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Abstract The gap function (or merit function) is a classic tool for reformulating
a Stampacchia variational inequality as an optimization problem. In this paper, we
adapt this technique for quasivariational inequalities, that is, variational inequalities
in which the constraint set depends on the current point. Following Fukushima (J. Ind.
Manag. Optim. 3:165–171, 2007), an axiomatic approach is proposed. Error bounds
for quasivariational inequalities are provided and an application to generalized Nash
equilibrium problems is also considered.

Keywords Gap function · Merit function · Set-valued map · Quasivariational
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1 Introduction

Variational inequalities provide a perfect setting to express a large number of prob-
lems coming from different areas, such as mechanics, optimality conditions, equi-
librium problems in economics. Motivated by the richness of the algorithmic ma-
chinery of optimization, an important effort has been made to reformulate variational
inequalities in terms of an optimization problem (see [2–7] and references therein).
This reformulation is done thanks to the concept of gap function (or merit function).
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Nevertheless, for some specific applications (like, e.g., generalized Nash equi-
librium problems), it is necessary to consider variational inequalities, where the
constraint set depends on the current point, that is, quasivariational inequalities
QVI(T ,S) where T : R

n ⇒ R
n and S : R

n ⇒ R
n are two set-valued maps.

Recently, in Dietrich [8] and in Fukushima [1], some advances have been made
to define gap functions for quasivariational inequalities. In [1], the operator T defin-
ing the quasivariational inequality is supposed to be single-valued and differentiable,
while in [8] the set-valued case is considered but the function, which plays the role of
the gap function, depends on both variables x and x∗ ∈ T (x). Our aim in this paper
is to define a (single variable) gap function for general set-valued quasivariational
inequalities.

The paper is organized as follows: following [1], in Sect. 2 we define gap function
through an axiomatic approach. Section 3 is devoted to error bounds and also provides
uniqueness results. Finally, in Sect. 4, using a new way to reformulate generalized
Nash equilibrium problems (GNEP, for short) as quasivariational inequalities, we
define a gap function for GNEP.

2 Axiomatic Gap Functions for QVI

Let us first introduce some notations, which will be used in the sequel. Throughout
the paper, R

n is equipped with the Euclidian norm ‖ · ‖ associated with the scalar
product 〈·, ·〉.

Given a set-valued map T : R
n ⇒ R

n and a subset K of R
n, the finite-dimensional

variational inequality VI(T ,K) is

Find x̄ ∈ K such that there exists x̄∗ ∈ T (x̄)

with 〈x̄∗, y − x̄〉 ≥ 0, ∀y ∈ K

while a quasivariational inequalities QVI(T ,S) is

Find x̄ ∈ S(x̄) such that there exists x̄∗ ∈ T (x̄)

with 〈x̄∗, y − x̄〉 ≥ 0, ∀y ∈ S(x̄)

where S : R
n ⇒ R

n is a set-valued map.
For x ∈ R

n and ρ > 0, we denote by B(x,ρ) and B(x,ρ), respectively, the open
and the closed ball with centre x and radius ρ, while for x, x′ ∈ R

n, [x, x′] stands for
the closed segment {tx + (1 − t)x′ : t ∈ [0,1]}. The segments ]x, x′[, ]x, x′], [x, x′[
are defined analogously. The topological closure and the interior of a set A ⊂ R

n will
be denoted, respectively, by clA (or Ā) and intA, while R

∗+A stands for the conic
hull of A that is R

∗+A := {λa : λ > 0, a ∈ A}. Given a set-valued operator T defined
on R

n, its domain and its graph will be denoted, respectively, by dom T and GrT ,
while FP(T ) is the set of fixed points of T and, for any subset U of R

n, T (U) stands
for T (U) := ⋃

u∈U T (u). For any bivariate function ϕ : R
n × R

n → R convex in the
second variable, ∂2ϕ(x, y) denotes the Fenchel subdifferential of the function ϕ(x, ·),
that is, ∂2ϕ(x, y) := {y∗ ∈ R

n : 〈y∗, z − y〉 ≤ ϕ(x, z) − ϕ(x, y) ∀z ∈ R
n}.

Finally, let us recall that a set-valued operator T : R
n ⇒ R

n is said to be
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– lower semicontinuous at x0 iff, for any sequence (xn)n of R
n converging to x0 and

any element x∗
0 of T (x0), there exists a sequence (x∗

n)n of R
n converging to x∗

0
such that, for any n, x∗

n ∈ T (xn);
– upper semicontinuous at x0 ∈ dom T iff, for any neighbourhood V of T (x0), there

exists a neighbourhood U of x0 such that T (U) ⊂ V ;
– closed graph at x0 ∈ dom T iff, for any sequence ((xn, x

∗
n))n ∈ Gr(T )N converging

to (x0, x
∗
0 ), one has (x0, x

∗
0 ) ∈ Gr(T ). Another usual terminology is that Gr(T ) is

closed at x0;
– μ-strongly monotone (μ ≥ 0) on a subset K iff, for all x, y ∈ K and all x∗ ∈ T (x),

y∗ ∈ T (y),
〈
y∗ − x∗, y − x

〉 ≥ μ‖y − x‖2.

Let T : R
n ⇒ R

n and S : R
n ⇒ R

n be two set-valued operators with dom S ⊂ dom T .
We will say that the couple (T ,S) satisfies assumption (H) iff there exists a function
ϕ : dom S × R

n → R verifying the following properties:

(B1) for all x ∈ dom S, ϕ(x, .) is strictly convex on dom S;
(B2) for all x ∈ dom S, ∂2ϕ(x, x) = T (x).

It is important to note that properties (B1)–(B2) do not imply any monotonicity prop-
erty of T . Indeed, T is not the subdifferential map of a given convex function but
rather, at each point x, the value T (x) is the subdifferential at x of a function de-
pending on x, namely ϕ(x, ·). A characterization of (B1)–(B2) will be given in the
forthcoming Corollary 2.1.

Let us also remark that, if (H) holds true, then, T (x) being the subdifferential of
a finite convex function for any x ∈ dom S, the map T is convex and compact valued
on dom S. The compactness of the values of T could be considered a somewhat
strong assumption. Actually, the following proposition shows that, using a classical
“compactification process” of T , it is not the case.

Proposition 2.1 Let T : R
n ⇒ R

n and S : R
n ⇒ R

n be two set-valued maps. If T is
convex and nonempty valued, then the operator T̃ : R

n ⇒ R
n, defined by

T̃ (x) :=
{{0}, if 0 ∈ T (x),

conv{ x∗
‖x∗‖ | x∗ ∈ T (x)}, if 0 /∈ T (x),

is convex and compact valued on dom S and both quasivariational inequalities
QVI(T ,S) and QVI(T̃ , S) have the same solutions.

Proof Let x ∈ dom S. Without loss of generality we can assume that 0 /∈ T (x) since
otherwise T̃ (x) = {0} and x is a trivial solution of QVI(T ,S) and QVI(T̃ , S). It is
now sufficient to prove that R

∗+T (x) = R
∗+T̃ (x), since in this case x is solution of

QVI(T ,S) if and only if x is solution of QVI(T̃ , S). Clearly, one has R
∗+T (x) ⊂

R
∗+T̃ (x). Let us show the reverse inclusion and assume that x∗ ∈ R

∗+T̃ (x). Then
there exist real numbers λ > 0, μ1, . . . ,μn ∈ R+ and elements x∗

1 , . . . , x∗
n ∈ T (x)
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such that
∑n

1 μk = 1 and x∗ = λ
∑n

1 μk
x∗
k

‖x∗
k ‖ . Set

M :=
(

λ
∑ μk

‖x∗
k ‖

)−1

> 0 and λk = Mλμk

‖x∗
k ‖ , k = 1, . . . , n.

Since λk ≥ 0,
∑n

1 λk = 1 and T (x) is convex, we have Mx∗ = ∑
λkx

∗
k ∈ T (x) and

therefore x∗ ∈ R
∗+T (x). �

Let us now give a simple example of a possible definition for the bivariate function
ϕ such that a given couple (T ,S) satisfies hypothesis (H).

Proposition 2.2 Let T : R
n ⇒ R

n and S : R
n ⇒ R

n be two set-valued maps such
that dom S ⊂ dom T . If T is convex and compact valued, then, for any β > 0, the
application ϕβ : dom S × R

n → R defined, for any (x, y) ∈ dom S × R
n by

ϕβ(x, y) := sup
x∗∈T (x)

〈x∗, y − x〉 + β‖y − x‖2,

satisfies conditions (B1)–(B2). If, moreover, S has closed and convex values, then, for
all x ∈ dom S, the function ϕβ(x, .) admits a (unique) minimizer over S(x).

Proof For any x ∈ dom S, let us consider the function g : R
n → R given by

g(y) = sup
z∗∈T (x)

〈z∗, y − x〉.

We clearly have ϕβ(x, y) = g(y) + β‖y − x‖2 and ∂2ϕβ(x, x) = ∂g(x). On the other
hand, since T is convex compact valued, ∂g(x) = T (x) and thus property (B2) is
satisfied.

For any x ∈ dom S, one immediately observes that ϕβ(x, ·) is strongly convex
over R

n (and thus (B1) holds) and thus, if S(x) is closed and convex, ϕβ(x, ·) admits
a unique minimizer over S(x). �

Combining the above proposition with the fact that any map satisfying (B1)–(B2) is
convex and compact valued (see remarks following the definitions of (B1)–(B2)), we
obtain the following characterization of hypothesis (H).

Corollary 2.1 Let T : R
n ⇒ R

n and S : R
n ⇒ R

n be two set-valued maps such that
domS ⊂ domT . The couple (T ,S) satisfies (H) if and only if T has convex and com-
pact values on dom S.

One can wonder whether, given a couple (T ,S), the bivariate function ϕβ de-
scribed in Proposition 2.2 corresponds to the unique way of constructing a bivariate
function ϕ such that (H) be satisfied. The following example shows that it is not the
case.
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Example 2.1 Let T : R
n ⇒ R

n defined by T (x) = B̄(g(x), r(x)), where g : R
n → R

n

and r : R
n → R

∗+. An easy calculus shows that, for any β > 0, the associated function
ϕβ described by Proposition 2.2 is given by

ϕβ(x, y) = 〈
g(x), y − x

〉 + r(x)‖y − x‖ + β‖y − x‖2.

But another possible choice for ϕ for which (T ,S) satisfies (H) is

∀(x, y) ∈ (
R

n
)2

, ϕ(x, y) = r(x)

h′(0)
h
(‖y − x‖) + 〈

g(x), y − x
〉
,

where h is any function from R to R satisfying the following properties: h is strictly
convex, is increasing on R+ and admits a derivative at 0 and h′(0) = 0.

Indeed, let us show that (B1) and (B2) are satisfied for ϕ. Firstly, one can eas-
ily prove the strict convexity of the function h(‖ · ‖), using the strict convexity and
increasingness of the function h and taking into account that, for any z1 = z2 ∈ R

n,
‖z1‖ = ‖z2‖ if z1 ∈ R+z2 or z2 ∈ R+z1 and ‖λz1 +(1−λ)z2‖ < λ‖z1‖+(1−λ)‖z2‖
otherwise. Hence, by translation and since r(x)

h′(0)
> 0, the function ϕ(x, ·) is strictly

convex. On the other hand, for any x ∈ dom S,

∂2ϕ(x, x) = r(x)

h′(0)
∂
(
h
(‖ · −x‖))(x) + g(x).

Since the function h is convex and h′(0) = 0, we have

∂
(
h
(‖ · −x‖))(x) = ∂

(
h ◦ ‖.‖)(0) = h′(0)∂

(‖.‖)(0) = h′(0)B̄(0,1),

thus proving that ∂2ϕ(x, x) = T (x).

Proposition 2.3 Let T : R
n ⇒ R

n and S : R
n ⇒ R

n be a couple of set-valued opera-
tors satisfying (H) (with a function ϕ) and such that dom S ⊂ dom T . If the applica-
tion z → ϕ(z, z) is lower semicontinuous at x ∈ int(dom S) and, for all y ∈ R

n, the
functions ϕ(·, y) are upper semicontinuous at x, then Gr(T ) is closed at x.

One can immediately deduce from the above proposition that there is no hope to
construct a continuous function ϕ satisfying (B1) and (B2) for the couple (T ,S) if T

is not closed graph on dom S.

Proof Let ((xn, x
∗
n))n ∈ Gr(T )N converges to (x, x∗). Let y ∈ R

n. Since x is an
element of int(dom S), for n large enough, one has T (xn) = ∂2ϕ(xn, xn) and thus
〈x∗

n, y − xn〉 ≤ ϕ(xn, y) − ϕ(xn, xn). Therefore, by upper semicontinuity of ϕ(·, y) at
x and lower semicontinuity of z → ϕ(z, z), it follows that

〈x∗, y − x〉 ≤ lim sup
n→+∞

(
ϕ(xn, y) − ϕ(xn, xn)

)

≤ lim sup
n→+∞

ϕ(xn, y) − lim inf
n→+∞ϕ(xn, xn)

≤ ϕ(x, y) − ϕ(x, x).
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Since the above inequality holds for any y ∈ R, x∗ ∈ ∂2ϕ(x, x) = T (x) and the proof
is complete. �

As observed in [1], for different purposes—in particular for algorithms—it could
be interesting to replace the constraint set-valued map S with a more tractable local
approximation of S. For example if, for any point x, S(x) is determined by a set of
differentiable inequalities:

S(x) = {
y ∈ R

n : gi(x, y) ≤ 0, i = 1, . . . , n
}
,

then one can consider a polyhedral approximation map Γ (see [1] for more details)
described by the first order development of the functions gi , that is,

Γ (x) = {
y ∈ R

n : gi(x, x) + 〈∇gi(x, x), y − x
〉 ≤ 0, i = 1, ·, n}

.

Let us recall that for any convex set C of R
n and any point x of C the tangent cone

to C at x, denoted by TC(x) is defined by

TC(x) := R+
(
C − {x}) = {

λ(c − x) : λ ≥ 0, c ∈ C
}
.

Theorem 2.1 Let T : R
n ⇒ R

n and S : R
n ⇒ R

n be two set-valued maps such that
S is convex valued. Let Γ : R

n ⇒ R
n be such that

(C1) for any x ∈ R
n, S(x) ⊂ Γ (x);

(C2) the maps S and Γ have the same fixed points;
(C3) for any x ∈ R

n, Γ (x) is convex and nonempty;
(C4) for any x ∈ R

n, TS(x)(x) = TΓ (x)(x).

Then QVI(T ,S) and QVI(T ,Γ ) have the same solutions.

Proof From (C1) and (C2), clearly any solution of QVI(T ,Γ ) is also a solution of
QVI(T ,S). So let us now suppose that a point x is a solution of QVI(T ,S). Thus
there exists x∗ ∈ T (x) such that 〈x∗, y − x〉 ≥ 0, for any y ∈ S(x). But taking into
account (C4) and the definition of the tangent cone to a convex set, it follows that

R+
(
S(x) − {x}) = TS(x)(x) = TΓ (x)(x) = R+

(
Γ (x) − {x})

and thus x is also a solution of QVI(T ,Γ ). �

Based on the previous results we are now in a position to define the concept of ax-
iomatic gap function for quasivariational inequality, that is, a gap function defined
using the axiomatic bivariate function ϕ of hypothesis (H).

If dom S ⊂ int(dom T ) then, for any x ∈ dom S, one immediately has dom S ⊂
int(dom ϕ(x, ·)), and therefore, by condition (B2), x solves QVI(T ,S) if and only if
x ∈ S(x) and

∃x∗ ∈ T (x) = ∂2ϕ(x, ·)(x) such that 〈x∗, y − x〉 ≥ 0, ∀y ∈ S(x).

If S is convex valued, by (B1) and classical nonsmooth optimality conditions, then
x is a solution of the latter quasivariational inequality if and only if x is the global
minimizer of ϕ(x, .) over S(x). This is summarized in the following lemma.
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Lemma 2.1 Let T : R
n ⇒ R

n and S : R
n ⇒ R

n be a couple of set-valued maps
satisfying (H) (with a function ϕ) and such that S is convex valued and dom S ⊂
int(dom T ). Then for any x ∈ R

n,

x solves QVI(T ,S) ⇔ x is the global minimizer of ϕ(x, .) over S(x).

Let us consider the function fϕ defined on dom S by

fϕ(x) = − inf
y∈S(x)

ϕ(x, y). (1)

Theorem 2.2 Let T : R
n ⇒ R

n and S : R
n ⇒ R

n be a couple of set-valued maps
satisfying (H) (with a function ϕ) and such that S is convex valued and dom S ⊂
int(dom T ).

If the function ϕ satisfies ϕ(x, x) = 0, for any x ∈ dom S, then fϕ is a gap function
for QVI(T ,S) on FP(S), that is, fϕ(x) ≥ 0, for any x ∈ FP(S) and fϕ(x) = 0 if and
only if x solves QVI(T ,S).

Proof For any fixed point x of S, one clearly has fϕ(x) ≥ −ϕ(x, x) = 0. On the
other hand, according to Lemma 2.1, x is a solution of QVI(T ,S) if and only
if x is the global minimizer of ϕ(x, .) over S(x) which is equivalent to fϕ(x) =
− infy∈S(x) ϕ(x, y) = −ϕ(x, x) = 0. �

3 Error Bounds for QVI

In order to establish error bounds for quasivariational inequalities, we will now con-
centrate on the particular bivariate function ϕβ described in Proposition 2.2 and there-
fore, the considered gap function will be, for any β > 0, the function fβ : dom S → R

given by

fβ(x) := − inf
y∈S(x)

ϕβ(x, y)

where ϕβ : dom S × R
n → R defined, for any (x, y) ∈ dom S × R

n by

ϕβ(x, y) := sup
x∗∈T (x)

〈x∗, y − x〉 + β‖y − x‖2.

A set-valued map S : R
n ⇒ R

n is said to be fixed point symmetric if it satisfies the
following property:

∀x ∈ FP(S),
(
S(x), x

) ⊂ Gr(S).

This property can be reformulated in the following geometrical form:

∀x ∈ FP(S), ∀y ∈ S(x) one has x ∈ S(y).

Proposition 3.1 Let T : R
n ⇒ R

n and S : R
n ⇒ R

n be a couple of set-valued maps
with dom S ⊂ dom T and such that T is μ-strongly monotone (μ > 0) with nonempty
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compact values and S is fixed point symmetric. Let x̄ ∈ R
n be a solution of QVI(T ,S).

Then x̄ is the unique solution of QVI(S,T ) on S(x̄) and, for any β < μ and any
x ∈ S(x̄), one has

‖x − x̄‖ ≤ 1√
μ − β

√
fβ(x).

Remark 3.1 Let us observe that the above error bound results, as the forthcoming
ones of this section, still holds if the μ-strong monotonicity assumption on T is weak-
ened to the following μ-strong pseudomonotonicity hypothesis: for all x, y ∈ R

n,

∃x∗ ∈ T (x) : 〈x∗, y − x〉 > 0 ⇒ ∀y∗ ∈ T (y) : 〈y∗, y − x〉 ≥ μ‖y − x‖2.

Proof From the fixed point symmetric hypothesis on S, clearly x̄ is an element of
S(x) and thus by considering y = x̄ in the definition of the gap function fβ , it holds
that

fβ(x) ≥ inf
x∗∈T (x)

〈x∗, x − x̄〉 − β‖x − x̄‖2.

Therefore by compactness of T (x), there exists x ∗̄
x ∈ T (x) such that

fβ(x) ≥ 〈x ∗̄
x , x − x̄〉 − β‖x − x̄‖2.

On the other hand x ∈ S(x̄) and thus there exists x̄∗ ∈ T (x̄) such that 〈x̄∗, x − x̄〉 ≥
0 which immediately implies, by μ-strong monotonicity of T , that 〈x ∗̄

x , x − x̄〉 ≥
μ‖x − x̄‖2. Finally

fβ(x) ≥ (μ − β)‖x − x̄‖2.

Since μ > β , for all x = x̄, one has fβ(x) > 0, which proves that x̄ is the unique

solution of QVI(S,T ) on S(x̄). Moreover, we have ‖x − x̄‖ ≤
√

fβ(x)

μ−β
. �

A simple, but useful, example for which the set-valued map S is fixed point sym-
metric corresponds to the case where the problem QVI(T ,S) is actually a variational
inequality VI(T ,K). In this case, S being constant, the fixed point symmetric prop-
erty is clearly satisfied and therefore we immediately obtain, as a particular case of
Proposition 3.1, an error bound for the variational inequality VI(T ,K).

Corollary 3.1 Let T : R
n ⇒ R

n be a μ-strongly monotone (μ > 0) set-valued map
with nonempty compact values and K be a nonempty convex subset of R

n. Let x̄ ∈ R
n

be the (unique) solution of VI(T ,K). Then, for any β < μ and for any x ∈ K , one
has

‖x − x̄‖ ≤ 1√
μ − β

√
fβ(x).

where the gap function fβ is given by

fβ(x) = − inf
y∈K

sup
x∗∈T (x)

〈x∗, y − x〉 + β‖y − x‖2.
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Let us now give an error bound for the quasivariational inequality QVI(T ,S) in which
the “fixed point symmetric” property on S is replaced by an Hölder-type hypothesis.
Let us recall that a set-valued map S is said to be locally α-Hölder (α > 0) at a point
x ∈ dom S if there exist r > 0 and L > 0 such that for all x ∈ B(x̄, r)

S(x) ∩ B(x, r) ⊂ S(x) + B̄
(
0,L‖x − x̄‖α

)
.

Proposition 3.2 Let T : R
n ⇒ R

n and S : R
n ⇒ R

n be a couple of set-valued maps
with dom S ⊂ dom T and such that T is μ-strongly monotone (μ > 0). Assume that
T (K) be compact for any compact subset K and that S is locally α-Hölder with
α > 2 at a solution x̄ ∈ dom T . Let the real η ∈]0,min{r,1}[ be such that ρη =
μ − LMηα−2 − β(1 − 2L − L2) > 0, where M = sup{‖x∗‖ , x∗ ∈ T (B̄(x̄,1))}.

Then x̄ is the unique solution of QVI(S,T ) on B(x̄, η) ∩ S(x̄), and for all x ∈
B(x̄, η) ∩ S(x),

‖x − x̄‖ ≤
√

fβ(x)

ρη

.

Proof Let x ∈ B(x̄, η)∩S(x), and z ∈ S(x) be such that ‖x̄ − z‖ ≤ L‖x̄ −x‖α . From
the definitions, we immediately have

fβ(x) = − inf
y∈S(x)

sup
x∗∈T (x)

{〈x∗, y − x〉 + β‖y − x‖2}

= sup
y∈S(x)

inf
x∗∈T (x)

{〈x∗, x − y〉 − β‖y − x‖2}

≥ inf
x∗∈T (x)

{〈x∗, x − z〉 − β‖z − x‖2}.

Since T (x) is compact, there exists x∗ ∈ T (x) such that

fβ(x) ≥ 〈x∗, x − z〉 − β‖z − x‖2

≥ 〈x∗, x − x̄〉 + 〈x∗, x̄ − z〉 − β
(‖z − x̄‖ + ‖x̄ − x‖)2

. (2)

By assumption, x̄ solves QVI(T ,S) and x ∈ S(x̄). Consequently there exists x̄∗ ∈
T (x̄) such that 〈x̄∗, x− x̄〉 ≥ 0 and therefore, by μ-strong monotonicity of T , 〈x∗, x−
x̄〉 ≥ μ‖x − x̄‖2. Taking into account that ‖x̄ − x‖ < 1, inequality (2) becomes

fβ(x) ≥ μ‖x − x̄‖2 − M‖x̄ − z‖ − β
(‖z − x̄‖ + ‖x̄ − x‖)2

≥ μ‖x − x̄‖2 − ML‖x̄ − x‖α − β
(
L‖x − x̄‖α + ‖x̄ − x‖)2

= μ‖x − x̄‖2 − ML‖x̄ − x‖α

− β
(
L2‖x − x̄‖2α + 2L‖x − x̄‖α+1 + ‖x − x̄‖2)

≥ (
μ − ML‖x̄ − x‖α−2 − β − 2βL − βL2)‖x − x̄‖2

≥ (
μ − MLηα−2 − β − 2βL − βL2)‖x − x̄‖2

= ρη‖x − x̄‖2.



J Optim Theory Appl (2011) 151:474–488 483

Then for all x ∈ B(x̄, η) ∩ S(x̄), if x = x̄ we have fβ(x) > 0 because ρη > 0, thus
proving that x̄ is the unique solution of QVI(S,T ) over B(x̄, η) ∩ S(x̄). Moreover,

for all x ∈ B(x̄, η) ∩ S(x̄), one has ‖x − x̄‖ ≤
√

fβ(x)

ρη
. �

Remark 3.2 It is clear from the proof that the locally α-Hölder hypothesis in the
above proposition can be weakened by simply assuming that there exist three reals
α > 2, L > 0 and r ∈]0,1[ such that for any y ∈ B(x̄, r), dist(x̄, S(y)) ≤ L‖y − x̄‖α .

In the quasivariational inequality QVI(T ,S), the set-valued map S describes the
constraints. It is thus important to consider the classic case, where the constraint set
S(x) is described by inequalities. In the following proposition, we provide, in this
case, sufficient conditions for S to be locally Hölder. To simplify we consider the
case of one inequality, but the general case could be deduced by similar arguments.

Proposition 3.3 Let f : R
n → R be a continuously differentiable function and g :

R
n → R be α-Hölder continuous on R

n. Let us suppose that the constraint map S be
defined, for any x ∈ dom S, by

S(x) = {
y ∈ R

n | f (y) ≤ g(x)
}
.

Let x ∈ S(x̄) be such that ∇f (x̄) = 0. Then the constraint map S is locally α-Hölder
at x̄.

Proof Let M > 0 be the α-Hölder constant of g, that is, for any (x1, x2) in (Rn)2,
|g(x2) − g(x1)| ≤ M‖x2 − x1‖α . Since ∇f (x̄) = 0, there exists η > 0 such that for
all x ∈ B̄(x̄, η), ∇f (x) = 0. By continuity on B̄(x̄, η)2 of the function (x1, x2) →
〈∇f (x1),

∇f (x2)‖∇f (x2)‖ 〉, and since this function is strictly positive at (x̄, x̄), there exist
m > 0 and ε ∈]0, η[ such that

〈

∇f (x1),
∇f (x2)

‖∇f (x2)‖
〉

≥ m, ∀(x1, x2) ∈ B̄(x̄, ε)2. (3)

Let r > 0 be chosen such that r + rαM/m < ε and let x be an element of B(x̄, r).
If g(x̄) ≤ g(x), then S(x̄) ⊂ S(x) ⊂ S(x) + B̄(0,L‖x − x̄‖α). Now let us suppose
that g(x̄) > g(x). For any y ∈ S(x̄) ∩ B(x̄, r), we set z = y − M

m
‖x − x̄‖α ∇f (y)

‖∇f (y)‖ .
According to the classical mean value theorem, there exists ξ ∈]y, z[ such that

f (y) − f (z) = M‖x − x̄‖α

m

〈

∇f (ξ),
∇f (y)

‖∇f (y)‖
〉

. (4)

Since ‖z − x̄‖ ≤ ‖z − y‖ + ‖y − x̄‖ ≤ M
m

‖x − x̄‖α + r ≤ M
m

rα + r < ε, the couple
(ξ, y) is an element of B(x̄, ε)2 and, combining (3) and (4), one has f (y) − f (z) ≥
M‖x − x̄‖α . On the other hand, since f (y) ≤ g(x̄) and g(x̄) − g(x) ≤ M‖x − x̄‖α ,
we have f (z) ≤ g(x̄) − M‖x − x̄‖α ≤ g(x), thus showing that z is an element of
S(x). Consequently

dist
(
y,S(x)

) ≤ ‖y − z‖ = M

m
‖x − x̄‖α

and y ∈ S(x) + B̄(0,L‖x − x̄‖α) with L = M/m. �
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4 Application to Generalized Nash Equilibrium Problem

The generalized Nash equilibrium problem (GNEP) is a Nash game in which each
player’s strategy depends on the other players’ strategies. More precisely, assume
that there be p players and each player ν controls variables xν ∈ R

nν . In fact, xν is a
strategy of the player ν. Let us denote by x the vector of strategies

x = (
x1, . . . , xp

)
and n = n1 + n2 + · · · + np.

Denote by x−ν the vector formed by all players’ decision variables except the
player ν. So we can also write x = (xν, x−ν), which is a shortcut (already
used in many papers on the subject; see e.g. [4, 9]) to denote the vector x =
(x1, . . . , xν−1, xν, xν+1, . . . , xp). The strategy of the player ν belongs to the set
Xν(x

−ν), which obviously depends on the decision variables of the other players.
The aim of the player ν, given the strategy x−ν , is to choose a strategy xν such that
xν solves the following optimization problem:

(Pν) min
xν

θν

(
xν, x−ν

)
, subject to xν ∈ Xν

(
x−ν

)
,

where θν(x
ν, x−ν) denotes the loss the player ν suffers when the rival players have

chosen the strategy x−ν . The GNEP (Generalized Nash Equilibrium Problem) is to
find x̄ ∈ R

n such that for all ν ∈ {1, . . . , p}:
x̄ν ∈ arg min

Xν(x̄−ν )
θν

(·, x̄−ν
)
.

A large number of applications in economics and engineering can be modelled as
generalized Nash Equilibrium problem (see [4, 9] and references therein). In order to
study the GNEP and to have efficient computational processes some reformulation of
GNEP have been given. Connections with quasivariational inequalities have been in-
vestigated (see Bensoussan [10], Harker [11]) in the particular case whenever the loss
functions θν are convex and differentiable with respect to the νth variable. Recently,
a reformulation of the GNEP as a variational inequality has been obtained [12], in the
quasiconvex case, under the assumption of the Rosen’ law, that is, the existence of a
nonempty subset X of R

n such that, for any ν, the set Xν(x
−ν) is given as

Xν

(
x−ν

) := {
xν ∈ R

nν : (xν, x−ν
) ∈ X

}
.

Our aim in this section is, imitating the so-called normal approach of [12], firstly to
obtain a reformulation of the GNEP as a quasivariational inequality and, secondly,
based on this reformulation, to deduce from the results of Sect. 2 a gap function for
the generalized Nash equilibrium problem.

Now let us define the set-valued map X : R
n ⇒ R

n by the product X(x) =
X1(x

−1) × · · · × XN(x−N), where Xν : R
n−ν ⇒ 2R

nν .
Let us recall that a function f : R

n → R is said to be quasiconvex iff for any λ ∈ R,
its sublevel Sλ is convex, where

Sλ := {
y ∈ R

n | f (y) ≤ λ
}
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and f is said to be semistrictly quasiconvex iff f is quasiconvex and, for any x,
y ∈ R

n with f (x) = f (y) and λ ∈]0,1[, one has

f
(
λx + (1 − λ)y

)
< max

{
f (x), f (y)

}
.

Roughly speaking, a semistrictly quasiconvex function is a quasiconvex function,
which does not admit “flat part”, except possibly arg minRn f . Finally the strict sub-
level set of f will be denoted by S<

λ = {y ∈ R
n : f (y) < λ}.

Before defining precisely the normal approach, we need to recall the definition of
adjusted sublevel set of a given function f : R

n → R:

Sa
f (x) := Sf (x) ∩ B (S<

f (x), ρx),

where ρx = dist(x, S<
f (x)), if x /∈ arg minRn f and Sa

f (x) = Sf (x) otherwise. Here
B(S<

f (x), ρx) = S<
f (x) + ρxB(0,1) denotes the ρx -neighbourhood of the set S<

f (x)

where B(0,1) is the unit ball in R
n.

Now, given a quasiconvex function f : R
n → R, the normal operator associated

with f is the set-valued map Na
f : R

n → 2R
n

which is given as

Na
f (x) := {

v ∈ R
n : 〈v, y − x〉 ≤ 0, ∀y ∈ Sa

f (x)
}
,

that is, the set Na
f (x) is the polar cone to the translated adjusted sublevel set

Sa
f (x) − {x}. It is important to observe that, in the case of a semistrictly quasicon-

vex function, Na
f (x) is simply the polar cone to the classical sublevel set Sf (x) or to

the strict sublevel set S<
f (x), that is, for any x /∈ arg minRn f ,

Na
f (x) = (Sf (x) − x)◦ = (

S<
f (x) − x

)◦
.

We will denote, for any ν and any x ∈ R
n, by Sν(x) and Aν(x

−ν) the subsets
of R

nν

Sν(x) := Sa
θν(·,x−ν )

(
xν

)
and Aν

(
x−ν

) := arg min
Rnν

θν

(·, x−ν
)
.

In order to reformulate the GNEP as a quasivariational inequality problem we de-
fine the following set-valued map Na

θ : R
n ⇒ R

n which is described, for any x =
(x1, . . . , xp) ∈ R

n1 × · · · × R
np , by

Na
θ (x) := F1(x) × · · · × Fp(x),

where

Fν(x) :=
{

Bν(0,1), if xν ∈ Aν(x
−ν),

conv(Na
θν

(xν) ∩ Sν(0,1)), otherwise,

with Bν(0,1) and Sν(0,1) denoting the closed unit ball and the unit sphere of R
nν

and Na
θν

(xν) standing for the normal operator of the quasiconvex function θν(·, x−ν)

at xν , that is,

Na
θν

(xν) := {
vν ∈ R

nν : 〈vν,uν − xν
〉 ≤ 0, ∀uν ∈ Sν(x)

}
.
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Adapting, respectively, the proof of Lemma 3.1, Theorem 3.1 and Theorem 4.1 of
Aussel-Dutta [12], one can obtain the following links between the generalized Nash
equilibrium problem and the quasivariational inequality QVI(Na

θ ,X).

Lemma 4.1 Let ν ∈ {1, . . . , p}. If the function θν is continuous quasiconvex with
respect to the νth variable, then

0 ∈ Fν(x̄) ⇐⇒ x̄ν ∈ Aν

(
x̄−ν

)
.

Theorem 4.1 Let us assume that, for any ν, the function θν be continuous and qua-
siconvex with respect to the νth variable. Then every solution of QVI(Na

θ ,X) is a
solution of the GNEP.

Theorem 4.2 Let us suppose that the map X be convex valued and, for any ν, the
loss function θν is continuous and semistrictly quasiconvex with respect to the νth
variable.

Then x̄ is a solution of the GNEP if and only if x̄ is a solution of the variational
inequality QVI(Na

θ ,X).

As a conclusion of this section we construct a gap function for the generalized
Nash equilibrium problem. Using the above notations for the GNEP, let us define, for
any β > 0, the function fβ : dom X → R by

fβ(x) = − inf
y∈X(x)

ϕβ(x, y)

where ϕβ : dom X × R
n → R defined, for any (x, y) ∈ dom X × R

n, by

ϕβ(x, y) = sup
x∗∈Na

θ (x)

〈x∗, y − x〉 + β‖y − x‖2.

Proposition 4.1 Let us suppose that the map X be convex valued and, for any ν, the
loss function θν is continuous on R

n and semistrictly quasiconvex with respect to the
νth variable.

Then the application fβ is a gap function for the generalized Nash equilibrium
problem, that is, for any x ∈ FP(X), fβ(x) ≥ 0 and fβ(x) = 0 if and only if x is a
solution of GNEP.

Proof For all x ∈ R
n, Na

θ (x) is compact and convex. Thus by Proposition 2.2, ϕβ

satisfies (B1)–(B2), that is the couple (Na
θ ,X) satisfies hypothesis (H). Thus accord-

ing to Theorem 2.2, fβ is a gap function for QVI(Na
θ ,X) on FP(X). Now the proof

is complete since, for any x ∈ FP(X), fβ(x) ≥ 0 and fβ(x) is null if and only if x is
a solution of QVI(Na

θ ,X) which is equivalent, according to Theorem 4.2, to the fact
that x is solution of the generalized Nash equilibrium problem. �
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Remark 4.1 A classic way to reformulate GNEP is to use the so-called regularized
Nikaido–Isoda function (see e.g. [9, 13]) defined, for any α > 0, by

Ψα(x, y) :=
p∑

ν=1

[

θν

(
yν, x−ν

) − θν

(
xν, x−ν

) + α

2

∥
∥xν − yν

∥
∥2

]

and, for x ∈ R
n,

Vα(x) := − inf
y∈S(x)

Ψα(x, y).

If θν is not convex, but only semistrictly quasiconvex with respect to the νth variable
(as in the above Proposition 4.1), then the regularized Nikaido–Isoda function is of no
use. Indeed, for example, properties (b) and (c) of [13, Theorem 2.2] are not satisfied
in general and therefore, Vα is no longer a gap function in the more general setting of
Proposition 4.1.

The following simple situation provides such an example. We consider a two play-
ers generalized Nash game, which is defined by n1 = n2 = 1 with θ1(x1, x2) = x1|x1|,
θ2 = 0 and X1(x2) = [−1;1], X2(x1) = R. Then Vα(0,0) = 0 but θ1(−1,0) = −1 <

θ1(0,0) which proves that (0,0) is not a solution of the Nash game.

5 Conclusions

Except the fact that this study extends to quasivariational inequalities three differ-
ent concepts of gap functions, another novelty in this paper is that a gap function is
proposed for the Generalized Nash Equilibrium problem (GNEP). Additionally, this
is done for the semistrictly quasiconvex GNEP case. Error bounds are also provided,
under some strong monotonicity assumptions. A natural extension of this work would
be to be able to provide analogous error bounds under weaker monotonicity assump-
tions. This would be of particular interest in order to construct some stopping rule
criterion for quasiconvex or pseudoconvex optimization. Another possible extension
could be to embed, following [14], the study of gap function into a separation scheme,
where the gap function becomes a special case of a separation function in the image
space and, hence, a “by-product” of the Hahn–Banach Theorem.
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