

λ)2,

0 = 7.2v1
t − 1.2(v1

λ)1 + 0.8(v1
λ)2,

0 = −(v1
q )1 + w1

1,

0 = −(v1
q )2 + w1

2,

0 = (v1
q )1 + w1

3,

0 = (v1
q )2,

0 = −3.1− (v1
q )1 + 1.2v1

t ,

0 = −(v1
q )2 − 0.8v1

t ,

0 = −v1
t + w1

7,

0 = v1
t + w1

8.

It can be easily checked that this system of equalities and inequalities is satis-
fied for (v1

q , v
1
t , v

1
µ, v

1
µ̄, v

1
λ, v

1
β , v

1
β̄
) = (−3.1, 0, 0, 0, 0, 0, 29.4, 19.6, 29.4, 0, 0). Analo-

gously, the necessary optimality conditions (19)-(28) for producer 2 are satisfied
for (v2

q , v
2
t , v

2
µ, v

2
µ̄, v

2
λ, v

2
β , v

2
β̄
) = (−1.5, 0,−1.25, 0, 0, 0,−12.85, 6,−2.25, 0, 0). 4

Note that the derived necessary optimality conditions can be applied for general
variational equilibrium of the electricity market. However, similarly to [13], one
can introduce restrictions to a certain classes of solutions, e.g. to a class of solutions
specified by Proposition 2.6, for which one could simplify the conditions (19)-(28)
accordingly.

4. Appendix

In this section we will provide detail calculations concerning Example 1 of elec-
tricity market in Subsection 2.3.

We show that the vector of bids (2, 4) is a solution of (NEP2) but it is not a
solution of (NEP1). Recall that we assume uniqueness of the primal and dual so-
lution of the problem ISO(a, b). Thus we can work with the implicit reformulation
of electricity market model.

Statement 1: point (a∗1, a
∗
2) = (2, 4) is not a solution of (NEP1).
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By Lemma 2.1, one has q1(a1, a2) = D1 + t12(a1, a2) + L
2 t12(a1, a2)2. Invoking

formula (16), it follows that

q1(a1, a2) = D1 +
3a2

2 − λ1(a1, a2)2 − 2λ1(a1, a2)a2

2L(a2 + λ1(a1, a2))2
. (51)

If follows that q1(3, 4) = Q1. Assume for contradiction that q1(3, 4) < Q1. This
implies λ1(3, 4) = 3 and thus from (51) we obtain

q1(3, 4) =
565

98
= Q1,

which concludes the contradiction.
Since Q1 is the upper bound of production for producer 1 and the function

q1(·, 4) is non-increasing, one has q1(a1, 4) = Q1, for all a1 ∈ A1. Consequently,
(2, 4) is not a solution of (NEP1), since R1(a1, a2) = (a1 − A1)q1(a1, a2) and
therefore R1(2, 4) < R1(3, 4).

Statement 2: point (a∗1, a
∗
2) = (2, 4) is a solution of (NEP2).

In order to prove that (2, 4) is a solution of (NEP2) we need to show that 2 ∈
arg maxA1 R̃1(·, 4) and that 4 ∈ arg maxA2 R̃2(2, ·).

First, let us show that the profit function R̃1(·, 4) of producer 1 is constant
over A1. As proved before, the function q1(·, 4) is clearly constant over A1. This
immediately implies that the functions q2(·, 4) and t12(·, 4) are also constant over
A1. Thus, the KKT (7) conditions give

λ1(a1, 4) =
1− Lt12(a1, 4)

1 + Lt12(a1, 4)
λ2(a1, 4), ∀a1 ∈ [1, 3).

Now, since the function t12(·, 4) is constant and λ2(a1, 4) = 4 for all a1 ∈ A1, we

deduce that λ1(·, 4) is constant over A1 and thus the profit function R̃1(·, 4) :=
(λ1(·, 4) − A1)q1(·, 4) is also constant. The bid coefficient a∗1 = 2 is therefore a

trivial solution of producer 1’s problem maxA1
R̃1(·, 4).

Now, let us show that 4 ∈ arg maxA2 R̃2(2, ·). Whenever q2(2, ·) is constant
over A2 then, since λ2(2, a2) = a2 for all a2 ∈ A2, we immediately deduce that

the function R̃2(2, ·) is an increasing linear function and the conclusion follows.
Assume now that the function q2(2, ·) is not constant over A2. We will show that

also in this case the function R̃2(2, ·) is increasing over A2. The function q2(2, ·)
is continuous and non-increasing on A2, cf. [8, Lemma 1] and [1, Proposition
3], respectively. Thus there is ā2 ∈ [2, 4] such that for all a2 ∈ [2, ā2), one has
q2(2, a2) > q2(2, 4), while for all a2 ∈ [ā2, 4], q2(2, a2) = q2(2, 4).

Let us show that for all a2 ∈ [2, ā2), we have q1(2, a2) < Q̄1. This inequality
follows immediately for q1(2, a2) < D1 since D1 < Q1. Assuming that q1(2, a2) >
D1, one has t12(2, a2) > 0 because node 1 produces more the demand D1 at
node 1. Lemma 2.1 applied at node 2 along with the fact that the function
g : t→ −t+ (L/2)t2 is decreasing and bijective between [0, 1/L] and [−1/(2L), 0]
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implies that t12(2, a2) = g(q2(2, a2) − D2) < g(q2(2, 4) − D2) = t12(2, 4). Now,
from Lemma 2.1 at node 1 and node 2 we obtain

q1(2, a2) = Lt12(2, a2)2 +D1 +D2 − q2(2, a2)
< Lt12(2, 4)2 +D1 +D2 − q2(2, 4)
= q1(2, 4) = Q1

and thus λ1(2, a2) = 2.
Invoking formula (16) together with the nodal energy balance equation, we have

q2(2, a2) =
12− 4a2 − a2

2

2L(2 + a2)2
+ 1.9, ∀a2 ∈ [2, ā2)

and therefore, for any a2 ∈ [2, ā2), one has

∂2R̃2(2, a2) =
1176− 3a3

2 − 18a2
2 + 236a2

5(a2 + 2)3
.

Now, we have
L(ā2 + 2)t12(2, ā2) = ā2 − 2. (52)

Indeed, according to Lemma 2.2, for any a2 ∈ A2, t12(2, a2) ∈ [−5, 5] and t12(2, a2)
is solution of the equation q2(2, a2) = D2 − t12(2, a2) + 0.1t12(2, a2)2. But on
[−5, 5], the map t 7→ −t+ 0.1t2 is continuously invertible and thus the continuity
of q2(2, a2) also implies the continuity of t12(2, a2). Now the announced equality
is a direct consequence of (16).

On the other hand, q1(2, 4) = Q1 and therefore 0.1t12(2, 4)2 + t12(2, 4)+5 = Q1

yields t12(2, 4) = 7/5. Since q2(2, ·) is constant over [ā2, 4], it is the case also for
q1(2, ·) and t12(2, ·) and thus t12(2, ā2) = 7/5. Equality (52) immediately gives
ā2 = 8/3 and thus for all a2 ∈ [2, ā2),

∂2R̃2(2, a2) ≥ 1176− 3ā3
2 − 18ā2

2 + 236ā2

5(ā2 + 2)3
> 0,

i.e. the function R̃2(2, ·) is increasing over [2, ā2). It is increasing also over [ā2, 4]

since R̃2(2, a2) = (a2 − A2)q2(2, ā2) for any a2 ∈ [ā2, 4]. Finally, by continuity of

q2(2, ·), 4 ∈ arg maxA2
R̃i(2, ·). This proves that (a∗1, a

∗
2) = (2, 4) is a solution of

the equilibrium problem with production bounds (NEP2).
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[27] Outrata, J.V., Kočvara, M., Zowe, J., Nonsmooth Approach to Optimization Problems with

Equilibrium Constraints, Kluwer, Dordrecht, 1998.
[28] Pang, J.-S., Fukushima, M., Quasi-variational inequalities, generalized Nash equilibria, and

multi-leader-follower games, Comput. Manag. Sci. 1 (2005), 21–56.
[29] Robinson, S.M., Some continuity properties of polyhedral multifunctions, Math. Program.

Stud. 14 (1976), 206–214.



26 TITLE WILL BE SET BY THE PUBLISHER

[30] Robinson, S.M., Strongly regular generalized equations, Math. Oper. Res. 5 (1980), 43–62.

[31] Rockafellar, R.T., Wets, R.J.-B., Variational Analysis, A Series of Comprehensive Studies
in Mathematics, Vol. 317, Springer, Berlin, Heidelberg, 1998.

[32] Saguan, M., Glachant, J.-M., Dessante, P., Risk management and optimal hedging in elec-

tricity forward markets coupled with a balancing mechanism, 9th International Conference
on Probabilistic Methods Applied to Power Systems, Vols 1 and 2 (2006), 917–922.

[33] Surowiec, T., Explicit Stationarity Conditions and Solution Characterization for Equilibrium

Problems with Equilibrium Constraints, PhD thesis, Humboldt University in Berlin, August
2009.

[34] Ye, J.J., Ye, X.Y., Necessary optimality conditions for optimization problems with varia-

tional inequality constraints, Math. Oper. Res. 22 (1997), 977–997.


	1. Introduction
	2. Towards an adapted model for electricity market with transmission losses and production bounds
	2.1. General electricity market model and notation
	2.2. Variational equilibrium reformulation
	2.3. Single-valued case

	3. First order analysis of equilibrium of the electricity market
	3.1. Explicit M-stationarity condition
	3.2. Verification of the calmness qualification condition
	3.3. Application to a simple electricity market

	4. Appendix
	References

