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Abstract. In order to study deregulated electricity spot markets, various

models have been proposed. Most of them correspond to a, so-called, multi-
leader-follower game in which an Independent System Operator (ISO) plays

a central role. Our aim in this paper is to consider quadratic bid functions

together with the transmission losses in the multi-leader-follower game. Under
some reasonable assumptions we deduce qualitative properties for the ISO’s

problem. In the two islands type market, the explicit formulae for the optimal

solutions of the ISO’s problem are obtained and we show the existence of an
equilibrium.

1. Introduction. With the deregulation and privatization of the electricity market
in many countries since the mid 1980’s, new models have appeared in the litera-
ture. One classical family of economical models for electricity markets is based
on Cournot-type formulations, that is a noncooperative game in which the gen-
erators compete only with the energy quantities. It is this point of view which
will be developed in the present work. Another famous approach is the so-called
Supply Function Equilibrium approach (SFE) in which each generator is bidding
supply function, that is price-quantity curves. This approach, based on the pioneer-
ing work of Klemperer-Meyer [19], has been then applied to electricity markets by
many authors and for different purposes; e.g. Green-Newbery[13] for application
to the market of England and Wales, Baldick-Hogan [2] for studying stability of
the model under perturbations, Anderson-Xu [1] for SFE models under uncertained
demand; see also [5, 3, 23]. For qualitative and quantitative comparisons of both
approaches the interested reader can refer to [2, 22, 24].

Following the literature about Cournot-type bilevel approaches, the model pro-
posed in this paper can be described as follows: the electricity market is supposed
to be centralized by an Independent System Operator (ISO) and each agent bids
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his cost of production to the ISO who computes the best response/dispatch in order
to minimize the general cost of production. This leads to a so-called multi-leader-
follower game in which each agent is facing a bilevel problem. Consumers and elec-
tricity generators are located in different nodes connected by power transmission
lines. In most of the proposed models [12, 18, 10, 11, 16, 4], the bids of generators
are assumed to follow linear or affine laws. Nevertheless it appears interesting to
consider spot markets in which the bid functions of the generators (production)
are more structured than linear or affine. Namely in [17], Hobbs and Pang used
piecewise linear demand functions to obtain a reformulation of the model as a qua-
sivariational inequality while in [15] demand and cost functions were assumed to be
quadratic. On the other hand, in some situations as long distance transportation,
high intensity (DC transmission), the transmission losses along the lines cannot be
neglected. The influence of the transmission losses on the equilibrium has been
studied in [11, 8, 4, 14].

Our aim in the work is to consider simultaneously non linear bid functions for the
generators and transmission losses on the network. This approach has been used
very recently by Henrion-Outrata-Surowiec [14] to propose a reformulation of the
spot market as an Equilibrium Problem with Equilibrium constraints, often denoted
as EPEC. They provide sharp qualification conditions for this EPEC reformulation.

In the present work we mainly concentrate on the existence of noncooperative
equilibrium on the electricity spot market. Uniqueness results, at the equilibrium,
for the production and flow along the lines are also proved. The existence of a
noncooperative equilibrium is obtained for a special configuration of the network,
called the two islands type problem. It corresponds to the case where generators
can be separated into groups, virtual or physical islands, linked by one non oriented
line (or equivalentely by two oriented lines). This topography fits the situation of
the New Zealand market and has been considered, e.g., in [8, 21] and references
therein.

The paper is organized as follows. In the next section the general model and
hypotheses for the electricity spot market are presented. As in [11, 14], in our
model the transmission losses are split between the receiver and the sender. Section
3 is composed of two subsections, the first one being devoted to sufficient conditions
ensuring the uniqueness of the solution of the ISO’s problem while in the second
one, under the assumption of uniqueness of the solution of the ISO’s problem,
we prove qualitative properties of this solution. Finally, in section 4, we consider
the case of the two islands type market and provide an explicit formula for the
production vector and the flow vector in terms of the bid of the generators. Then
the multi-leader-follower problem modelling the spot market turns out to be a Nash
equilibrium problem for which we prove the existence of an equilibrium.

2. Spot market: The mathematical model. We consider a electricity spot
market based on a transmission network. The agents of the markets are the pro-
ducers. Each node of the network is composed of a producer and of a consumer
(eventually with a null demand). The lines of the network are supposed to be ori-
ented, each line being split into two oriented lines if the network is not oriented.
Each line has a maximal transmission capacity and thermal losses are considered.
According to classical models the thermal losses are proportional to the square of
the transmission flow along the line.

* N is the set of nodes (N being its cardinal).
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* L is the set of electricity lines.
* Lij is the coefficient of thermal losses.

The demand of each agent (as a consumer) is supposed to be given.

* Di is the demand of node i ∈ N .
* Aiqi +Biq

2
i is the real cost of generation of the node i ∈ N .

A - The ISO’s problem

The spot market is regulated by an Independent System Operator (ISO). Thus
any agent (as a producer) provides to the ISO a quadratic bid function given by
the parameters ai and bi. Then the ISO computes the set of admissible productions
and transmissions.

* qi ≥ 0 represents the production at node i ∈ N .
* tij represents the flow along the line ij ∈ L.
* aiqi + biq

2
i corresponds to the bid function (bid generation cost) given by

producer i to the ISO.

Since the production vector q is supposed to be nonnegative (i.e. qi ≥ 0, for all i),
the agents (producers) are only acting as producers and not as retailers.

For each line ij ∈ L and any flow tij along this line, the cost Lijt
2
ij of ther-

mal losses is covered equally by both producer i and producer j. This choice of
distribution of the thermal losses costs has also been used in Escobar-Jofre [11].

Thus the ISO, knowing the bid vectors a = (a1; · · · ; aN ) and b = (b1; · · · ; bN )
announced by producers, computes q = (qi)i∈N and t = (tij)ij∈L in order to mini-
mize the total generation cost, that is to solve the following optimization problem,
denoted by ISO(a, b)

minq,t
∑
i∈N (aiqi + biq

2
i )

s.t.


qi ≥ 0 , i = 1 · · · , N (a)

qi −
∑
k:ik∈L

(tik +
Lik
2
t2ik) +

∑
k:ki∈L

(tki −
Lki
2
t2ki) ≥ Di , i = 1, · · · , N (b)

tij ≥ 0 , ij ∈ L (c)

The only nontrivial assumption of the above problem, assumption (b), simply ex-
presses that the demand at node i is satisfied. Equality in this constraint (b)
corresponds to a Kirchhoff law (see Lemma 3.1). The solution set of the above
optimization problem will be denoted by Q(a, b). It is immediate that for any
(a, b) ∈ (RN+ )2, this solution set is nonempty.

Let us observe that, since each bi is nonnegative, the objective function g(a,b) :

q 7→
∑
i∈N (aiqi + biq

2
i ) of the ISO’s problem is a convex function. Additionally,

the constraint set K of this problem is also clearly convex.

B - The producer’s problem

It is clear that the producers cannot act independently from each other on the
market, at least because of the finiteness of the demand. Each producer i aims to
maximize his profit, given by the difference between the revenue (ai + 2biqi)qi and
the real generation cost Aiqi + Biq

2
i . But the producer i has to take into account

that the production vector q is given by the ISO’s problem and therefore depends
on the bids of the other producers, namely of the bid vectors a−i = (aj)j 6=i and
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b−i = (bj)j 6=i. Thus the spot electricity market is naturally described as a multi-
leader-follower game, with each producer solving the following bilevel optimization
problem Pi(a−i, b−i)

max
ai,bi,q,t

(ai + 2biqi)qi − (Aiqi +Biq
2
i )

s.t.


Ai ≤ ai ≤ Āi
Bi ≤ bi ≤ B̄i
(q = (qi)i∈N , t = (tij)ij∈L) ∈ Q(a, b)

with 0 ≤ Ai ≤ Āi and 0 ≤ Bi ≤ B̄i.
Let us observe that, since bi is positive, the price ai+2biqi is increasing whenever

the supply qi is increasing. It corresponds to situation in which the “base offer” is
made thanks to low cost energy plants while when the supply is increasing some
more costly plants have to be activated.

Here the chosen point of view is the optimistic formulation since maximum is
taken with regards to variables (q, t). This choice of formulation doesn’t have in-
fluence in the sequel since our assumptions (see e.g. Proposition 2 and Proposition
4) will ensure uniqueness of the solution of the ISO’s problem.

In the above optimization problem, producer i is only concerned with the pro-
duction value qi. But he can only choose a production qi for which there exists a
production vector of the other agents q−i = (qj)j 6=i and a vector of flows t = (tij)ij∈L
such that (qi, q−i, t) ∈ Q(a, b). Thus an equilibrium for the (global) spot market is
a vector of bids (a∗, b∗) satisfying this following property:

∃(q∗, t∗) ∈ Q(a∗, b∗) such that ∀i ∈ N , (a∗i , b
∗
i , q
∗, t∗) is solution of Pi(a

∗
−i, b

∗
−i).

It is interesting to observe that this spot market model, although it enters in the
class of generalized Nash equilibrium problems, has a special structure in the sense
that the problem Pi(a−i, b−i) of the producer i depends on the bids of the other
producers only throughout the constraints, that is the shared ISO’s problem. Indeed
Pi(a−i, b−i) is, formally, of the following form

maxxi,y fi(xi, y)

s.t.

{
xi ∈ Xi

y ∈ arg minK g(x, ·)

3. Uniqueness in the ISO’s problem. Since the constraint set of each pro-
ducer’s problem is essentially built around the constraint (q, t) ∈ Q(a, b), it is im-
portant to know whether the solution set Q(a, b) of the ISO’s problem is a singleton.
As shown by the following example, this is clearly not the case in general.

Example 3.0.1. Let us consider N = {1; 2}, L = {12; 21}, D1 = D2 = 1, Q̄1 =
Q̄2 = 2, b1 = b2 = 0, a1 = a2 = 1 and L12 = L21 = 0. Then the solution set of the
ISO’s problem is described by

Q(a, b) =

(q, t) ∈ [0; 2]2 × (R+)2

∣∣∣∣∣∣
q1 + q2 = 2
t12 = max(1− q2; 0)
t21 = max(1− q1; 0)


In subsection 3.1, we will first describe simple hypotheses ensuring uniqueness of

the solution set of the ISO’s problem. Then, in subsection 3.2, under the uniqueness
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assumption, we will propose a reformulation of the producer’s problem and derive
qualitative properties of some elements of this reformulation.

3.1. Sufficient conditions for uniqueness. All along this subsection the bid
vectors a and b (elements of RN are assumed to be such that, for all i ∈ N ,
Ai ≤ ai ≤ Āi and Bi ≤ bi ≤ B̄i. As previously stated the objective function of
the ISO’s problem ISO(a, b) is denoted by g(a,b)(q, t) =

∑
i∈N (aiqi + biq

2
i ) while K

stands for the constraint set, which doesn’t depend on a or b.
From the convexity of K and the strict convexity of g(a,b) whenever the bid vector

b is positive (that is, bi > 0, for all i ∈ N ), we immediately deduce the following
uniqueness result on variable q.

Proposition 1. We suppose that for all i ∈ N , bi > 0. For all solutions (qI , tI)
and (qII , tII) of the ISO’s problem, we have qI = qII .

The conclusion of the above proposition can be rephrased saying that all the
solutions (q, t) of the ISO’s problem have the same production vector q.

The non uniqueness on the flow variable t can be illustrated by the following
simple example : N = {1; 2; 3; 4}, L = {12; 13; 24; 34}, D1 = D2 = D3 = 0, D4 = 1,
b1 = 1 = a1, L12 = L24 = L13 = L34 = 0 and ai = bi = 4 for i = 2, 3, 4. Then
there is a unique q = (1, 0, 0, 0) but tI = (.5, .5, .5, .5) and tII = (.75, .25, .75, .25)
correspond to different optimal solutions.

Nevertheless assuming that all the bid coefficients bi are positive could appear to
be a bit too restrictive. In example 3.0.1, both b1 and b2 are assumed to be zero and
there is a multiplicity of solutions. However, if L12 = L21 6= 0, then there exists a
unique solution to the ISO’s problem which is given by (q1; q2; t12; t21) = (1; 1; 0; 0).
Actually it is a general fact that the strict positivity of the thermal losses coefficients
Lij will imply the desired uniqueness on the production vector q and on the flow
vector t. This will be stated in Proposition 2 below. Let us first prove the following
useful lemma.

Lemma 3.1. Let us assume that for each producer i ∈ N , one has ai 6= 0 or bi 6= 0.
Then for any (q, t) ∈ Q(a, b), solution of the ISO’s problem ISO(a, b), one has, for
any i ∈ N ,

qi −
∑
k:ik∈L

(
tik +

Lik
2
t2ik

)
+
∑
k:ki∈L

(
tki −

Lki
2
t2ki

)
= Di.

Remark 1. i) The assumption that for any producer i, one has ai 6= 0 or bi 6= 0
simply means that there is no producer who proposes electricity for free.
ii) The equality in the above lemma expressed that Kirchhoff law is satisfied at

any optimal solution of the ISO’s problem.

Proof. Case 1): Let us first assume that qi > 0. The solution (q, t) satisfies

qi −Di ≥
∑
k:ik∈L

(
tik +

Lik
2
t2ik

)
−
∑
k:ki∈L

(
tki −

Lki
2
t2ki

)
.

Let us suppose, for a contradiction, that the above inequality is strict. By defining

q
′

i = max

{ ∑
k:ik∈L

(
tik +

Lik
2
t2ik

)
−
∑
k:ki∈L

(
tki −

Lki
2
t2ki

)
+Di; 0

}
< qi,

and q
′

= (q1, · · · , qi−1, q
′

i, qi+1, · · · , qN ), we have (q
′
, t) ∈ K and, since g(a,b) is

increasing on [0,+∞[, g(a,b)(q
′
, t) < g(a,b)(q, t), which is a contradiction.
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Case 2): Consider now that qj = 0 and

−Dj >
∑

k:jk∈L

(
tjk +

Ljk
2
t2jk

)
−
∑

k:kj∈L

(
tkj −

Lkj
2
t2kj

)
. (1)

The latter means that the input flow into node j is higher than output flow plus
consumption at node j. We will show that, step by step, it is then possible to
redistribute the flows in such a way that a contradiction will be obtained at node i
such that qi > 0.

So let a node i ∈ N be such that qi > 0 and there exists {i1, · · · , ip} ⊂ N such
that for any k ∈ {1, · · · , p− 1}

ikik+1 ∈ L , tikik+1
> 0 and i1 = i, ip = j.

To justify the existence of such a path i1i2, i2i3, . . . , ip−1j, let us observe that, since
there is no production at node j, inequality (1) shows that the entering flow at

node j, namely,
∑
k:kj∈L

(
tkj − Lkj

2 t2kj

)
is strictly positive because it is greater than∑

k:jk∈L

(
tjk +

Ljk

2 t2jk

)
+ Dj . Thus there is at least one strictly positive entering

flow lj at j. If ql > 0 then the path will be reduced to lj. Otherwise we can act
recursively.

By continuity of the function x −→ x −
Lip−1ip

2
x2, there exists t̃ip−1ip < tip−1ip

which satisfies

−Dj ≥
∑

k:jk∈L

(
tjk +

Ljk
2
t2jk

)
−

∑
k:kj∈L\Ip−1

(
tkj −

Lkj
2
t2kj

)
−
(
t̃ip−1j −

Lip−1j

2
(t̃ip−1j)

2

)
,

(2)

where Ip−1 = {ip−1ip}. On the other hand one can easily verify that

−Dip−1
≥

∑
k:ip−1k∈L\Ip−1

(
tip−1k +

Lip−1k

2
t2ip−1k

)
+

(
t̃ip−1j +

Lip−1j

2
(t̃ip−1j)

2

)
−

∑
k:kip−1∈L

(
tkip−1

−
Lkip−1

2
t2kip−1

)
,

proving, together with (2) that (q, t̃p−1) ∈ K where t̃p−1 = ((trs)rs∈L\Ip−1
, t̃ip−1ip).

By a finite reverse recurrence we will show that, for k = p− 1 to k = 1, one can
find t̃k = ((trs)rs∈L\Ik , (t̃rs)rs∈Ik)) with Ik = {ikik+1, . . . , ip−1ip}, (q, t̃k) ∈ K and

t̃rs < trs, for all rs ∈ Ik.
So let us suppose the above recurrence property is true for k. Since (q, t̃k) ∈ K

and t̃ikik+1
< tikik+1

, we immediately have

qik −Dik ≥
∑

l:ikl∈L

(
tikl +

Likl
2
t2ikl

)
−

∑
k:lik∈L

(
tlik −

Llik
2
t2lik

)
>

∑
l:ikl∈L\Ik

(
tikl +

Likl
2
t2ikl

)
−

∑
k:lik∈L

(
tlik −

Llik
2
t2lik

)
+t̃ikik+1

+
Likik+1

2
(t̃ikik+1

)2
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Therefore we can find t̃ik−1ik < tik−1ik such that

qik −Dik ≥
∑

l:ikl∈L\Ik−1

(
tikl +

Likl
2
t2ikl

)
−

∑
l:lik∈L\Ik−1

(
tlik −

Llik
2
t2lik

)
+t̃ikik+1

+
Likik+1

2
(t̃ikik+1

)2 −
(
t̃ik−1ik −

Lik−1ik

2
t̃2ik−1ik

)
.

Moreover, we have

qik−1
−Dik−1

≥
∑

l:ik−1l∈L\Ik−1

(
tik−1l +

Lik−1l

2
t2ik−1l

)
+ t′ik−1ik

+
Lik−1ik

2 (t′ik−1ik
)2 −

∑
l:lik−1∈L

(
tlik−1

−
Llik−1

2
t2lik−1

)

showing that (q, t̃k−1) ∈ K with t̃k−1 = ((trs)rs∈L\Ik−1
, (t̃rs)rs∈Ik−1

))

As a final conclusion of the recurrence (for k = 1), the vector (q, t̃1) is in K and

qi −Di >
∑

l:il∈L\I1

(
til +

Lil
2
t2il

)
−
∑
l:li∈L

(
tli −

Lli
2
t2li

)
+ t̃ii2 +

Lii2
2

(t̃ii2)2

with qi > 0. But we know, thanks to Case 1), that this is impossible. This completes
the proof.

We are now in a position to prove a uniqueness result for the solution of the
ISO’s problem based on the strict positivity of the thermal losses coefficients.

Proposition 2. Let us assume that for all producers i ∈ N , one has ai 6= 0 or
bi 6= 0, and, for all lines ij ∈ L, Lij > 0. Then the ISO’s problem ISO(a, b) admits
a unique solution (q∗, t∗).

Proof. Let (qI , tI) and (qII , tII) be two solutions of the ISO’s problem such that
tI 6= tII , and let λ ∈]0; 1[. By convexity of K and g(a,b), (qλ, tλ) := (λqI + (1 −
λ)qII , λtI + (1− λ)tII) is also a solution of the ISO’s problem.

Since tI 6= tII there exists ij ∈ L such that tIij 6= tIIij and therefore, by convexity

of the functions ϕlp : x −→ Llpx
2 and strict convexity of the function ϕij , it follows

that

qλj −
∑

k:jk∈L

(
tλjk +

Ljk
2

(tλjk)2
)

+
∑

k:kj∈L

(
tλkj −

Lkj
2

(tλkj)
2

)
> Dj .

But the above inequality contradicts lemma 3.1. Thus we have tI = tII and,

again by Lemma 3.1, for any j, qIj = qIIj = Dj −
∑
k:jk∈L

(
tλjk +

Ljk

2 (tλjk)2
)

+∑
k:kj∈L

(
tλkj −

Lkj

2 (tλkj)
2
)

.

Whenever the quadratic bid function is supposed to be an approximation of
some bids by blocks (a block being a couple (quantity-price)), assuming that bi > 0
corresponds to the fact that the stack of block bids is organized in increasing order
and that the associated increasing step function can approximated by a quadratic
form (see also remark after the definition of the producer’s problem).
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3.2. Reformulation and qualitative properties. Let us denote by A and B the
subsets A =

∏
i∈N [Ai;Ai] and B =

∏
i∈N [Bi;Bi]. All along this subsection, we will

assume that, for all (a, b) ∈ A × B, the ISO’s problem ISO(a, b) admits a unique
solution. This solution will be denoted by (q(a, b), t(a, b)). In the particular case
when the bids of the producer act only on the linear term of the production cost
function, that is whenever b = B is fixed and known by all producers, we will use
the notation (q(a), t(a)). In the literature (see e.g. [18]) this case is called “bid-
on-a-only“ market. Our aim, in this subsection, is then to investigate qualitative
properties of the application q : (a, b) 7→ q(a, b).

Under the above uniqueness assumption, the producer’s problem Pi(a−i, b−i) can
be reformulated in the following form:

maxai,bi (ai + 2biqi(a, b))qi(a, b)− (Aiqi(a, b) +Biqi(a, b)
2)

s.t.

{
Ai ≤ ai ≤ Āi
Bi ≤ bi ≤ B̄i

Even if this reformulation is only an implicit form, it has the advantage of replacing
the bilevel problem Pi(a−i, b−i) by a classical mathematical programming problem.
Additionally, as it will be shown in Section 4, it is possible, in some cases, to give an
explicit formulation for q(a, b) and therefore, the multi-leader-follower game which
represents the spot electricity market becomes a classical Nash equilibrium problem.

Proposition 3. Let us suppose that b = B is known by all the agents. Then, for
all a−i ∈

∏
j 6=i[Ai;Ai], the application qi(·, a−i) is non increasing and Lipschitz

continuous with modulus
1

2Bi
on [Ai;Ai].

Proof. It follows the same lines as in the proof of [18, Prop. 1]. Let a and a
′

be two
elements of A. Since the constraint set K and the objective function ga : (q, t) 7→∑
i∈N (aiqi + biq

2
i ) of the ISO’s problem ISO(a) are convex, we obtain, according

to classical optimality conditions written at q(a) and q(a′) elements of K

〈2Mq(a) + a, q(a
′
)− q(a)〉 ≥ 0

〈2Mq(a
′
) + a

′
, q(a)− q(a

′
)〉 ≥ 0

where M stands for the diagonal matrix M = diag(B1, · · · , BN ). Summing those
two inequalities, we obtain

〈2M(q(a)− q(a
′
)) + a− a

′
, q(a

′
)− q(a)〉 ≥ 0

and therefore

〈a
′
− a, q(a

′
)− q(a)〉 ≤ 2〈M(q(a)− q(a

′
)), q(a

′
)− q(a)〉 ≤ 0.

The above inequality being satisfied for any a′ ∈ A, we can consider, for any
i ∈ N , a′ = (a1, . . . , ai−1, a

′
i, ai+1, . . . , an) and thus it immediately follows that

(qi(a
′

i, a−i)− qi(ai, a−i))(a
′

i − ai) ≤ 0 which proves that qi(·, a−i) is non increasing
on [Ai;Ai].

Moreover, we have

(a
′

i − ai)(qi(a
′

i, a−i)− qi(ai, a−i)) ≤ −2Bi(qi(a
′

i, a−i)− qi(ai, a−i))2 ≤ 0
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showing that

|qi(a
′

i, a−i)− qi(ai, a−i)| ≤
1

2Bi
|a
′

i − ai|.

Lemma 3.2. For any (a, b) ∈ A×B and any i ∈ N , if the function qi(·, a−i, ·, b−i)
is continuously differentiable on a neighbourhood of (ai, bi) then q satisfies the fol-
lowing inviscid Burgers’ equation

∂

∂bi
qi(a, b)− 2qi(a, b)

∂

∂ai
qi(a, b) = 0.

Proof. Let us consider the value function v : RN × RN −→ R of the parametrized
ISO’s problem ISO(a, b). It is defined by

v(a, b) := min
(q,t)∈K

∑
i∈N

(aiqi + biq
2
i ) =

∑
i∈N

(aiqi(a, b) + biqi(a, b)
2).

By [6, Theorem 4.1], the value function v is differentiable at (a, b) with ∂aiv(a, b) =
qi(a, b) and ∂biv(a, b) = q2i (a, b). Then, according to the classical Schwarz’s theorem,
∂2

∂ai∂bi
v = ∂2

∂bi∂ai
v, which yields to ∂

∂bi
qi(a, b) = 2qi(a, b)

∂
∂ai

qi(a, b).

4. The case of the New Zealand’s market. In this section we shall concentrate
on the case of the New Zealand market, or more generally, on the case of a two
islands type market. We will give, in this case an explicit formula for the solutions
of the ISO’s problem and will prove the existence of a global equilibrium for the
electricity spot market.

In what follows, one island is called the north island and the other is called the
south island. This particular topography generates the following special structure
of the network.

Figure 1. The two islands type network

Producers and consumers are distributed among the two islands. Two oriented
lines are connecting the islands with the same thermal losses coefficient L > 0.
Taking the thermal losses is here of particular importance since, due to the distance
between both islands and to the transmission technology (usually based on direct
current), the losses of energy could be rather big. On the other hand, since the
distance between the producers of the same island is quite small, it is reasonable to
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assume that there are no thermal losses on the lines inside each island. This last
assumption, together with the fact that any pair of producers of the same island
are supposed to be connected, implies that the marginal price at all the nodes of
one island are the same.

We denote by {1, · · · , p − 1} the set of nodes of the north island, {p, · · · , N}
the set of nodes of the south island. The lines connecting the north and the south
islands are between node/producer 1 and node/producer p. The associated flows
will be respectively denoted by t1 on the line 1p from the north to the south and
by t2 for the reverse one. We assume that the bids of the producers act only on
the linear term of the production cost function, that is b = B is fixed and known
by all producers. Thus the two islands type ISO’s problem reduces to the following
convex problem ISOTI(a,B), denoted in the sequel by ISOTI(a),

minq,t
∑N
i=1(Biq

2
i + aiqi)

s.t.



qi ≥ 0 , ∀i ∈ N
tk ≥ 0 , ∀k ∈ {1, 2}∑p−1
i=1 qi −DN ≥ t1 − t2 + L

2 (t21 + t22)∑N
i=p qi −DS ≥ t2 − t1 + L

2 (t21 + t22)

with DN =
∑p−1
i=1 Di and DS =

∑N
i=pDi representing respectively the total de-

mand at the north and at the south. Let us observe that the capacity constraints
(production and lines) are not taken into account in this formulation.

Market assumptions:
In the sequel we will use the following set (H) of market assumptions for the

ISO’s problem of the two islands type electricity spot market

(H1) linear bid of producer 1 and producer p : B1 = Bp = 0, a1 > 0 and ap > 0
(H2) quadratic bid of the other producers : Bi > 0, for any i 6= 1, p
(H3) non trivial demand market : DN > 0 or DS > 0

Using Lemma 3.1, we can show that, at any solution of the ISO’s problem, the
Kirchhorff law type inequality constraints are active.

Lemma 4.1. Let us assume the market assumptions (H1−2). Then for any (q, t) ∈
Q(a), solution of the ISO’s problem ISOTI(a), one has,

p−1∑
i=1

qi −DN = t1 − t2 +
L

2
(t21 + t22)

and
N∑
i=p

qi −DS = t2 − t1 +
L

2
(t21 + t22).

Proof. Let us prove the equality for the north island. Since a1 > 0 and Bi > 0
for any i = 2, . . . , p − 1, one has, according to Lemma 3.1 and to the fact that
there are no thermal losses on the inside lines of the north island, q1 − t1 − L

2 t
2
1 +

t2 − L
2 t

2
2−
∑p−1
k=1:1k∈L t1k +

∑p−1
k=1:k1∈L tk1 = D1 and, for any i = 2, . . . , p − 1,
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qi −
∑p−1
k=1:ik∈L tik+

∑p−1
k=1:ki∈L tki = Di. Now the expected equality follows by sum-

ming the above equalities, taking into account that

p−1∑
i=1

p−1∑
k=1:ik∈L

tik =

p−1∑
i=1

p−1∑
k=1:ki∈L

tki.

The second equality is obtained by the same way.

Let us now provide a uniqueness result.

Proposition 4. Under the market assumptions (H1−2) the two islands type ISO’s
problem ISOTI(a) admits a unique solution.

Remark 2. a) The bid functions of producers 1 and p being assumed to be linear
(B1 = Bp = 0), it is thus crucial not to have a1 = 0 or ap = 0.
b) None of the uniqueness results of subsection 3.1 can be applied to prove the

above proposition. Indeed, since the thermal losses on the lines connecting produc-
ers of the same island are neglected, Proposition 2 cannot be used. On the other
hand assumptions of Proposition 1 are not satisfied either since B1 = Bp = 0.
c) It is important to notice that the above uniqueness result only concerns the

production vector q and the flows t1 and t2. The thermal losses being neglected
inside the islands, there is no uniqueness of the flows tij inside the island (see the
example following Proposition 1).

Proof. Let (qI , tI) and (qII , tII) be two different solutions of the ISO’s problem
ISOTI(a). For any λ ∈]0, 1[, (qλ, tλ) = λ(qI , tI) + (1−λ)(qII , tII) is also a solution
of ISOTI(a).

The proof is divided into four steps.
Step 1: Let us first prove that tI = tII . If tI1 6= tII1 then, by strict convexity of

function (x, y) −→ L
2 (x2 + y2), we have

p−1∑
i=1

qλi +DN > tλ1 − tλ2 +
L

2
((tλ1 )2 + (tλ2 )2)

providing a contradiction with Lemma 4.1. Now if tI1 = tII1 but tI2 6= tII2 then,
symmetrically,

N∑
i=p

qλi −DS > tλ2 − tλ1 +
L

2
((tλ1 )2 + (tλ2 )2)

contradicting again Lemma 4.1.
Step 2: It is now clear that, for any j 6∈ {1, p}, qIj = qIIj . Indeed, if it exists j 6∈

{1, p} such that qIj 6= qIIj then, by strict convexity of the function x 7→ Biq
2
i + aiqi,

the objective function ga(q, t) =
∑N
k=1(Bkq

2
k + akqk) of the ISO’s problem satisfies

ga(qλ) < ga(qI) which contradicts the fact that (qI , tI) is a solution of the ISO’s
problem.

Step 3: qI1 = qII1 . Indeed, according to Lemma 4.1 one has

qI1 +

p−1∑
i=2

qIi −DN = tI1 − tI2 +
L

2

(
(tI1)2 + (tI2)2

)
and

qII1 +

p−1∑
i=2

qIIi −DN = tII1 − tII2 +
L

2

(
(tII1 )2 + (tII2 )2

)
,

and therefore, combining with Step 1 and Step 2, qI1 = qII1 .
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Step 4: By the same arguments as in Step 3, it is now clear that qIp = qIIp . This
completes the proof.

Let us observe that, since the thermal losses are neglected inside each island, all
producers of the same island have the same marginal price, which will be denoted
respectively by λN for the north island and λS for the south island.

For the following proposition, we introduce a notation: let two real numbers x, y,
the notation 1[x≤y] denotes a real number which value is 0 if x > y and 1 if x ≤ y.

Proposition 5. Let a ∈ A. Under the market assumptions (H), at least one of
the marginal prices λN and λS is strictly positive. Additionally the unique solution
(q(a), t(a)) of the two islands ISO’s problem ISOTI(a) verifies

t1(a) =
λS − λN

L(λN + λS)
1[λN≤λS ] and t2(a) =

λN − λS
L(λN + λS)

1[λS≤λN ].

Moreover, if q1(a) 6= 0 and qp(a) 6= 0, we have

t1(a) =
ap − a1

L(a1 + ap)
1[a1≤ap] and t2(a) =

a1 − ap
L(a1 + ap)

1[ap≤a1].

Remark 3. As an immediate consequence of the above formula, we have either
t1(a) = 0 or t2(a) = 0. Actually t2(a) 6= 0 if and only if the marginal price of
the north island is strictly higher than the marginal price of the south island and,
symetrically, t1(a) 6= 0 if and only if the marginal price of the south island is strictly
higher than the marginal price of the north island.

The rest of this section, including the proof of Proposition 5 is based on the
following Karush-Kuhn-Tucker optimality sufficient conditions for convex program-
ming problem ISOTI(a):
For any producer i ∈ {1, . . . , p− 1} of north island:

2Biqi(a) + ai − µi − λN = 0. (i)

For any producer i ∈ {p, . . . , N} of south island:

2Biqi(a) + ai − µi − λS = 0. (ii)

For all producers :

0 ≤ µi ⊥ qi(a) ≥ 0 (iii)

0 ≤ λN ⊥ gN (q(a), t(a)) ≥ 0 (iv)

0 ≤ λS ⊥ gS(q(a), t(a)) ≥ 0 (v)

with gN (q, t) = t1 − t2 + L
2 (t21 + t22)−

∑p−1
i=1 qi +DN and gS(g, t) = t2 − t1 + L

2 (t21 +

t22)−
∑N
i=p qi +DS .

And concerning the lines 1p and p1

0 ≤ β1 ⊥ t1(a) ≥ 0 (vi)

−β1 + λN (1 + Lt1(a))− λS(1− Lt1(a))) = 0 (vii)

0 ≤ β2 ⊥ t2(a) ≥ 0 (viii)

−β2 − λN (1− Lt2(a)) + λS(1 + Lt2(a))) = 0 (ix)
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Proof. of Proposition 5. Let us first assume, for a contradiction, that λN = λS = 0.
Since B1 = 0, this leads, according to (i), to µ1 = a1 > 0 and thus, by (iii) to
q1(a) = 0. Now for any i = 1, . . . , p−1, from (i), we deduce that µi = 2Biqi(a) +ai
and thus, if qi(a) > 0 that µi > 0. But in this case, (iii) yields qi(a) = 0 which is
impossible. As a conclusion, if λN = λS = 0 then qi(a) = 0, for any i = 1, . . . , N ,
immediately implying that tij = 0 for any ij ∈ L providing a contradiction between
Lemma 4.1 and hypothesis (H3).

From (vi) and (vii) we immediately have β1 = λN (1 + Lt1(a))− λS(1− Lt1(a))
with β1t1(a) = 0. If λN > λS then β1 is strictly positive and thus t1(a) = 0. Now if
λN < λS then t1(a) 6= 0, since, otherwise, t1(a) = 0 would imply β1 = λN −λS ≥ 0.
So β1 = 0 and consequently

t1(a) =
λS − λN

L(λN + λS)
.

Finally the last case to be considered is λN = λS . Then in this situation β1 =
2LλN t1(a) and therefore β1t1(a) = 2LλN t

2
1(a). Since λN > 0 we have t1(a) = 0.

Similar calculus can be done for t2(a). Now if q1(a) 6= 0 and qp(a) 6= 0, (iii)
yields µ1 = µp = 0 and thus, according to (i) and (ii), λN = a1 and λS = ap.

Lemma 4.2. Let a ∈ A be such that q1(a) 6= 0 and qp(a) 6= 0. If the two islands
type market satisfies (H) then

q1(a) + qp(a) = DN +DS +
1

L

[(
ap − a1
a1 + ap

)2

1[a1≤ap] +

(
a1 − ap
a1 + ap

)2

1[ap≤a1]

]
+

∑
i at north i6=1

ai − a1
2Bi

1[ai≤a1] +
∑

i at south i 6=p

ai − ap
2Bi

1[ai≤ap].

Proof. According the KKT’s conditions (i), (ii) and (iii), we have, for all i ∈
N \ {1; p}, µi = 0 and{

2Biqi(a) + ai − λN + µi = 0 if i = 2, . . . , p− 1

2Biqi(a) + ai − λS + µi = 0 if i = p+ 1, . . . , N

which immediately leads to

qi(a) +
ai − λN

2Bi
1[qi(a)6=0] = 0 if i = 2, . . . , p− 1

qi(a) +
ai − λS

2Bi
1[qi(a)6=0] = 0 if i = p+ 1, . . . , N.

Since q1(a) 6= 0 and qp(a) 6= 0 we have, according to (i) and (ii), λN = a1 and
λS = ap. Adding the above equalities (over i ∈ {2, · · · , p− 1}∪{p+ 1, · · · , N}), we
obtain∑

i 6=1,p

qi(a) +
∑

i at north i 6=1

ai − a1
2Bi

1[qi 6=0] +
∑

i at south i6=p

ai − ap
2Bi

1[qi 6=0] = 0.

By lemma 4.1, we have
∑
i 6=1,p qi(a) = L(t1(a)2 + t2(a)2)+DN +DS−q1(a)−qp(a),

which proves that:

q1(a) + qp(a) = L(t1(a)2 + t2(a)2) +DN +DS

+
∑

i at north i 6=1

ai − a1
2Bi

1[qi 6=0] +
∑

i at south i6=p

ai − ap
2Bi

1[qi 6=0]
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Let us now observe that, for the north island producers i = 2, · · · , p− 1, ai < a1
if and only if qi(a) 6= 0. Indeed if qi(a) > 0 then, since Bi > 0, from (ii) we have
−ai + a1 = −ai + λN = 2Biqi(a) > 0. On the other hand, if ai < a1, according
to (ii), we obtain ai − λN = µi − 2Biqi(a) and thus, if qi(a) = 0, a contradiction
occurs since ai − a1 = ai − λN = µi ≥ 0.

Finally the desired expression of q1(a) + qp(a) follows by combining the above
calculus with Proposition 5.

In the above Lemma 4.2 the parameters and variables of the north and south
islands play symmetric roles. It is thus natural, knowing the uniqueness result on
ISOTI and taking into account that only one of the quantities t1(a) and t2(a) are
non zero, to deduce the expression of the unique solution (q(a), t(a)) of ISOTI(a).

Proposition 6. Let a ∈ RN+ be such that the market assumptions (H) holds and
q1(a) 6= 0 and qp(a) 6= 0. Then

q1(a) =
(ap − a1)(a1 + 3ap)

2L(a1 + ap)2
+

∑
i at north i6=1

ai − a1
2Bi

1[ai≤a1] +DN

qp(a) =
(a1 − ap)(3a1 + ap)

2L(a1 + ap)2
+

∑
i at south i 6=p

ai − ap
2Bi

1[ai≤ap] +DS

Additionally,

For i = 2, . . . , p − 1, qi(a) =
a1 − ai

2Bi
1[ai≤a1] and for i = p + 1, . . . , N − 1,

qi(a) =
ap − ai

2Bi
1[ai≤a1].

Based on the above formula, we prove quasiconcavity of the objective functions
pi(ai, a−i) = (ai −Ai)qi(a) of the producer’s problems.

Proposition 7. Let a ∈ RN+ be such that the market assumptions (H) hold and
q1(a) 6= 0 and qp(a) 6= 0. Then for any a ∈ A one has

a) for any i ∈ N \ {1, p}, the objective function pi(·, a−i) is quasiconcave over
Ai = [Ai, Ai];

b) the objective function p1(·, a−1) is quasiconcave over [A1, 3A1] ∩ [A1, A1];
c) the objective function pp(·, a−p) is quasiconcave over [Ap, 3Ap] ∩ [Ap, Ap];

where A1 and Ap are the linear coefficients of the real cost functions of producers 1
and p respectively.

Proof. Let us first consider i ∈ {2, . . . , p−1}. According to Proposition 6, qi(·, a−i)
is piecewise linear and the unique point of non differentiability is a1. For all ai < a1,

we have qi(ai, a−i) =
a1 − ai

2Bi
, thus ∂ipi(ai, a−i) = − 1

2Bi
< 0. On the other hand

for all ai > a1, qi(ai, a−i) = 0 and therefore pi(ai, a−i) = 0. It is thus clear that
pi(·, a−i) is quasiconcave on Ai. The same arguments can be used to argue on the
quasiconcavity of pi(·, a−i) for i ∈ {p+ 1, . . . , N}.

Let us now prove the quasiconcavity of the function p1(·, a−1) on [A1, 3A1] ∩
[A1, A1]. Let us denote by I1 = {i ∈ {2, . . . , p − 1} : ai < a1}. On any segment
]ai, aj [, i, j ∈ I1, the function is two times differentiable and concave. Indeed,
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∂
∂a1

p1(a) = q1(a) + (a1 −A1) ∂
∂a1

q1(a) and

∂2

∂a21
p1(a1, a−1) = 2

∂

∂a1
q1(a1, a−1) + (a1 −A1)

∂2

∂a21
q1(a1, a−1)

≤ −
8a2p

L(a1 + a2)3
+ (a1 −A1)

12a2p
L(a1 + ap)4

=
4a2p(a1 − 2ap − 3A1)

2L(a1 + ap)4

≤ 0

It is now sufficient to prove that at any i ∈ I1, one has

lim
w↗ai

∂

∂a1
p1(w, a−1) < 0 =⇒ lim

w↘ai

∂

∂a1
p1(w, a−1) ≤ 0.

If a1 = A1 the above implication is an immediate consequence of the continuity of
the application q1(·, a−1). Otherwise, it is equivalent to

lim
w↗ai

∂

∂a1
q1(w, a−1) < − q1(a)

a1 −A1
=⇒ lim

w↗ai

∂

∂a1
q1(w, a−1) < − q1(a)

a1 −A1
. (3)

According to the expression of q1 obtained in Proposition 6, there exists r > 0 such
that for all u ∈]ai − r; ai[, v ∈]ai; ai + r[,

∂

∂a1
q1(v; a−1) =

∂

∂a1
q1(u; a−1)−

∑
j∈Ĩi1

1

2Bj

where Ĩi1 = {j ∈ I1 : aj = ai}. Therefore (3) is fulfilled. Thus ∂1q1(a−1 ; a−1) ≥
∂1q1(a+1 ; a−1), which proves the quasiconcavity of p1(·, a−1) on A1.

We are now in a position to prove, by classical arguments (see e.g., [20, Theorem
4.1]), the existence of an equilibrium for the two islands type electricity market.

Corollary 1. Assume that 0 < A1 < A1 ≤ A1 < 3A1, 0 < Ap < Ap ≤ Ap < 3Ap
and that the market assumptions (H) are satisfied. If, for any a ∈ A, the ISO’s
dispatch on producers 1 and p is nonzero then the two islands type electricity spot
market admits at least a solution.
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[10] J. F. Escobar and A. Jofré, Equilibrium analysis for a network model , in “Robust
Optimization-Directed Design,” Nonconvex Optim. Appl., 81, Springer, New York, (2006),

63–72.
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